RED DE CONTROL BIOLÓGICO EN RÍOS INFORME FINAL RÍOS AÑO 2007

CONSULTOR: UTE RED BIOLÓGICA EBRO

Oficinas UTE Madrid: c/ Miguel Menéndez Boneta 2-4, puerta 8 28460 Los Molinos, Madrid TF y FAX 91 855 00 29 E-mail: consultoria@ica1.e.telefonica.net

DICIEMBRE, 2007

EQUIPO TÉCNICO

Confederación Hidrográfica del Ebro

Concha Durán (Directora del estudio) Miriam Pardos

UTE Red Biológica del Ebro

Fernando Mariño (Ingeniería y Ciencia Ambiental SL)
Andrés Mellado (Ingeniería y Ciencia Ambiental SL)
José Pedro Marín (Ingeniería y Ciencia Ambiental SL)

Jorge Vargas (DBO₅ SL)
José Miguel García (DBO₅ SL)
Isidoro Pérez (DBO₅ SL)
Ana Pastor (ENSAYA)
Pedro Tomás (ENSAYA)

Rafael Miranda (Universidad de Navarra) Javier Oscoz (Universidad de Navarra)

José Luis Moreno (Universidad de Castilla-La Mancha)

Marina Aboal (Universidad de Murcia)

INDICE

	F	Página
1.	INTRODUCCIÓN	1
2.	METODOLOGÍA DE LOS TRABAJOS	2
2.	.1. MASAS DE AGUA SELECCIONADAS	2
	.2. Trabajo de campo	
	.3. Trabajo de laboratorio	
	.5. Tratamiento y análisis de datos.	
3.		
3	.1. CONSIDERACIONES PREVIAS	55
	.2. RESULTADOS FÍSICO-QUÍMICOS E HIDROMORFOLÓGICOS	
3.	.3. RESULTADOS BIOLÓGICOS. MACROINVERTEBRADOS, MACRÓFITOS Y DIATOMEAS	87
4.	ESTADO ECOLÓGICO	104
	.1. INDICADORES DE CALIDAD HIDROMORFOLÓGICOS	
	.2. Indicadores de calidad físico-químicos	
	.3. INDICADORES DE CALIDAD BIOLOGICOS: MACROINVERTEBRADOS, MACROFITOS Y DIATOMEAS .4. ESTADO ECOLÓGICO DE LAS MASAS DE AGUA MUESTREADAS EN EL AÑO 2007	
5.	CONCLUSIONES GENERALES	
6.	REFERENCIAS	105
Ο.	REFERENCIAS	193
A N	IEXO 1. RESULTADOS FISICO-QUIMICOS E HIDROMORFOLOGICOS	
	IEXO 2. INFORME DE LOS ESTUDIOS DE MACROINVERTEBRADOS	
	IEXO 3. INFORME DE LOS ESTUDIOS DE FITOBENTOS (DIATOMEAS)	
	IEXO 4. RESULTADOS DEL ESTADO ECOLÓGICO POR CCAA	
	IEXO 5 RESULTADOS DEL ESTADO ECOLÓGICO POR SUBCUENCAS	
ΑN	IEXO 6 RESULTADOS DEL ESTADO ECOLÓGICO EN LA RED DE REFERENCI.	Ą

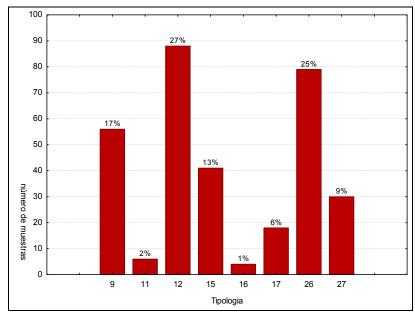
1. INTRODUCCIÓN

La presente memoria contiene los resultados de los trabajos de la explotación de la red de control biológico en ríos, realizados durante el año 2007, en las MAS de ríos de las Redes de Control Operativo, Control de Vigilancia y de Referencia seleccionadas para su estudio este año 2007. Todo ello se enmarca dentro de la asistencia técnica para el DISEÑO Y EXPLOTACION DE LA RED DE CONTROL BIOLOGICO EN RÍOS Y EMBALES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA (DMA) EN LA CUENCA HIDROLÓGICA DEL EBRO" para el Ministerio de Medio Ambiente, a través de la Confederación Hidrográfica del Ebro (CHE) y de su Comisaría de Aguas.

Se describen los ríos muestreados, la metodología utilizada en los muestreos y los resultados de los parámetros físico-químicos medidos *in situ*, de los parámetros químicos analizados en laboratorio, de los indicadores hidromorfológicos (índices QBR e IHF) y de los indicadores biológicos basados en macroinvertebrados (IBMWP, IASPT, nº de familias), vegetación acuática macrofítica (IVAM) y fitobentos (índice de diatomeas IPS).

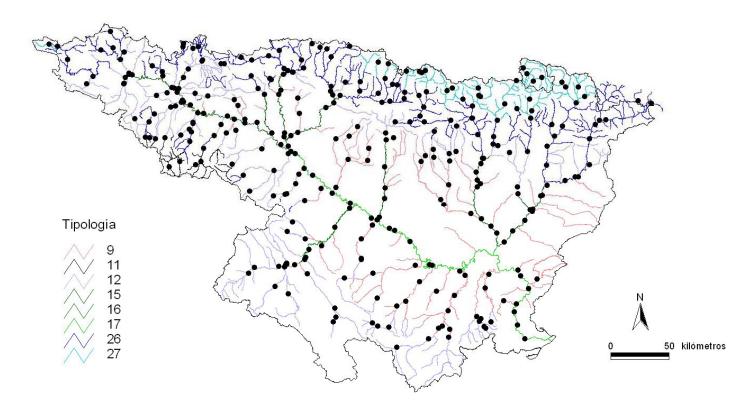
Tras el análisis estadístico y descriptivo de los resultados, se procede a la clasificación del estado ecológico de las masas de agua (ríos) muestreados en el año 2007, de acuerdo con los criterios que establece la DMA y los grupos de trabajo de la Comisión Europea para su implementación. Se consideran dos propuestas para estimar el estado ecológico que se diferencian en la metodología utilizada para valorar el estado biológico (usando los indicadores biológicos de macroinvertebrados, macrófitos y diatomeas). Según este contenido, los objetivos establecidos son los siguientes:

- 1. Caracterizar mediante indicadores físico-químicos e hidromorfológicos el estado de las MAS.
- 2. Caracterizar mediante indicadores biológicos basados en macroinvertebrados, macrófitos y diatomeas, el estado ecológico.
- 3. Definir el estado ecológico a partir de los indicadores biológicos, físico-químicos e hidromorfológicos empleados.
- 4. Descripción detallada del estado ecológico de las MAS por comunidades autónomas, subcuencas y de aquellas que forman parte de la red de Referencia.
- 5. A partir de la información recabada, el objetivo principal es disponer de datos actualizados para completar la explotación de las Redes Operativa, de Vigilancia y de Referencia, así como alertar de problemas, realizar sugerencias, o actualizar la red de control operativo.


1

2. METODOLOGÍA DE LOS TRABAJOS

2.1. Masas de agua seleccionadas


Durante el año 2007 se han seleccionado estaciones situadas en masas de agua (ríos) de las Redes Operativa, de Vigilancia y de Referencia. En total, para este año 2007 se seleccionaron 323 estaciones, distribuidas en las diferentes tipologías de masas de ríos reconocidas en la cuenca del Ebro (**Figura 1**).

Por su parte, la distribución geográfica de las estaciones se ilustra en la **Figura 2**, junto con los tipos de ríos en los cuales se enmarcan.

- Tipo 9 Ríos mineralizados de baja montaña mediterránea
- Tipo 11 Ríos de montaña mediterránea silícea
- Tipo 12 Ríos de montaña mediterránea calcárea
- Tipo 15 Ejes mediterráneo-continentales poco mineralizados
- Tipo 16 Ejes mediterráneo-continentales mineralizados
- Tipo 17 Grandes ejes en ambiente mediterráneo
- Tipo 26 Ríos de montaña húmeda calcárea
- Tipo 27 Ríos de alta montaña

Figura 1. Distribución de las estaciones muestreadas en 2007, por tipos de ríos.

Figura 2. Localización de las masas de agua y estaciones de muestreo seleccionadas para su estudio durante 2007. Se muestran en colores las masas de agua atendiendo a su tipología (ver leyenda).

3

En las estaciones fluviales seleccionadas se realizó durante el año 2007 una única campaña de muestreo, coincidiendo con el periodo estival. La campaña, de unos tres meses de duración, se extendió desde el día 11 de junio, hasta el 20 de septiembre de 2007.

A nivel general, la situación hidrológica durante el verano de 2007 fue de condiciones de sequedad (15-35% de caudales circulantes respecto a la serie histórica) o normales (35-65%). Se dieron episodios de condiciones muy secas (del 0 al 15%) para las cuencas del Segre, Ésera, Noguera Ribagorzana, Noguera Pallaresa, Aragón e Iratí (en junio-julio), a las que se le fueron sumando las cuencas del Jiloca, Matarraña, Martín y Guadalupe a lo largo del verano (datos de la CHE, publicados en http://www.chebro.es/redEstadoHidrologico.htm). Asimismo, también se produjeron episodios muy húmedos en las cuencas del Tirón, Queiles, Alhama, e Iregua durante todo el periodo de estudio, a las que se le unieron las cuencas del Aguas Vivas, Medio Ebro, parte semibaja del Ebro y Arga durante finales de agosto y principios de septiembre. Respecto a episodios de grandes avenidas, el más inmediato al periodo de muestreo se produjo a lo largo de la última semana de marzo y los primeros días de abril de 2007, cuando se registraron importantes precipitaciones en amplios sectores de la cabecera de la cuenca del Ebro que produjeron significativos aumentos de caudales.

Otras tormentas de menor entidad registradas durante la época del muestreo fueron:

- > Tormentas 18-19-20 mayo 2007 en la cabecera del Ebro de 50-100 litros. En Navarra, cuenca del Flumen y del Alcanadre de 10-20 litros.
- > Tormentas del 20 al 22 de julio aprox en la cabecera del cinca y afluentes, 10-20 litros.
- > Tormenta noche del 22 de agosto, zona de Abizanda, 10-20 litros.
- Lluvias noche del 7 al 8 de agosto zona de Sabiñánigo, 0,1-1 litros.

En general, las condiciones meteorológicas fueron estables a lo largo de toda la campaña, con algunas tormentas de poca entidad a finales de agosto y mediados de septiembre que no llegaron a incrementar significativamente los caudales en los puntos estudiados y en el momento de los muestreos.

En el **Cuadro 1** se recogen todos las masas de agua muestreadas en el año 2007. Junto a cada estación de muestreo, identificada por su código CEMAS, aparece la masa de agua a la que pertenece (identificada por su código), asi como el nombre del río, la localidad y la provincia. También se incluye una columna de observaciones donde se indican las particularidades del muestreo, así como cualquier incidencia. Se incluye, por último, la fecha del muestreo.

4

CUADRO 1ESTACIONES Y MASAS DE AGUAS (RÍOS) MUESTREADAS EN EL AÑO 2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0001	0000403	Ebro	Miranda de Ebro	Burgos	No muestreable la fecha de visita, profundo, crecido. Zona de orillas alteradas con escollera de bloques. No se puede hacer IVAM, ni macros. Ni diatomeas (pilas del puente recubiertas de Cyanophyta). A 3 m de la escollera hay + 1 m de profundidad. Se debería mover el punto aguas arriba de la E.A, cuando el nivel de las aguas permita su acceso, zona sin escollera y más natural.	13/06/2007
0002	0000448	Ebro	Castejón	Navarra	Cuidado con el acceso, playa de arena en camino. Baja turbio.	12/07/2007
0003	0000414	Ega	Andosilla	Navarra	Se ha movido el punto de Andosilla a San Adrián, para que sea adecuado el muestreo de biota. Baja turbio, se coge muestra de macrófitos en un rápido al final del tramo. Andosilla es no muestreable por profundo y lenítico.	27/06/2007
0004	0000423	Arga	Funes	Navarra	Se mueve el punto aguas abajo de funes, por ser inaccesible y no muestreable el punto original. Baja turbio, se coge muestra en orilla. Zona lenta y con sedimento en las piedras.	28/06/2007
0005	0000421	Aragón	Caparroso	Navarra	Huele a cloaca, salen dos colectores del pueblo aguas abajo del punto de muestreo. Oscilaciones de caudal, turbidez alta. Fondo del cauce de marga arcillosa. Hay un pequeño brazo lleno de macrófitos.	28/06/2007
0009	0000443	Jalón	Calatayud	Zaragoza	Tramo lenítico no vadeable, junto a azud de central hidroeléctrica. Sólo tomamos muestra de agua.	03/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0013	0000371	Ésera	Graus	Huesca	Baja turbio, gris azulado, se cogen macrófitos en rápido de 10 m. Piedras y bloques del cauce recubiertos de sedimento gris.	21/08/2007
0014	0000135	Martín	Híjar	Teruel	Tramo con vertidos, contaminado. Grasas superficiales. Presencia de <i>P. clarkii</i> .	29/08/2007
0015	0000143	Guadalope	Calanda	Teruel	Llegamos al sitio del azud, pero es un tramo lenítico y sin accesos para muestrear.	23/08/2007
0017	0000441	Cinca	Fraga	Huesca	Baja turbio, profundo, se muestrea pequeño tramo, en la orilla cubre más de 50 cm. Difícil muestreo con este caudal.	02/08/2007
0018	0000509	Aragón	Jaca	Huesca	Sustrato principalmente de roca madre, margen derecha con muro de cemento.	07/08/2007
0022	0000617	Valira	Seu d'Urgell (La)	Lérida	Punto a unos 500 metros de distancia aguas abajo del original, en otro puente situado entre Castellciutat y la Seo de Urgell, muestreando aguas arriba del puente, donde el tramo parece menos antropizado.	13/09/2007
0023	0000589	Segre	Alàs i Cerc	Lérida	Se muestrea aguas arriba del puente. La UTM de la CHE estaba marcada en la carretera nacional N-260, a unos 500 m. aguas abajo del punto elegido. El tramo tiene unos 7 m de ancho y el sustrato son bloques tipo bolo. Hay mucho musgo y la ribera está bien conservada.	14/09/2007
0024	0000432	Segre	Lleida	Lérida	No se muestrea, al tratarse la estación de un canal de riego con mucho caudal.	11/09/2007
0025	0000433	Segre	Seròs	Lérida	Tramo no vadeable, mucho caudal, muestreo escaso. <i>P. clarkii</i> . No se tomó muestra de diatomeas	27/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0027	0000463	Ebro	Tortosa	Tarragona	Tramo no vadeable, aunque se muestrean orillas someras de grava con vegetación acuática y helófitas. Presencia de vertidos en ambas márgenes. Presencia abundante de <i>Corbicula fluminea</i> .	26/08/2007
0032	0000160	Guatizalema	Huerto	Huesca	Inaccesible, estancado, no adecuado para el muestreo, se recorre toda la masa esta estancado, con carrizo y poco accesible	31/07/2007
0036	0000506	Iregua	Nalda	La Rioja	Tramo con mucho caudal. Se muestrea aguas abajo del puente y estación de alerta y derivación para consumo.	06/08/2007
0038	0000274	Najerilla	Torremontalbo	La Rioja	En el punto indicado, no se encuentra acceso al río. Bajo el puente de la N-232. Se accede por detrás del club. Mucho caudal. Muy lavado, posible desembalse.	07/08/2007
0042	0000322	Jiloca	Calamocha	Teruel	Dos vertidos urbanos en el puente. Proliferación de macrófitos. Fangos anóxicos, arenas y limos. Pequeña zona de corriente bajo el puente con algunas piedras. Presencia de <i>P. clarkii</i> .	30/07/2007
0050	0000261	Tirón	Cuzcurrita de Río Tirón	La Rioja	Es un tramo con escolleras en ambos lados y acondicionadas para parques. Sedimentos finos blancos muy abundantes bajo piedras. Posible afección de canteras.	13/07/2007
0060	0000106	Arba de Luesia	Tauste	Zaragoza	El punto más adecuado está en la estación de aforo que se encuentra 200 m más abajo, está en obras con maquinaria por lo que no es muestreable. Baja turbio. Se muestrea por debajo de efluente de la EDAR de Tauste.	17/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0065	0000418	Irati	Liédena	Navarra	Baja turbio, se mueve el punto a una zona aguas arriba porque en el original es inadecuado para el muestreo por la presencia de una presa que embalsa el agua. Se coge muestra en bloques rápido, corriente fuerte por sueltas de Itoiz.	03/07/2007
0068	0000555	Arakil	Olza	Navarra		25/06/2007
0069	0000422	Arga	Etxauri	Navarra	Baja turbio.	20/06/2007
0071	0000280	Ega	Allín	Navarra	Baja turbio. Zona bastante profunda en general y de sustrato bastante fino.	21/06/2007
0074	0000406	Zadorra	Berantevilla	Álava	Baja turbio y crecido, adecuado para el muestreo sólo en orilla izquierda. Huele a cloaca. No se hace IVAM por turbidez.	13/06/2007
0087	0000446	Jalón	Alagón	Zaragoza	Se mueve el punto a la zona del parque el caracol por ser más adecuado para el muestreo.	19/07/2007
0089	0000426	Gállego	Zaragoza	Zaragoza	Agua de color óxido, abundante arrastre de material en suspensión, cauce recubierto de un sedimento fino, restos de celulosa de la papelera. No hay macrófitos.	23/07/2007
0090	0000300	Queiles	Fayos (Los)	Zaragoza	Difícil muestreo por limitado acceso y fuerte corriente	18/07/2007
0092	0000232	Nela	Trespaderne	Burgos	Tramo lenítico y profundo, no vadeable ni representativo. Sólo se toma muestra de agua.	16/07/2007
0093	0000227	Oca	Oña	Burgos	Tramo no vadeable, lenítico. Muy turbio. El acceso es imposible por taludes y vegetación. Las riberas se conservan bien, aunque el agua está muy turbia, gris, parece contaminada.	14/07/2007
0095	0000153	Vero	Barbastro	Huesca	Limo negro, olor a alcantarilla. Vertedero de restos de construcción y restos vegetales, acceso complicado.	20/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0096	0000957	Segre	Balaguer	Lérida	Se muestrea aguas arriba del puente viejo, del último de la ciudad. Abundancia de <i>Procambarus clarkii</i> .	11/09/2007
0097	0000820	Noguera Ribagorzana	Castillonroy	Huesca	El punto se situa a unos 500 m. aguas abajo de la presa, accediéndose por un camino de tierra a la derecha, inmediatamente antes del segundo tunel. Es un tramo muy ancho aunque somero, que se divide en dos ramas aguas abajo. Se muestrean ambas ramas. Mucha vegetación acuática.	20/09/2007
0101	0000417	Aragón	Yesa	Navarra	Baja turbio y lento, cauce cubierto de sedimento. En la zona del puente el sustrato es muy fino, da la impresión que ha habido movimiento del maquinaria en esta zona concreta.	14/08/2007
0106	0000951	Guadalope	Castellote	Teruel	Aguas abajo del azud de derivación para riego, en Abenfigo. Bastante caudal, muchos finos. Masas de <i>Chara</i> sp. enterradas anoxicas. Presencia de juvenil de <i>Anodonta</i> sp.	22/08/2007
0114	0000638	Segre	Baronia de Rialb (La)	Lérida	Justo aguas abajo del azud de derivación, a 1 km aguas arriba del puente de Gualter. Es un tramo de bastante pendiente y de grandes bloques.	12/09/2007
0118	0000133	Martín	Oliete	Teruel	Muchos sólidos en suspensión debido a obras aguas arriba, cerca de la presa o probable desembalse. Muestreamos aguas abajo de la EA, en la zona de bancos y chopos, donde hay un paso para vehículos que cruza el río. Presencia de <i>P. clarkii</i> .	29/08/2007
0120	0000413	Ebro	Lodosa	Navarra	Se mueve el punto original, que estaba en el azud del canal el cual no es muestreable para biota, al puente sobre el río en Lodosa. Baja turbio de coge muestra en orilla.	27/06/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0123	0000807	Gállego	Caldearenas	Huesca	Oscilaciones del nivel de las aguas y turbidez. QBR aguas abajo del puente. Muestreo de biota aguas arriba del puente.	08/08/2007
0126	0000107	Jalón	Ateca	Zaragoza	Mucho caudal por desembalse de la Tranquera. Sólo es posible muestrear un pequeño tramo de rápido somero bajando la escalera de la EA.	
0146	0000645	Noguera Pallaresa	Pobla de Segur (La)	Lérida	Se toma el camino de la central, pasando una gravera. Se alcanza una aliseda bien madura a la orilla del río. Se muestrea en este punto. Es un tramo muy arenoso, con bloques y piedras sobre matriz de arenas. Posee una rama muerta lenítica que también se muestrea.	19/09/2007
0159	0000541	Arga	Huarte/Uharte	Navarra	Aguas abajo del azud.	02/07/2007
0161	0000795	Ebro	Oña	Burgos	Canal abandonado, en obras, no funcional. Acceso desde el puente no abordable y tramo muy ancho y profundo. Mucho caudal, parece desembalse. Seguimos el camino de tierra paralelo al canal para buscar algún acceso alternativo aguas arriba, pero sin éxito.	15/07/2007
0162	0000449	Ebro	Fontellas	Navarra	Se mueve el punto original por no ser muestreable. Se recorre toda la masa y está léntica. Una única zona muestreable cerca de Ribaforada, sendero del Ebro GR 99.	11/07/2007
0163	0000460	Ebro	Ascó	Tarragona	Tramo no vadeable, muy profundo. Se muestrean unos 15 m de orillas, con zonas de carrizo y vegetación acuática. Ataque de simulidos. No se tomó muestra de diatomeas	27/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0165	0000240	Bayas	Miranda de Ebro	Burgos	Baja crecido, un único punto de acceso bajo el puente de la carretera.	13/06/2007
0166	0000234	Jerea	Trespaderne	Burgos	Presencia de <i>Anodonta</i> o <i>Psilunio</i> (cf) en los canales laterales pegados al puente, ninguno en el canal principal. <i>Pacifastacus. leniusculus</i> .	16/07/2007
0176	0000167	Matarraña	Nonaspe	Zaragoza	Tramo temporal seco, con pozas desconectadas y surgencias hiporreicas con un poco de flujo. Muestreo de macroinvertebrados.	28/08/2007
0179	0000249	Zadorra	Iruña de Oca	Álava	Se mueve el punto, pues el marcado es inaccesible e inadecuado. Se recorre el resto de la masa y casi todo no es adecuado para el muestreo, lleno de macrófitos y profundo. Se muestrea en Villodas.	19/06/2007
0180	0000243	Zadorra	Arrazua-Ubarrundia	Álava	Hay un azud.	18/06/2007
0184	0000321	Manubles	Ateca	Zaragoza	Arroyo de pequeño tamaño, pedregoso, con muchas zignematales. Muestreamos el tramo desde antes del puente hasta un pequeño azud hecho con sacos. Muchos macrófitos y helófitos.	02/08/2007
0197	0000276	Leza	Leza de Río Leza	La Rioja	Río mediterráneo bien conservado. Riberas de <i>Tamarix</i> y <i>Populus</i> , eliminada de una margen aguas abajo por posible extracción de gravas.	07/08/2007
0203	0000841	Híjar	Hermandad de Campoo de Suso	Cantabria	Muestreamos en un tramo de 100m desde el puente, aguas arriba, no en el azud de derivación como pone en la BD-CHE. Es una zona agrícola-ganadera. El cauce, aguas abajo, está muy erosionado, afectado por obras.	18/07/2007
0205	0000420	Aragón	Cáseda	Navarra	Puente-azud. Por debajo profundo y muy alta corriente en ciertos tramos	14/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0206	0000622	Segre	Ribera d'Urgellet	Lérida	En el puente no se encuentra acceso al río. A unos 800 m de distancia situamos la nueva estación. La localidad parece alterada, con olor a vertidos residuales. Hay un colector, pero parece agrícola.	13/09/2007
0207	0000428	Segre	Vilanova de la Barca	Lérida	Tramo ancho, de unos 70 m, bastante caudaloso. Aguas turbias y ribera bien conservada. Abundante <i>P. clarkii</i> . Se accede en coche hasta la orilla, en un acceso a zona de pesca.	11/09/2007
0208	0000408	Ebro	Haro	La Rioja	Tramo no vadeable, a unos 300 m del puente de piedra. Tomamos agua y hacemos el QBR. Los taludes son verticales en orillas muy profundas. Imposible el muestreo de biota en zonas cercanas, puesto que el río es ya muy grande en este punto.	11/07/2007
0211	0000454	Ebro	Nuez de Ebro	Zaragoza	Inadecuado para el muestreo, es un canal, no muestreable, está estancado porque hay obras en la presa de pina.	26/07/2007
0214	0000097	Alhama	Alfaro	La Rioja		12/07/2007
0216	0000115	Huerva	Zaragoza	Zaragoza	Baja turbio. Restos de WC- Rata muy gorda y tranquila.	23/07/2007
0217	0000548	Arga	Olza	Navarra		25/06/2007
0218	0000163	Isuela	Monflorite-Lascasas	Huesca	Restos de WC, olor a cloaca. Ribera cercana al puente limpiada con excavadora.	30/07/2007
0219	0000433	Segre	Torres de Segre	Lérida	Tramo muy ancho (100 m) y de unos 50 cm de prof. Plagado de macrófitos. Contaminado, con fuerte olor a vertido urbano. Muchas carpas enormes. Presencia de <i>P. clarkii</i> . Cisnes.	27/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0221	0000490	Subialde o Zayas	Zigoitia	Álava	Punto sombreado, macrófitos sólo en ventanas de luz, baja un poco turbio, impide ver el fondo del cauce, hubo lluvias días antes, la zona de rápidos con luz está cubierta de musgos.	11/06/2007
0225	0000166	Clamor Amarga	Zaidín	Huesca	Único punto accesible bajo puente carretera. En el cauce hay bloques de refuerzo de las pilas del puente. Cuando se abandona esta zona es profundo y turbio. El resto de la masa está lleno de carrizo y cañas, es inaccesible.	02/08/2007
0226	0000165	Alcanadre	Ontiñena	Huesca	Baja turbio.	02/08/2007
0227	0000164	Flumen	Sariñena	Huesca	Inaccesible, se recorrió la masa y nos se encontró un acceso alternativo, la vegetación de árboles, zarzas, carrizo y anea impide el acceso, además baja con bastante corriente debido a las aguas que se infiltran del drenaje de los regadíos.	31/07/2007
0228	0000436	Cinca	Monzón	Huesca	Se llega a la zona de muestreo, es inaccesible, se recorren 500 m, soto denso, se llega a la orilla en una zona lenta y profunda. El acceso original se ha llenado de carrizo y anea, probablemente por unas obras de alcantarillado realizadas en febrero.	16/08/2007
0241	0000502	Najerilla	Anguiano	La Rioja	Hay una señal de "Tramo 22 de pesca". Es una cuesta muy pronunciada se recomienda 4x4. Tramo muy caudaloso.	10/07/2007
0242	0000288	Cidacos	Autol	La Rioja	Proliferación de Cladophora. Cornisas con raíces con muchos peces. Tramo un tanto uniformizado por las algas. Presencia de <i>Procambarus clarkii</i> .	08/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0243	0000297	Alhama	Cervera del Río Alhama	La Rioja	Arroyo mediterráneo bien conservado, aunque el caudal es muy escaso y la proliferación algal importante.	08/08/2007
0244	0000323	Jiloca	Calamocha	Teruel	Pasado el puente, se toma un camino a la izquierda. Se sigue unos 200 m y muestreamos en una zona de chopera con un meandro con escolleras.	08/08/2007
0247	0000426	Gállego	San Mateo de Gállego	Zaragoza	Baja turbio.	29/08/2007
0504	0000416	Ebro	Funes	Navarra	Baja turbio.	27/06/2007
0505	0000447	Ebro	Alfaro	La Rioja		12/07/2007
0506	0000448	Ebro	Tudela	Navarra	Baja turbio. Turbio se coge <i>Thorea</i> a 2m de la orilla y 80 cm de profundidad en piedra de + 22 y 10 cm	11/07/2007
0508	0000450	Ebro	Gallur	Zaragoza	Baja turbio y lento. Se cogen diatomeas en testigo de mejillón cebra.	17/07/2007
0511	0000462	Ebro	Benifallet	Tarragona	Se accede a un viejo embarcadero. No vadeable. No se tomó muestra de diatomeas	26/08/2007
0512	0000463	Ebro	Xerta	Tarragona	No vadeable. Sólo se tomó muestra de agua	26/08/2007
0516	0000493	Oropesa	Pradoluengo	Burgos	Aguas arriba de la toma de agua de la ETAP de Pradoluengo.	12/07/2007
0517	0000497	Oja	Ezcaray	La Rioja	Según indicaciones de la BD-CHE. Cauce ancho con riberas cultivadas.	12/07/2007
0523	0000270	Najerilla	Nájera	La Rioja	Se muestrea aguas arriba del puente, donde es más somero y con más corriente. El sustrato también es más diverso. Proliferación de <i>Ranunculus</i> .	06/08/2007
0528	0000277	Jubera	Lagunilla del Jubera	La Rioja	Tramo mediterráneo temporal completamente seco. Ribera bien conservada. Tramo de cauce ancho, de gravas gruesas y bloques. Señales de avenidas.	07/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0529	0000692	Aragón	Castiello de Jaca	Huesca	Oscilaciones del nivel de las aguas, macrófitos en superficie, mayor nº en la margen izquierda.	07/08/2007
0530	0000424	Aragón	Milagro	Navarra	Zona de baño, presa, estación de aforo y escollera a los lados. Baja turbio, se coge muestra de macrófitos se mirará en laboratorio.	12/07/2007
0534	0000550	Alzania	Ziordia	Navarra	Muestreado en tramo justo por debajo de zona canalizada tras la pared del embalse, en donde ya el río vuelve a ser "natural", con bosque.	19/06/2007
0537	0000103	Arba de Biel	Luna	Zaragoza	Aguas arriba hay un azud que deriva el agua a una acequia que puede ser de abastecimiento, estando el agua estancada. Aguas abajo no lleva agua, existiendo charcos aislados (parece haber algo de inflitración).	17/07/2007
0538	0000847	Aguas Limpias	Sallent de Gállego	Huesca	Es embalse	06/08/2007
0539	0000568	Aurin	Sabiñánigo	Huesca	Seco, es un cauce temporal. El cauce es una gravera que impresiona.	06/08/2007
0540	0000116	Fontobal	Ayerbe	Huesca	A unos 500 m aguas arriba está seco. Aguas debajo de la zona de muestreo hay un azud que deriva todo el caudal a una canalización subterránea.	09/08/2007
0541	0000302	Huecha	Bulbuente	Zaragoza	seco	19/07/2007
0549	0000869	Cinca	Zaidín	Huesca	Inaccesible, se recorrió la masa no se encontró acceso adecuado, el único posible llevaba a la escollera y era profundo, en las zonas que había playas de cantos y gravas el extenso y cerrado bosque de ribera impedía el acceso.	02/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0551	0000162	Flumen	Loporzano	Huesca	Baja turbio. Zona limpiada, para construir un parque, único punto accesible. Zona por debajo del tramo analizado en 2004 y 2005 que era en E.A.	30/07/2007
0561	0000575	Gállego	Caldearenas	Huesca	Baja turbio.	08/08/2007
0562	0000437	Cinca	Monzón	Huesca	Baja turbio	16/08/2007
0564	0000241	Zadorra	Barrundia	Álava	Muestreado aguas arriba del puente para evitar posible efecto del colector existente. Además existe otro punto aguas abajo (Heredia) que podría recoger posible efecto de este colector más abajo.	19/06/2007
0565	0000115	Huerva	Zaragoza	Zaragoza	Inaccesible por obras	23/07/2007
0569	0000551	Arakil	Urdiain	Navarra	Se mueve el punto que estaba en Alsasua por inaccesible y poco adecuado para el muestreo. Se lleva al molino de Iturmendi, por debajo de una pequeña presa, que fue la única zona accesible y muestreable. QBR aguas abajo del puente.	19/06/2007
0570	0000115	Huerva	Muel	Zaragoza	Se traslada estación a Botorrita, por ser no muestrable, inaccesible o artificial la zona original. La estación original estaba en Muel, se visita y se observa que está alterada como se comenta anteriormente, Se recorre la masa y se lleva a Botorrita.	25/07/2007
0571	0000411	Ebro	Logroño	La Rioja	Baja turbio, tramo por debajo de una presa. Muestreable principalmente en una zona de rápidos.	26/06/2007
0572	0000285	Ega	Aberin	Navarra	Propiedad privada. Bodegas Señorío de Abinzano. Chivite. Baja turbio y con cierta cantidad de caudal, lo que puede condicionar el muestreo. Se observa <i>Cladophora</i> y musgo.	21/06/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0574	0000270	Najerilla	Nájera	La Rioja	Llegar a la antigua EDAR (ya en desuso). Se muestrea aguas arriba de la misma. Tramo ancho, de unos 15 m. Bastante caudal. En la orilla frente al acceso desemboca lo que parece ser un riachuelo utilizado como vertido	07/08/2007
0577	0000422	Arga	Puente la Reina/Gares	Navarra	Baja turbio. Corriente fuerte.	20/06/2007
0582	0000178	Canaleta	Bot	Tarragona	Seco, sólo queda un carrizal aguas arriba y aguas abajo una charca cubierta 100% de <i>Lemna</i> sp.	26/08/2007
0583	0000113	Grío	Almunia de Doña Godina (La)	Zaragoza	Arroyo bien conservado. Hay un pequeño azud y una arqueta de captación para consumo. Unos 50m aguas abajo el río se seca. Aguas arriba tramos de corriente gravosos y pozas de grava y arena.	03/08/2007
0586	0000444	Jalón	Paracuellos de la Ribera	Zaragoza	No vadeable. Estación de abastecimiento. Mucho caudal, desembalses para regadíos.	03/08/2007
0590	0000456	Ebro	Escatrón	Zaragoza	Inaccesible, lenítico. Se pidió permiso a la Central para poder entrar, nos acompañó en la visita del tramo la responsable de medio ambiente de la obras. Todo el tramo lento y profundo, no muestreable.	23/07/2007
0592	0000455	Ebro	Pina de Ebro	Zaragoza	Baja turbio, se muestrea a 10 m de orilla.	26/07/2007
0593	0000108	Jalón	Terrer	Zaragoza	Mucho caudal por desembalse de la Tranquera. Muestreo con dificultad, sobre todo en orillas. Está todo muy lavado. Nos comentan que los desembalses duran todo el verano y que en invierno hay muy poco caudal.	02/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0594	0000504	Najerilla	Baños de Río Tobía	La Rioja	Seguimos las indicaciones de la base de datos de la CHE (en adelante BD-CHE) y conseguimos acceder al río cerca del punto indicado. Los accesos son difíciles y hay que caminar bastante. Hay muchas choperas en ambas márgenes y graveras cerca del tramo muestreado. Tramo ancho y muy expuesto, bastante caudaloso.	10/07/2007
0595	0000409	Ebro	San Vicente de la Sonsierra	La Rioja	Sitio muy alterado. Toma para central hidroeléctrica. Presencia de <i>Dreissena polymorpha</i> . Conchas de <i>Anodonta</i> en orillas. Un chaval dice haber cogido uniónidos vivos de gran tamaño. Nosotros no encontramos. También nos dicen que hay mucho cangrejo rojo, pero sólo vemos uno muerto. Aguas contaminadas a primera vista y olor, que bajan del azud de la central.	11/07/2007
0605	0000891	Ebro	Aldea (L')	Tarragona	No vadeable. Sólo se tomó muestra de agua. Corbicula fluminea	26/08/2007
0608	0000652	Noguera Pallaresa	Talarn	Lérida	Tramo con gran diversidad de microhábitats. Para llegar al punto, seguir la segunda parte de las indicaciones de la BD-CHE (desde "el punto de muestreo se situa en el río"), pues la primera parte induce a error, pues describe otra zona.	20/09/2007
0609	0000231	Salón	Medina de Pomar	Burgos	Tramo con predominio lenítico. Signos de eutrofia, con bloom de cladophorales que dificultan un tanto el muestreo.	

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0612	0000822	Huerva	Villanueva de Huerva	Zaragoza	Cladophora en abundancia. Se observa una disminución de caudal reciente que ha secado un brazo. Muro de cemento en ambas márgenes, más patente el de la izquierda.	25/07/2007
0618	0000848	Gállego	Sallent de Gállego	Huesca	Vaso de embalse colmatado. Han entrado máquinas para dragar el cauce. QBR por altitud la vegetación existente no se corresponde con la del resto de la masa por arriba no hay nada. Elevada cantidad de limo.	06/08/2007
0619	0000783	Negro	Vielha e Mijaran	Lérida	El tramo elegido para el muestreo se sitúa alrededor de 1 km aguas arriba del punto UTM marcado en la BD-CHE, aguas arriba del puente de piedra. Las UTM de CHE nos sitúan en la carretera y sin acceso al río (en el PK 158, donde tomamos el camino que nos lleva al puente viejo, donde muestreamos)	18/09/2007
0621	0000959	Segre	Ponts	Lérida	Elegimos un punto aguas abajo del marcado en el azud de derivación. Es un tramo bien conservado, con abundante roca madre, rápidos frecuentes, charcas laterales, ramas muertas, surgencias anexas de aguas frías, y diversos habitats interesantes.	12/09/2007
0623	0000398	Algas	Beceite	Teruel	Estiaje bastante avanzado. Sólo presencia de pozas e hilillos de corriente. Proliferación algal. No muestra de diatomeas.	25/08/2007
0625	0000431	Noguera Ribagorzana	Algerri	Lérida	Tramo ancho con bastante corriente.	20/09/2007
0627	0000431	Noguera Ribagorzana	Torrelameu	Lérida	Tramo relativamente ancho, con abundante vegetación acuática. Sustrato rico en finos, con algunas zonas aisladas de piedras y sin vegetación. Agua un tanto turbia. Usos recreativos (piraguas).	11/09/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0628	0000368	Barranco Calvó	Benabarre	Huesca	Seco, es el inicio del barranco, hay una pequeña presa que debía servir de abastecimiento al pueblo tiempos atrás. Cauce estrecho incluido en la roca madre.	21/08/2007
0638	0000000	Son	Alt Aneu	Lérida	Lo muestreamos unos 400 m aguas abajo del punto marcado, pues no encontramos acceso. En el punto elegido, a unos 100 m aguas arriba lo han represado extrayendo casi la totalidad del flujo superficial, para riego eventual. El agua está muy turbia y hay muy poca fauna, además de resultar complicado el muestreo por el poco caudal.	15/09/2007
0643	0001701	Padrobaso	Zuia	Álava	Realmente se llama Padurobaso. Hay que pedir autorización en la casa de información del parque natural.	11/06/2007
0644	0000485	Bayas	Zuia	Álava	Hay un talud y un azud aguas arriba. Zona de baño y paso de tractores.	12/06/2007
0647	0000423	Arga	Peralta	Navarra	Se mueve el punto aguas arriba del puente de Peralte. Baja turbio.	28/06/2007
0649	0000487	Santa Engracia	Legutiano	Álava	El tramo al que se llega por las coordenadas GIS es cola de embalse. Se toma la muestra unos 500 m aguas arriba, coincidiendo con tramo de 2005 junto a parking de carretera. Vegetación de ribera densa y en buen estado. Por la escasa luminosidad, los macrófitos se encuentran en un rápido soleado. Baja un poco turbio, impide ver el fondo del cauce. se observan marcas de agua de las lluvias días antes, 20 cm.	11/06/2007
0650	0000421	Aragón	Marcilla	Navarra	Se toma por debajo de la presa existente entre el puente del ferrocarril y de la A-15. Baja turbio, se coge muestra en rápido.	28/06/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0657	0000452	Ebro	Zaragoza	Zaragoza	inaccesible por obras de las riberas	23/07/2007
0701	0001702	Omecillo	Valdegovía	Álava	Aguas abajo del azud. Baja un poco turbio, el sábado anterior hubo tormenta. Los macrófitos se repiten en los rápidos. Los bloques y piedras están recubiertos de <i>Cladophora</i> y sedimento. Punto adecuado para el muestreo biológico, problemas con el QBR por el parque y el pueblo.	12/06/2007
0702	0000526	Esca	Sigüés	Zaragoza	Estación de Aforo	14/08/2007
0703	0000100	Arba de Luesia	Biota	Zaragoza	Semiestancado, baja poca agua.	16/07/2007
0705	0000786	Garona	Bòrdes (Es)	Lérida	Se localiza en el puente del cruce a "Es Bordes-Artiga de Lin". El acceso es aguas arriba del puente, en la margen izquierda, junto a una parada de autobuses.	17/09/2007
0706	0000391	Matarraña	Valderrobres	Teruel	Se accede desde anchurón frente a Hotel "El Salt". Se muestrea desde el puente del pueblo, aguas arriba, y en un ramal lateral muerto. Presencia de patos de granja.	24/08/2007
0802	0000435	Cinca	Estada	Huesca	Limo negro, huele a fétido.	20/08/2007
0804	0000693	Aragón Subordán	Valle de Hecho	Huesca	Brazo derecho más macrófitos que el izquierdo, con ligero olor a alcantarilla. En 2006 ocurrió lo mismo, brazo izquierdo más limpio, <i>Nostoc</i> y <i>Lemanea</i> .	13/08/2007
0806	0000138	Bergantes	Ginebrosa (La)	Teruel	Tramo pintoresco en roca madre de conglomerados. Presencia de ganado ovino.	23/08/2007
0808	0000425	Gállego	Murillo de Gállego	Zaragoza	Baja turbio. Se coge muestra de macrófitos en orilla visible.	09/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
0810	0000427	Segre	Camarasa	Lérida	Tramo al final de la chopera, en la playa fluvial frente al peñasco. El tramo es muy ancho y no vadeable, con mucho caudal, aunque aguas arriba se puede muestrear una rama secundaria. Sólo se hace margen izquierda.	12/09/2007
0815	0000508	Urederra	Améscoa Baja	Navarra	Aguas abajo entra el efluente de la central. El tramo está acondicionado para ser una piscina fluvial, pero al no estar colocada se muestrea sin dificultad. En verano puede ser tramo no muestreable en condiciones si se coloca la presa de la piscina.	21/06/2007
0816	0000526	Esca	Burgui	Navarra	Presa aguas arriba, QBR aguas abajo del puente. Zona de baño del pueblo.	14/08/2007
1004	0000474	Nela	Merindad de Valdeporres	Burgos	Muestreamos un tramo situado unos 300 m. aguas arriba del arco natural de Puentedei. El sitio es muy pintoresco y la diversidad es muy alta.	17/07/2007
1006	0000477	Trueba	Espinosa de los Monteros	Burgos	En las fichas de Labaqua pone en "Espinosa de los Monteros". Es un arroyo muy bonito con riberas de <i>S. eleagnos</i> y muchas especies ribereñas. Alternancia rápidos-pozas. Sustrato de bolos con muchas zygnematales.	17/07/2007
1017	0000236	Omecillo	Lantarón	Álava	Baja turbio y con bastante agua, signos de crecida reciente.	12/06/2007
1024	0000241	Zadorra	San Millán	Álava		19/06/2007
1025	0000243	Zadorra	Arrazua-Ubarrundia	Álava	Muchas macrofitas	18/06/2007
1028	0000405	Zadorra	Puebla de Arganzón (La)	Burgos	Baja turbio. Hay un azud.	12/06/2007
1032	0000254	Ayuda	Berantevilla	Álava	Baja turbio y crecido.	13/06/2007
1034	0000255	Inglares	Peñacerrada-Urizaharra	Álava	Restos de WC.	13/06/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1036	0000278	Linares	Espronceda	Navarra	Carrizal.	26/06/2007
1037	0000091	Linares	Torres del Río	Navarra	Tramo cubierto de Cladophora.	26/06/2007
1038	0000091	Linares	Mendavia	Navarra	Tramo con escolleras cubiertas de vegetación	27/06/2007
1039	0000279	Ega	Lagrán	Álava	Obras de acondicionamiento de márgenes, creando paseo fluvial.	21/06/2007
1045	0000688	Aragón	Aisa	Huesca	Baja turbio, Iluvias recientes	07/08/2007
1047	0000519	Aragón	Puente la Reina de Jaca	Huesca	Baja muy turbio, es muy probable que sea del río Gas que entra aguas arriba	14/08/2007
1056	0000520	Veral	Canal de Berdún	Huesca	-	13/08/2007
1062	0000532	Irati	Oroz-Betelu	Navarra	Se mueve el punto original, que se encontraba entre presas y fosa séptica, a una zona más arriba, zona profunda con bloques grandes.	04/07/2007
1064	0000289	Irati	Lumbier	Navarra	Baja turbio, oscilaciones del nivel del agua por sueltas en Itoiz.	03/07/2007
1065	0000533	Urrobi	Auritz/Burguete	Navarra		04/07/2007
1070	0000540	Salazar	Navascués	Navarra	QBR aguas arriba del acceso	03/07/2007
1072	0000793	Arga	Esteribar	Navarra		02/07/2007
1083	0000100	Arba de Luesia	Luesia	Zaragoza	Charcos intermitentes, se infiltra en algunas zonas. No muestreable por ello	16/07/2007
1087	0000848	Gállego	Sallent de Gállego	Huesca	Color ligeramente gris. QBR no se hace por altitud, pasto.	06/08/2007
1088	0000706	Gállego	Biescas	Huesca	Sin ribera, canalizado en su totalidad.	06/08/2007
1089	0000569	Gállego	Sabiñánigo	Huesca	Acceso muy difícil, sólo muestreable un rápido entre 2 zonas remansadas. Vegetación se ha cerrado en los últimos años. Por debajo entran aguas residuales, y se ha construido una especie de azud. Poca zona muestreable y de difícil acceso.	08/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1090	0000573	Gállego	Sabiñánigo	Huesca	Baja turbio, se mueve el punto de Hostal de Ipiés por inaccesible, por la abundante vegetación de ribera.	08/08/2007
1092	0000332	Gállego	Murillo de Gállego	Zaragoza	Baja turbio. Se coge muestra de macrófitos en rápido de margen izquierda.	09/08/2007
1096	0000578	Segre	Llívia	Gerona	Tramo aguas arriba del puente. Se accede desde el parque de la pista de petanca, dejando el coche en el parking circular. Se accede por una senda al cauce y se muestrea aguas arriba, hasta la cascada.	14/09/2007
1101	0000639	Segre	Artesa de Segre	Lérida	Se accede al cruzar el puente, por una carretera a la izquierda -no a la derecha, como indica la CHE El camino que sale a mano izquierda, a unos 180 m, tiene una cadena gruesa, aunque sin candado (con pasador). Se accede hasta casi la orilla del río. Buena ribera y diversidad de hábitats.	12/09/2007
1105	0000709	Noguera Pallaresa	Alt Aneu	Lérida	Tramo de montaña frente al cementerio de la aldea de Borén. Bolos graníticos y bloques gruesos. Playas de grava y piedras. Tramo muy resbaladizo.	16/09/2007
1106*	0000717*	Noguera Pallaresa*	Llavorsí	Lérida	La UTM de la CHE se encuentra más cerca del Noguera Vallferrera, por lo que el navegador GPS nos equivoca y nos lleva a este otro río. Lo muestreamos aguas arriba del camping. Tramo de bloques y lascas pizarrosas en matriz de gravas finas, de aguas cristalinas.	15/09/2007
1108	0000645	Noguera Pallaresa	Baix Pallars	Lérida	Tramo no vadeable, de mucho caudal y taludes verticales. Vertido de aguas residuales junto al puente, aunque no está activo, pero se huele. Se aprecian signos de desembalse.	19/09/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1110	0000646	Flamisell	Torre de Cabdella (La)	Lérida	Tramo bien conservado, aunque con área recreativa en la orilla, por la que se accede. Se muestrea aguas arriba de la misma.	
1113	0000744	Noguera Ribagorzana	Pont de Suert (EI)	Lérida	Desde Pont de Suert, tomamos carretera a Pobla de Segur y despues cogemos el camino que lleva a la EDAR. Se continúa el camino, pasando una gravera y accediendo al río por el cartel de "acceso al río". El punto se encuentra a unos 500 m aguas abajo del marcado por la CHE. Al finalizar el muestreo, el agua se enturbia a blanco repentinamente, probablemente debido a la actividad de la gravera.	19/09/2007
1114	0000662	Noguera Ribagorzana	Puente de Montañana	Huesca	Tramo de poco caudal. Pozas con carrizo y mucho limo. Aguas turbias blanquecinas. Orillas con <i>Chara</i> en dos ramales del río y rápidos con piedras y <i>Cladophora</i> .	
1119	0000151	Corp*	Vilanova de la Barca	Lérida	El río se llama Corb, no Corp. El tramo elegido en la BD-CHE es muy estrecho y encajado, por lo que la fuerza del agua (el caudal es muy grande) impide un buen y seguro muestreo. Buscamos aguas abajo y encontramos un sitio adecuado dentro del camping, donde hay un acceso al río justo antes de desembocar en el Segre. El caudal está muy alto, según vecino, el doble de lo habitual. También nos alerta de vertidos de purines aguas arriba, con fuertes olores durante la noche. El tramo parece estar muy lavado, con poca abundancia y diversidad de fauna invertebrada.	11/09/2007
1120	0000746	Cinca	Tella-Sin	Huesca	Complicado, recorrer el tramo, resbaladizo y corriente fuerte.	28/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1121	0000754	Cinca	Puértolas	Huesca	Zona de baño.	27/08/2007
1122	0000666	Cinca	Aínsa-Sobrarbe	Huesca	Sustrato del cauce inestable, fácilmente movible por las crecidas, Se coge muestra de macrófitos en orilla izquierda. Lluvias día anterior, algunas piedras aparecen dadas la vuelta, debido a las tormentas de principios de agosto.	23/08/2007
1123	0000678	Cinca	Grado (EI)	Huesca	Cubierta de una masa marrón-naranja claro. Similar a 2005. Es una gravera bastante amplia, por ello la dificultad de aplicación del QBR	20/08/2007
1127	0000749	Cinqueta	Plan	Huesca		28/08/2007
1128	0000756	Vellós	Fanlo	Huesca	Sin permiso. Se encuentra dentro del Parque Nacional de Ordesa-Monte Perdido, hay que pedir un permiso específico para entrar en el parque y realizar los muestreos. Se debe muestrear antes de la unión de los dos afluentes, único punto muestreable. Acceso tedioso.	27/08/2007
1130	0000761	Ara	Torla	Huesca	Olor a materia orgánica, posible vertido del camping aguas arriba. Por encima de la E.A.	27/08/2007
1132	0000669	Ara	Aínsa-Sobrarbe	Huesca	Hay un vertido de alcantarilla del parking.	23/08/2007
1133	0000768	Ésera	Castejón de Sos	Huesca	Aguas abajo del puente entran aguas residuales, tramo con escollera de bloques en ambas márgenes, vegetación de sauces en crecimiento.	22/08/2007
1134	0000679	Ésera	Foradada del Toscar	Huesca	Exceso de caudal por suelta central de Viu, en orilla profundo, no se puede entrar en el cauce	22/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1135	0000679	Ésera	Perarrúa	Huesca	Sedimento gris que recubre el cauce. Signos de haber llevado más agua recientemente. QBR aguas abajo del puente medieval. Brazo derecho con más macrófitos, huellas de nutria. Tubo de desagüe en brazo derecho, vertido semicontinuo. El brazo izquierdo parece más inestable, zona de descarga de las avenidas.	21/08/2007
1137	0000680	Isábena	Laspaúles	Huesca	Aguas abajo del puente (en la base) desemboca el alcantarillado de las paules. Aguas arriba de la pila izquierda del puente desemboca otra pequeña alcantarilla. Se muestrea aguas arriba de los vertidos, ver fotos. Al final del tramo muestreado hay un bebedero de vacas del pasto de la margen izquierda.	22/08/2007
1139	0000372	Isábena	Capella	Huesca	Baja turbio, gris azulado, signos de lluvias recientes en orilla izquierda. Se coge muestra de macrófitos en rápido 10m y en la E.A	21/08/2007
1140	0000684	Alcanadre	Boltaña	Huesca	Zona poco adecuada para el muestreo por ser inaccesible en su mayor parte, se muestrea pequeñas zonas de entrada de vacas para beber, así como tramo más abajo (pero de difícil acceso). Zona lenta por poco caudal.	01/08/2007
1141	0000157	Alcanadre	Angüés	Huesca	Inaccesible por obras autovía.	31/07/2007
1149	0000465	Ebro	Reinosa	Cantabria	Se muestrea desde el puente viejo hasta la pasarela de madera moderna. El río parece algo eutrofizado, con mucha basura en el cauce. Proliferación exagerada de <i>Echinogammarus</i> (cf).	19/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1150	0000468	Ebro	Valdeprado del Río	Cantabria	Muy caudaloso. Sólo es posible el muestreo en orillas con herbáceas sumergidas y un poco de corriente más somera con piedras. La longitud total del tramo muestreado es de unos 5 metros.	19/07/2007
1154	0000408	Ebro	Labastida	Álava	Tramo no vadeable, de unos 100m de anchura, con orillas abruptas. Imposible encontrar tramo cercano que se pueda muestrear. La ribera está bien conservada aguas abajo del puente, aunque obras en la carretera han afectado paisajisticamente el tramo.	11/07/2007
1156	0000410	Ebro	Cenicero	La Rioja	Tramo no vadeable con ribera en <i>buen estado</i> , muy maduras.	07/08/2007
1157	0000412	Ebro	Alcanadre	La Rioja	Baja turbio, se coge muestra de macrófitos en rápido de la margen izquierda. Playa de cantos.	27/06/2007
1164	0000451	Ebro	Torres de Berrellén	Zaragoza	Baja turbio, muy lento, se observan en orilla Cladophora, Enteromorpha y Spirogyra.	19/07/2007
1167	0000461	Ebro	Móra d'Ebre	Tarragona	Tramo no vadeable, bajo el puente nuevo, aunque se muestrean orillas someras de grava con vegetación acuática y helófitas, y las llanuras inundadas. Ataque masivo de simúlidos. <i>Corbicula fluminea</i> .	26/08/2007
1169	0000221	Oca	Valle de Oca	Burgos	Se muestrea desde el puente hacia aguas arriba. El sustrato parece algo margoso, con los cantos incluidos.	13/07/2007
1173	0000179	Tirón	Fresneda de la Sierra Tirón	Burgos		12/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1174	0000495	Tirón	Belorado	Burgos	En la zona del cartel de "Zona Restauración Hábitat Visón Europeo" toda la chopera ha sido talada, quedando un solar bastante llamativo. Muestreamos desde el puente hasta la poza aguas abajo, bajo un gran sauce.	13/07/2007
1175	0000258	Tirón	Cerezo de Rio Tirón	Burgos	Se muestrea desde el puente hacia aguas arriba, en los dos canales que conforman el río, uno principal y uno secundario, en medio, una isla de grava y matorral. Aparecen signos de contaminación orgánica.	13/07/2007
1177	0000267	Tirón	Haro	La Rioja	Se muestrea el tramo aguas arriba del puente viejo. Tramo bastante caudaloso. Se aparca el coche al final del campo de fútbol.	11/07/2007
1178	0000183	Najerilla	Villavelayo	La Rioja	Se trata en realidad del R. Neila aguas abajo del municipio de Neila, tal como indican las observaciones de febrero del 2007 de la CHE, que indica "seguir las instrucciones de la ficha de Referencia". Se selecciona un tramo de aguas rápidas, que va desde el puente hasta una gran roca aguas arriba en la margen derecha.	10/07/2007
1183	0000953	Iregua	Lumbreras	La Rioja	Tramo de montaña, con mucho caudal (desembalse de Piqueras) y sustrato rocoso. Muestreo dificultoso, aguas abajo de la EA. Se baja por un sendero junto a la señal de desprendimientos, en el puente de la CN, que conduce a la escollera, por la cual se accede al río.	05/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1184	0000203	Iregua	Nieva de Cameros	La Rioja	En la parada de autobuses, sale un camino que accede al río. Hay una senda que discurre paralela al río, con diferentes accesos, algunos complicados. Mucho caudal, muestreo complicado.	06/08/2007
1191	0000296	Linares	San Pedro Manrique	Soria	Muestreamos aguas abajo de los puentes (hay uno nuevo, el de la EA, y dos viejos pegados). Arroyo muy diverso en sustratos y hábitats, con mucha vegetación acuática.	05/08/2007
1193	0000295	Alhama	Magaña	Soria	El punto de Labaqua estaba seco totalmente. Lo hacemos aguas abajo de Magaña. Justo tras el desvío a Magaña, se entra por un camino a la derecha junto a una nave. Se muestrea al final del camino que llega hasta la orilla del río. Cauce ancho, tipo rambla mediterránea, de grava, con muchas algas.	04/08/2007
1203	0000323	Jiloca	Morata de Jiloca	Zaragoza	Hay un vertido inmediatamente aguas abajo del tramo muestreado, con un gran colector de ARU, con mucha olor. La pluma incluso asciende unos 3 m aguas arriba. El tramo parece temporal. Hay muchas truchas y <i>Natrix</i> sp. Mucha <i>Cladophora</i> en condiciones de estiaje.	
1207	0000308	Jalón	Santa María de Huerta	Soria	Tramo bastante contaminado. Dos vertidos directos bajo el puente, uno de una casa particular y otro de la RENFE. Muchos residuos sólidos y sólidos en suspensión. Aguas muy turbias y poco cauda.	01/08/2007
1208	0000108	Jalón	Ateca	Zaragoza	Mucho caudal y una profundidad media de 60 cm. Probable desembalse, todo muy lavado. Muestreo dificultoso. Agua medio turbia. Sustrato pedregoso, con algunos bloques.	02/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1210	0000446	Jalón	Epila	Zaragoza	No vadeable. Buscamos acceso alternativo aguas arriba, por caminos entre frutales, pero el río es aun más lenítico y profundo en todo el tramo recorrido.	08/08/2007
1216	0000320	Piedra	Castejón de las Armas	Zaragoza	No vadeable, muchísimo caudal por desembalse de La Tranquera. Además el acceso está vallado por presencia de parque para niños.	01/08/2007
1219	0000821	Huerva	Cerveruela	Zaragoza	Muestreado por debajo del pueblo, más abajo que el tramo tomado en 2005. Tramo umbrío, excepto en la parte superior que la vegetación de ribera está clareada, pequeño muro de piedras, también entra un afluente por la margen derecha.	
1225	0000123	Aguas Vivas	Blesa	Teruel	Agua que lleva procede del alcantarillado del pueblo. Está lenítico y con mal olor. Fosa séptica llena, rebosa por el lateral. Resto del tramo cubierto por vegetación. Por ello, considerando que no es representativo y por la dificultad de muestreo en la vegetación no se toma muestra.	24/07/2007
1227	0000129	Aguas Vivas	Azaila	Teruel	Carrizal, el cauce está lleno de carrizo y casi no corre el agua. No se puede muestrear. Años atrás si se muestreó por Javier Oscoz, pero no había tanto carrizo (comparar fotos).	
1228	0000342	Martín	Martín del Río	Teruel	Se muestrea aguas arriba (poza con abundante vegetación acuática) y abajo (zona de corriente con piedras y <i>Cladophora</i>) del paso de vehículos.	29/08/2007
1234	0000349	Guadalope	Aliaga	Teruel	Aguas arriba del embalse de la térmica de Aliaga. Muchos macrófitos y musgos. No muestra de diatomeas	22/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1235	0000137	Guadalope	Aguaviva	Teruel	Bajo puente en dirección a Aguaviva.	23/08/2007
1238	0000145	Guadalope	Alcañiz	Teruel	Contaminado, influencia de Alcañiz. El punto está aguas abajo de la EDAR. Tramo muy uniformizado. Abundancia de <i>P. clarkii</i> . No muestra de diatomeas	24/08/2007
1239	0000963	Guadalope	Caspe	Zaragoza	Aguas arriba de la EA está todo encharcado, excepto nuestro tramo, unos 50 m con abundante Typha, sustrato de piedras y grava gruesa. Orillas con limos anoxicos. Presencia de conchas de uniónidos, pero no vivos. No muestra de diatomeas.	28/08/2007
1240	0000383	Matarraña	Beceite	Teruel	Finca particular "Mas de Lluvia". Pozas travertínicas en roca madre y algo de musgo en pequeñas corrientes. Charca lateral desconectada. Gran bloom de diatomeas coloniales formadoras de moco, reponsables de la formación de travertinos (muestra aportada al especialista de diatomeas)	25/08/2007
1251	0000300	Queiles	Fayos (Los)	Zaragoza	Tubo que aporta agua en orilla izquierda, pero no parece que sea de desagüe, tal vez pequeño arroyo canalizado.	18/07/2007
1252	0000301	Queiles	Novallas	Zaragoza	Aguas arriba vertido de la EDAR de Tarazona, bajo el puente hay un desagüe de Novallas, Baja turbio	18/07/2007
1253	0000351	Guadalope	Castellote	Teruel	Tramo de río bien conservado, aguas arriba de antigua minicentral.	22/08/2007
1255	0000341	Vivel	Vivel del Río Martín	Teruel	Estiaje bastante avanzado. Sólo presencia de pozas e hilillos de corriente. Bastante vegetación acuática (berro). Vertido justo unos metros aguas abajo, directo, negro y pestilente.	30/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1260	0000314	Jalón	Bubierca	Zaragoza	Tramo paralelo a la vía del tren. Aguas turbias, con bastante caudal, poca densidad, muy lavado. Sustrato de bloques y todo muy colmatado de finos. <i>Procambarus clarkii</i> .	
1263	0000315	Piedra	Cimballa	Zaragoza	Tramo casi cubierto totalmente por helófitos	31/07/2007
1264	0000319	Mesa	Calmarza	Zaragoza	Pasamos el abrevadero y muestreamos bajo la pasarela peatonal de madera que cruza el río, aguas abajo. Aguas arriba muestreamos en una serie de ramales o pequeños arroyos que se unen. Aguas muy transparentes, sustrato gravoso con mucho berro, ranúnculos y helófitos. Posible vertido de población (?). Presencia de <i>Aedes albopictus</i> (cf) picando.	
1270	0000764	Ésera	Benasque	Huesca	Rocas cubiertas de moco marrón, a 20 m aguas abajo del punto de muestreo desemboca la fosa séptica de Hospital de Benasque.	22/08/2007
1277	0000105	Arba de Riguel	Sádaba	Zaragoza	Canalizado. Por encima lenítico y con sedimento y con tubos y presa. Baja ligeramente turbio.	16/07/2007
1280	0000103	Arba de Biel	Erla	Zaragoza	Baja turbio. Se coge muestra en las paredes de la E.A.	17/07/2007
1285	0000158	Guatizalema	Siétamo	Huesca	Zona de baño, con piedras para retener el agua. Zona con pozas profundas se muestrean 20 m con rápidos que no cubren tanto por debajo.	30/07/2007
1294	0000722	Noguera Cardós	Lladorre	Lérida	Se muestrea desde el final de las casas (donde existe un vertido de residuales) hacia aguas arriba. Escollera en orilla izqierda. Bastante caudal y sustrato muy grueso, lo que dificulta un tanto el muestreo de macroinvertebrados.	15/09/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1295	0000454	Ebro	Burgo de Ebro (EI)	Zaragoza	Baja turbio, se coge muestra de macrófitos en rápido de la margen derecha. Playa de cantos.	26/07/2007
1296	0000456	Ebro	Escatrón	Zaragoza	Piedras con sedimento. Olor a cloaca, restos WC. Unos metros más arriba tubo. Los botes de la muestra quedan "teñidos" por una capa rojiza. Tramo por debajo del azud. Baja turbio	24/07/2007
1297	0000460	Ebro	Flix	Tarragona	Justo a la salida del embalse, se muestrea bajando las escolleras y accediendo a un pequeño tramo con corriente fuerte sobre roca madre con algas principalmente. Abundante <i>Dreissena polymorpha</i> . Presencia de <i>P. clarkii</i> , conchas de uniónidos, muchísimos Atyidae y <i>Anguilla anguilla</i> .	
1298	0000782	Garona	Naut Aran	Lérida	Se muestrea aguas arriba de la presa, donde indica la ficha CHE, ya que es el único acceso, desde el parking.	
1299	0000788	Garona	Bossòst	Lérida	Muchas oscilaciones de caudal, ya que el tramo se encuentra aguas abajo de una derivación para regadío. Tramo uniforme, poca diversidad de hábitats. Muestreo difícil por caudal elevado y sustrato grueso muy resbaladizo.	17/09/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1304	0000148	Sio	Balaguer	Lérida	En el punto indicado en BD-CHE el acceso es muy complicado por taludes verticales y vegetación. Además hay mucho caudal y es un tramo profundo. Buscamos un acceso aguas arriba, cerca de un puente que cruza el río. El acceso es complicado, entre enredaderas. El cauce está encajonado y es profundo, con mucho caudal. Parece un río-canal de riego, bastante artificial. Muestreo difícil y tramo practicable muy corto. Ni diatomeas ni macrófitos	11/09/2007
1306	0000407	Ebro	Miranda de Ebro	Burgos	Baja turbio, signos de crecida reciente. Punto adecuado para el muestreo sólo en orilla izquierda, resto profundo.	13/06/2007
1307	0000292	Zidacos	Garínoain	Navarra	Tramo canalizado con escollera. Entra un afluente y el desagüe de la depuradora. Recubierto de <i>Cladophora</i> .	05/07/2007
1308	0000094	Zidacos	Olite	Navarra	Tramo con escollera a ambos lados. Huele a cloaca. Más abajo de la estación de aforo vierte la EDAR.	28/06/2007
1309	0000291	Onsella	Sangüesa	Navarra	Baja turbio, se cogen macrófitos en rápido con cierta visibilidad.	03/07/2007
1311	0000545	Arga	Estella/Lizarra	Navarra	Restos de basura en orillas, carros de la compra, botellas, ruedas, etc. Baja turbio. Aguas arriba entra el Elorz.	25/06/2007
1314	0000096	Salado	Mendigorría	Navarra	Baja turbio rojizo. Signos de crecida reciente. Las piedras tienen sedimento. Conchas de <i>Anodonta</i> y <i>Psilunio</i> . Hay <i>Cladophora</i> y musgo en un rápido.	14/06/2007
1315	0000544	Ulzama	Olaibar	Navarra	Muestreado por debajo de la E.A. de Olave. Es zona usada por ganado para beber.	02/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1317	0000554	Larraun	lmotz	Navarra	Escollera a ambos lados. Zona inferior de un tramo canalizado en unos 500 metros, el cual realmente es una corta realizada por la construcción de la Autovía del Norte.	20/06/2007
1332	0000239	Oroncillo	Pancorvo	Burgos	Muestreo del puente hacia abajo, aguas arriba es un carrizal. El agua está turbia y parece contaminada. Muchas casas viejas en la margen izquierda, pegadas a la ribera, quizás vierten al río. Tramo muy eutrofizado, con crecimiento masivo de cladophorales que hace complicado el muestreo. Orillas con muchos helófitos.	14/07/2007
1338	0000264	Oja	Casalarreina	La Rioja	Muestreamos del puente hacia abajo. Ejemplar muerto de <i>Pacifastacus leniusculus</i> parasitado por branchiobdelidos (especie aloctona).	14/07/2007
1341	0000219	Rudrón	Valle de Sedano	Burgos	Ver ficha de Labaqua. En los rápidos, el sustrato está compactado-calcificado. La poza es grande y profunda, siendo posible muestrear las orillas.	18/07/2007
1342	0000239	Oroncillo	Miranda de Ebro	Burgos	Se trata en realidad del municipio de Valverde de Miranda. Presencia de <i>Pacifastacus leniusculus</i> . Mucha <i>Cladophora</i> , que hace difícil el muestreo en el cauce principal. Hay numerosas mangueras y tubos de riego por goteo.	14/07/2007
1347	0000090	Leza	Agoncillo	La Rioja		26/06/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1350	0000099	Huecha	Mallén	Zaragoza	Inaccesible, orilla con limo +50 cm donde se hunde y se queda clavado el muestreador nada más entrar un paso. Se va a Magallón y lleva menos agua, estando prácticamente estancado. Entre medio le entra agua del canal para regar. No es representativo de la masa. Única zona vista accesible es justo la zona de paso de la autopista, que está canalizada y en sombra. No representativo.	19/07/2007
1351	0000861	Val	Agreda	Soria	Se coge muestra antes de las alcantarillas, llevan 2 años embozadas y vierten directamente al río. Fuerte olor y color gris.	18/07/2007
1354	0000309	Najima	Monreal de Ariza	Zaragoza	Acceso por detrás del restaurante. Muestreamos entre dos puentes, uno de la EA con caseta y otro viejo aguas abajo. Muchos helófitos. <i>Procambarus clarkii</i> .	01/08/2007
1358	0000322	Jiloca	Calamocha	Teruel	Tramo urbano aguas arriba del puente romano, en el parque. Encauzado en ambas márgenes. Sustrato calcáreo consolidado. Mucha vegetación acuática. Agua turbia, vertidos de casas (com. per. pescadores). <i>P. clarkii</i> .	31/07/2007
1365	0000342	Martín	Montalbán	Teruel	Se muestrea el tramo de corriente con piedras, hasta la poza aguas abajo donde desemboca un pequeño arroyo temporal.	29/08/2007
1368	0000134	Escuriza	Ariño	Teruel	Se muestrea un pequeño tramo con corriente aguas abajo del puente, que recibe el aporte de una acequia de la margen derecha. También las pozas bajo el puente e inmediatamente aguas arriba. Presencia de <i>P. clarkii</i> .	

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1375	0000390	Pena	Valderrobres	Teruel	Todo muy lavado, mucho caudal, orillas erosionadas por probable desembalse de Pena. Muestreo difícil sin ser arrastrado, poco representativo. Agua turbia.	24/08/2007
1376	0000911	Guadalope	Caspe	Zaragoza	No se pudo tomar muestra. Agua de río perteneciente a vertido de la depuradora	28/08/2007
1380	0000356	Bergantes	Zorita del Maestrazgo	Castellón	Presencia de <i>P. clarkii</i> . Presencia de <i>Lutra lutra</i> (excrementos fotografiados)	23/08/2007
1382	0000822	Huerva	Villanueva de Huerva	Zaragoza	Disminución reciente del nivel de las aguas. Margen derecha sin árboles, campo de almendros.	25/07/2007
1387	0000180	Urbión	Santa Cruz del Valle Urbión	Burgos	Al salir del pueblo, aguas abajo del puente. Parece un poco alterado. Lecho muy resbaladizo, con algas pardas cubriendo todo el sustrato.	12/07/2007
1393	0000535	Erro	Erro	Navarra		04/07/2007
1396	0000475	Trema	Villarcayo de Merindad	Burgos	Tramo de montaña, "escenario deportivo de pesca". Riberas de alisos con raíces expuestas. Mucha materia orgánica gruesa en el lecho. Pequeñas extracciones de agua para cultivos mediante bomba en el momento del muestreo.	17/07/2007
1398	0000686	Guatizalema	Nueno	Huesca	Huele a cloaca. Cauce cubierto de macrófitos, medio estancado.	01/08/2007
1399	0000382	Guatizalema	Loporzano	Huesca	Signos de introducción de maquinaria y adecuación para zona de baño.	30/07/2007
1400	0000326	Isuela	Calcena	Zaragoza	Tramo temporal seco. Sólo una pequeña lámina de agua de unos 5m aguas abajo, no representativa. Paraje pintoresco. Río mediterráneo típico.	04/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1403	0000823	Aranda	Aranda de Moncayo	Zaragoza	Tramo situado en la EA de la entrada al embalse. Muestreamos principalmente aguas arriba de la EA, porque aguas abajo es un rápido difícil con mucha pendiente y sólo hay grandes bloques.	04/08/2007
1404	0000110	Aranda	Brea de Aragón	Zaragoza	Desembalse de Maidevera. Mucho caudal. Muestreo lo que puedo de hábitat de corriente y un ramal lateral más tranquilo.	04/08/2007
1411	0000324	Peregiles	Calatayud	Zaragoza	Arroyo. Pequeño tramo permanente (?) (el río es temporal) en zona agrícola. Muchas acequias. Aguas arriba está encharcado y luego seco, lleno de carrizo. Aguas abajo desaparece, con roca madre, filtraciones y extracciones para acequias de riego. Dos vertidos en la zona de abajo, uno es un colector agrícola de unos 40 cm. y el otro (negro y apestoso) parece una filtración de la fosa séptica de la casa. Proliferan los gammaridos.	02/08/2007
1417	0000745	Barrosa	Bielsa	Huesca		28/08/2007
1419	0000727	Vallferrera	Alins	Lérida	Buena ribera y sustrato pedregoso. Diversidad de hábitats.	15/09/2007
1421	0000743	Noguera de Torp	Pont de Suert (EI)	Lérida	Aguas abajo del puente y de la caseta de EA	18/09/2007
1422	0000556	Salado	Guesálaz	Navarra	Río con conductividad elevada. Signos de crecida reciente. La alta conductividad es debida a una elevada salinidad natural.	14/06/2007
1423	0000557	Ubagua	Guesálaz	Navarra	Baja un poco turbio, signos de crecida reciente.	14/06/2007
1429	0000505	Cárdenas	San Millán de la Cogolla	La Rioja	Seguimos indicaciones ficha Labaqua. Arroyo pequeño, sustrato muy diverso. Ranúnculos en flor.	11/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1430	0000269	Cárdenas	Cárdenas	La Rioja	Se muestrea entre la represa y el puente aguas abajo. Hay un vertido que parece agua de lluvia de la calle.	06/08/2007
1435	0000537	Areta	Urraul Bajo	Navarra		03/07/2007
1440	0000478	Trueba	Medina de Pomar	Burgos	Muestreamos aguas abajo del punto marcado por la CHE, por no ser este representativo (está frente a la EDAR). El punto elegido es el tramo desde las vías del tren que cruzan el río hasta 100m aguas abajo. Parece estar bien conservado, con muchos helófitos y buenas riberas. Canales laterales e islas. <i>Potamogeton</i> y muchas raíces expuestas.	
1446	0000531	Irati	Ochagavía	Navarra		05/07/2007
1448	0000694	Veral	Ansó	Huesca	Aguas abajo del punto vierte la fosa séptica del camping. Respecto a muestreos de 2004 y 2005 se ha movido punto aguas arriba. QBR no es aplicable, porque no existe de forma natural vegetación arbórea.	13/08/2007
1453	0000636	Segre	Organyà	Lérida	Muestreamos a unos 700 m aguas arriba del punto marcado por la CHE, justo aguas abajo de la desembocadura del Río de Cabó, que se encuentra seco. Se accede por camino a la izquierda que sale justo antes del puente sobre el R. de Cabó, bajando luego hasta su desembocadura en el Segre. Sustrato de bloques, con rápidos y tablas rápidas, y algunas ramas laterales leníticas.	13/09/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1454	0000228	Ebro	Cillaperlata	Burgos	Junto a área recreativa con merendero. Muchísimo caudal, parece que estén desembalsando aguas arriba. Sólo es posible muestrear en las orillas inmediatas en un tramo demasiado pequeño. Todo parece muy lavado, siendo la densidad de macroinvertebrados muy baja. AGUA	15/07/2007
1455	0000687	Cidacos	Yanguas	Soria	Se muestre aguas arriba de la EA. Presencia de <i>Pacifastacus leniusculus</i> . Mucha <i>Lemanea</i> .	05/08/2007
1457	0000275	Iregua	Alberite	La Rioja	Tramo ancho con escolleras, caudaloso y uniforme. Restos de basuras (plásticos).	07/08/2007
1464	0000168	Algas	Batea	Tarragona	Tramo temporal seco, con charcos desconectados y poza grande bajo EA. Abundantes alevines. Muestreo de macroinvertebrados. <i>P. clarkii</i> muertos.	28/08/2007
1465	0000164	Flumen	Sariñena	Huesca	Inaccesible, se recorrió la masa y no se encontró un acceso alternativo, la vegetación de árboles, zarzas, carrizo y anea impide el acceso, además baja con bastante corriente debido a las aguas que se infiltran del drenaje de los regadíos. Puede ser conveniente muestrear en época que no se riegue.	31/07/2007
1471	0000391	Matarraña	Valderrobres	Teruel	Muestreamos aguas arriba de la caseta, donde el río es más ancho y hay más diversidad de hábitats. Aguas cristalinas y abundante vegetación acuática y helófitos.	24/08/2007
1476	0000434	Ésera	Estada	Huesca	Turbio, gris azulado. Se coge muestra de macrófitos en orilla izquierda y en rápido. Rocas con sedimento gris.	20/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
1492	0000962	Gállego	Gurrea de Gállego	Huesca	Se llega a la central, aguas arriba profundo y lenítico, con carrizo. En la zona de desagüe de la central rápido y profundo. El resto de la masa lento con carrizo, los accesos son cortados de pendiente 70°.	09/08/2007
1519	0000579	Carol	Latour de Carol	Francia	Coincide con el punto indicado por la UTM de la CHE. Se accede por un camino a la izquierda saliendo de Latour, a unos 4 km. El río discurre entre la carretera y la vía del tren. Tramo de grandes bloques y piedras, con mucho caudal, musgos y playas de arenas y gravas.	14/09/2007
1520	0000551	Arakil	Irañeta	Navarra	Entra descarga de la fosa séptica del pueblo, también hay un abrevadero de vacas. Baja turbio, no se hace IVAM.	20/06/2007
2001	0000194	Urbión	Viniegra de Abajo	La Rioja	Ver ficha red de Referencia.	10/07/2007
2002	0000197	Mayor	Villoslada de Cameros	La Rioja	Arroyo bonito que parece experimentar estiaje avanzado, con abundancia de <i>Cladophora</i> y musgos emergidos. Rocas de gran tamaño y muy sueltas.	05/08/2007
2003	0000217	Rudrón	Tubilla del Agua	Burgos	Coincide con el punto exacto de la ficha de referencia. Tramo de río sinuoso, bien conservado, con sustrato de grava y buenas riberas. Muestreamos aguas arriba y abajo de un meandro muy cerrado que forma una poza profunda.	18/07/2007
2005	0000377	Isuala	Abiego	Huesca	Zona merendero, antiguo salto de agua que varía las condiciones del tramo, aguas arriba tabla lenta sin macrófitos, aguas debajo de la poza abundan los macrófitos. QBR aguas abajo pasarela.	31/07/2007
2006	0000377	Isuala	Aínsa-Sobrarbe	Huesca	Acceso largo y complicado. Roca madre QBR:	01/08/2007

Diciembre, 2007

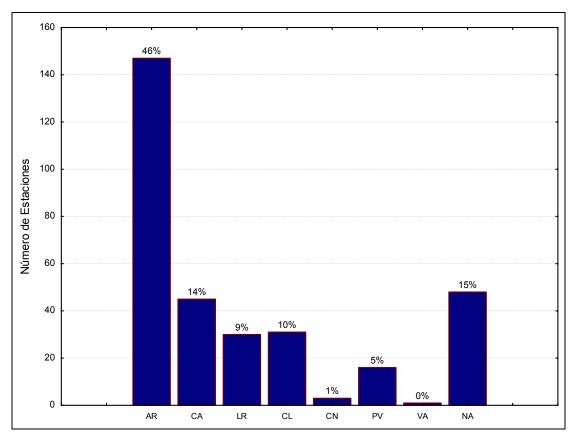
CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
2007	0000381	Alcanadre	Casbas de Huesca	Huesca	Inaccesible, se buscó acceso alternativo y no se encontró, El único que hay lleva a una pendiente de 75-80°.	31/07/2007
2008	0000360	Ribera Salada	Bassella	Lérida	Se muestrea aguas abajo del puente, donde el río está más natural y menos embalsado. <i>P. leniusculus</i> muy abundante.	13/09/2007
2009	0000383	Matarraña	Beceite	Teruel	Se muestrea aguas arriba y abajo del meandro junto a la caseta WC. No muestra de diatomeas.	25/08/2007
2011	0000481	Omecillo	Jurisdicción de San Zadornil	Burgos	Tramo muy bien conservado. Confluencia de dos arroyos. Aparecen muchos macroinvertebrados muertos (sobre todo limnefílidos, <i>Ephemera danica</i> , <i>Cordulegaster boltoni</i> , y otros) en el arroyo de la izquierda mirando hacia aguas arriba (creo que es el Omecillo, pues era el más grande). Probable vertido de insecticida hace poco (?) En el arroyo de la derecha no había organismos muertos.	15/07/2007
2012	0000514	Estarrón	Aisa	Huesca	Lluvias día anterior, marcas de 20 cm. Signos de que en días anteriores estaba medio estancado, piedras cubiertas de sedimento y moco marrón.	07/08/2007
2013	0000517	Osia	Jasa	Huesca	Lluvias día anterior, marcas de 20 cm. Signos de llevar menos agua antes. Los macrófitos están dispersos en las zonas que había agua.	
2014	0000574	Guarga	Sabiñánigo	Huesca	Aspecto de ser torrencial, lleva poco agua, piedras con carbonato precipitado.	01/08/2007
2015	0000676	Susía	Abizanda	Huesca	Turbio, día de antes tormenta 20 l/m2, se observa un aumento del nivel de las aguas de unos 20 cm, ahora baja turbio, no se cogen macrófitos.	23/08/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
2017	0000127	Cámaras	Azuara	Zaragoza	Seco aguas abajo en punto de 2006, charcos intermitentes en nuevo tramo.	24/07/2007
2027	0000785	Arazas	Torla	Huesca	Sin permiso. Se encuentra dentro del Parque Naciona de Ordesa-Monte Perdido.	27/08/2007
2029	0000693	Aragón Subordán	Valle de Hecho	Huesca	Sedimento rojo en tablas lentas. QBR cuando el río se adentra en el valle.	13/08/2007
2055	0000104	Arba de Luesia	Ejea de los Caballeros	Zaragoza	Estancado, lleno de vegetación. Aguas arriba hay un azud que retiene el agua. Se aprovechó para visitar el lugar muestreado el año anterior, es inaccesible y profundo, se observan signos de crecida de más de 8 m de altura (ver fotos), es profundo e inaccesible. Si el río llevara más agua en el punto de toma de la muestra de agua sería adecuado para realizar el muestreo biológico.	17/07/2007
2060	0000120	Barranco de la Violada	Zuera	Zaragoza	Zona E.A. acceso incómodo. Resto de masa canalizada y con denso carrizo. La E.A. está colamatada de nuevo, tras el dragado de otoño de 2006.	29/08/2007
2073	0000154	Sosa	Monzón	Huesca	Ligeramente turbio, no hay obras de acondicionamiento de las márgenes para parque fluvial, como se indica en la ficha de punto de labaqua.	16/08/2007
2079	0000173	Ciurana	Bellmunt del Priorat	Tarragona		27/08/2007
2086	0000224	Homino	Oña	Burgos	Arroyo con mucha vegetación. Acceso complicado, atravesando zona de herbáceas pegadas a la casa. Todo rodeado de cultivos frutales.	14/07/2007

CEMAS	MASA	Río	Municipio	Provincia	Observaciones / Incidencias	Fecha
2142	0000515	Aragón	Santa Cruz de la Serós	Huesca	Baja muy turbio, es muy probable que sea del río gas que entra aguas arriba, rocas de los rápidos con sedimento gris.	13/08/2007
2174	0000733	Noguera Ribagorzana	Montanuy	Huesca	Coincide con el punto indicado por la UTM de la CHE. Se aparca en un ensanche del camino y se accede al río bajando por un terraplén bastante inclinado, algo incómodo.	18/09/2007
2193	0000818	Noguera Pallaresa	Ager	Lérida	Tramo no vadeable, muy ancho y profundo. El área recreativa marcada por la UTM de CHE se denomina "Font de les Bagasses" (y no "Fuente Moneo" como indica CHE).	20/09/2007
2204	0000914	Regallo	Alcañiz	Teruel	Arroyo en zona agrícola de secano de geología margosa. Hiposalino con mucha <i>Enteromorpha</i> (cf). Interesante mezcla de fauna dulce-hiposalina. Presencia de <i>P. clarkii</i> .	28/08/2007
3000	0000098	Queiles	Cascante	Navarra	30 m accesibles. El resto son cañas, zarzas y carrizo. Bajo el puente de la carretera a Murchante, solo se ve <i>Cladophora</i> cerca del puente donde entra el sol. No es representativo del resto de la masa.	11/07/2007
3001	0000294	Elorz	Estella/Lizarra	Navarra	Restos de basura y olor. Signos de crecidas anteriores de más de 5m.Ver fotos.	25/06/2007

Por su parte, en el **Cuadro 2** se resume la información relevante en cuanto a las características de los muestreos completados en el año 2007 (nº de muestreos completos y muestreos donde los cauces estaban secos, inaccesibles, crecidos o no representativos de las MAS). En los muestreos "completos" se tomaron muestras biológicas (macroinvertebrados, macrófitos y diatomeas, pudiendo faltar, no obstante, datos de alguno de estos indicadores), medidas físico-químicas in situ, muestras de agua para analítica de laboratorio, y datos hidromorfológicos (ribera y hábitat fluvial). En los muestreos "no completos", no se tomaron muestras biológicas, con la excepción de dos estaciones secas donde se estimó oportuno el muestreo de macroinvertebrados en pozas aisladas. En algunos de estos casos sí se tomaron muestras de aqua para análisis físico-químicos y se calcularon los índices IHF y QBR.

CUADRO 2
RESUMEN DE LAS ESTACIONES MUESTREADAS EN EL AÑO 2007


CARACTERÍSTICAS	Nº MUESTRAS
Muestreo "completo"	269
Muestreo "no completo": seco / inaccesible /	
no representativo / crecidas/ otras causas	54
TOTAL	323

De las 323 estaciones consideradas, un total de 10 estaciones se encontraban secas; 24 eran de carácter lenítico profundo y/o no vadeables; 10 resultaron inaccesibles (por masas de carrizo, taludes verticales y obras en los cauces o inmediaciones, principalmente); 5 presentaron caudales demasiado elevados para un muestreo seguro y representativo (normalmente debido a desembalses para regadío); 2 no se consideraron representativas de la MAS por estar muy contaminadas —el caudal era básicamente vertido-; y finalmente, 2 no pudieron ser muestreadas por estar dentro de parques nacionales y no disponer de los permisos necesarios.

Se muestrearon tanto parámetros biológicos (macroinvertebrados, macrófitos y fitobentos) como físico-químicos (medidas *in situ* de temperatura, oxígeno disuelto, pH y conductividad y toma de muestras para analítica de nutrientes y alcalinidad en el laboratorio).

Asimismo, se tomaron datos hidromorfológicos y se calcularon los índices QBR e IHF. Para el correcto cálculo del QBR, se tomaron muestras de la vegetación de ribera en caso de dudas de identificación. En cada estación de muestreo se completó una ficha de campo con los datos ambientales recogidos *in situ* y se realizó un completo reportaje fotográfico.

En la **Figura 3** se agrupan por comunidades autónomas las estaciones muestreadas. Como se puede ver, casi la mitad de las mismas (un 46%) se encuentran en territorio aragonés. Un 15% se localiza en Navarra, y un 14% en Cataluña. Las siguientes comunidades en representación son Castilla y León y La Rioja (10% y 9% del total respectivamente). El País Vasco (15 y 12 estaciones) acoge un 5% de estaciones. Por último, Cantabria, con tres estaciones, y la Comunidad Valenciana, con una única localidad, son las menos representadas. En general, el reparto de estaciones es proporcional al área que cada comunidad comparte con la demarcación hidrográfica del Ebro, como se puede observar en la **Figura 5**.

Figura 3. Distribución por comunidades autónomas de las estaciones muestreadas en 2007. En cada caso se señala el número de estaciones y el porcentaje sobre el total. (AR: Aragón; CA: Cataluña; LR: La Rioja; CL: Castilla y León; CN: Cantabria; PV: País Vasco; VA: Comunidad Valenciana; NA: Navarra)

Figura 4. Distribución geográfica (por comunidades autónomas) de las estaciones muestreadas en 2007.

48

2.2. Trabajo de campo

Para la realización de los trabajos de campo en cada masa de agua, se ha seguido el protocolo interno de muestreo y de medida de parámetros previamente establecido en los trabajos de preparación de los muestreos y reuniones con especialistas, siguiendo las normas internacionales ISO/CEN.

Asimismo, se elaboró un Plan de Explotación que contenía una descripción detallada de los trabajos a desarrollar, asignación de personal y medios necesarios. De forma paralela, se elaboraron las rutas de muestreo y un calendario estimado en el que se propuso para cada día de los meses la ruta y el número de estaciones a muestrear, con el código identificativo de cada una de las estaciones.

Se resumen los pasos principales seguidos en los muestreos en ríos:

- ➤ Localización del punto de muestreo con GPS a partir de las coordenadas proporcionadas desde gabinete y ficha de campo con fotografía. En muchas ocasiones, después de evaluar las condiciones del punto (accesibilidad) fue necesario reubicarlos evitando los cambios de masa de agua.
- Cada uno de los puntos de trabajo o estaciones de muestreo se identificaron siguiendo el mismo formato de código.
- Cada estación de muestreo estaba constituida por un tramo de longitud variable (50-100 m) en función de la diversidad de hábitats que presentase.
- Medida de parámetros físico-químicos in situ (conductividad, pH, oxígeno disuelto y temperatura) mediante electrodos y sondas estándar. Cada uno de los equipos de campo utilizados se calibraban al inicio de la jornada de trabajo y antes de cada medición en los puntos de muestreo.
- Recogida de muestras de macroinvertebrados, según metodología semi-cuantitativa para aplicación del índice IBMWP en laboratorio.
- Toma de muestras de agua para análisis químicos en laboratorio (ver **Cuadro 3** acerca de envases y conservación de las muestras).

49

- ldentificación in situ y recogida de muestras de macrófitos para su posterior identificación en laboratorio.
- Recogida de muestras y conservación de diatomeas para su posterior identificación en laboratorio.
- Cálculo de los índices QBR e IHF y descripción de la estación con reportaje fotográfico.
- En cuanto a los protocolos empleados para el muestreo de invertebrados, macrófitos y
 fitobentos (diatomeas), se han seguido los procedimientos descritos en los cuadernos
 de la CHE: Metodología para el establecimiento del Estado Ecológico según la Directiva
 Marco del Agua (MMA-CHE 2005), disponibles en la Web*.

En el cuadro adjunto se incluyen los tipos de envases utilizados para la recogida de las muestras de agua y el conservante adicionado según el parámetro a analizar:

CUADRO 3PARÁMETROS, ENVASES Y CONSERVANTES UTILIZADOS

PARÁMETRO	ENVASE	CONSERVANTE
FÓSFORO SOLUBLE	VIDRIO 125 ml (filtrado sobre AP40)	Refrigeración
FORMAS DE NITRÓGENO	PET 500 ml	Refrigeración Ácido sulfúrico hasta pH<2
SÍLICE REACTIVA	PET 125 ml (filtrado sobre AP40)	Refrigeración

http://oph.chebro.es/DOCUMENTACION/Calidad/dma/indicadoresbiologicos/protocolos.htm

2.3. Trabajo de laboratorio

2.3.1. Análisis químicos

Los procedimientos empleados para la determinación de los diferentes parámetros químicos en laboratorio, así como los límites de cuantificación de los métodos, han sido los siguientes:

NITRITOS

a) ENSAYA

Método: Anión del ácido nitroso, Espectrofotometría UV-VIS (Standard Methods, SM 4500) Límite de cuantificación: 0.01 mg/l NO₂

b) DBO₅

Método: espectrofotometría de absorción molecular – Reactivo de Zambelli. Límite de cuantificación: 0.015 mg/l NO₂

NITRATOS

a) ENSAYA

Método: Anión del ácido nítrico, espectrofotometría UV-VIS (Standard Methods, SM 4500) Límite de cuantificación: 1 mg/l NO₃

b) DBO₅

Método: Electroquímico. Detección electroquímica nitratos mediante electrodo de ión selectivo. Límite de cuantificación: 1 mg/l NO_3

AMONIO TOTAL

a) ENSAYA

Método: Catión del amoníaco, fotometría (Standard Methods, SM 4500)

Límite de cuantificación: 0.05 mg/l NH₄

b) DBO₅

Método: Electroquímico, detección del ión amonio mediante electrodo de ión selectivo.

Límite de cuantificación: 0,1 mg/l NH₄

SÍLICE

a) ENSAYA

Método: Óxido de silicio. Espectrofotometría UV-VIS (UNE-EN 77051)

Límite de cuantificación: 0.03 mg/l SiO₂

b) DBO₅

Método: método del molibdosilicato. Límite de cuantificación: 0.4 mg/l SiO₂

FÓSFORO SOLUBLE

a) ENSAYA

Método: Filtración y fotometría

Límite de cuantificación: 0.01 mg/l P

b) DBO₅

Método: espectrofotometría de absorción molecular-método del ácido ascórbico.

Límite de cuantificación: 0.05 mg/l P

52

2.3.2. Procesado de muestras biológicas

En cuanto a los protocolos empleados para el procesado de las muestras de invertebrados, macrófitos y fitobentos (diatomeas), se han seguido los procedimientos descritos en los cuadernos de la CHE: *Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua* (MMA-CHE 2005), disponibles en la web, así como los protocolos específicos para los diferentes índices calculados (Jaímez-Cuellar et al. 2006; Moreno et al. 2005)

2.4. Sistema de Información Geográfica (SIG)

Para poder establecer la interconexión entre la información geográfica y alfanumérica generada en el presente trabajo, se ha utilizado un Sistema de Información Geográfica (SIG), utilizando para ello el programa *ARCVIEW* 3.1. El SIG generado permite realizar visualizaciones espaciales de la base de datos de la Red, elaborada en ACCESS, y la realización de consultas espaciales.

2.5. Tratamiento y análisis de datos.

Los resultados de las variables fisicoquímicas, geomorfológicas y biológicas se han resumido mediante histogramas de frecuencias, con cada muestra como réplica. También se añadieron los estadísticos descriptivos más importantes (media, desviación estándar, máximo, mínimo, tamaño muestral). Las distribuciones de las variables por tipos de ríos se ilustraron mediante diagramas de cajas y tablas de datos.

Por su parte, también se comprobó si existían diferencias significativas entre las diferentes tipologías de ríos del presente estudio. Para ello se realizó un análisis de la varianza mediante el test de Kruskal-Wallis, que permite revelar si una serie de muestras proceden de poblaciones iguales o diferentes. La hipótesis de nulidad es que las muestras proceden de poblaciones idénticas con respecto a los promedios; mientras que en la hipótesis alterna existen diferencias entre los promedios de las variables en los tipos de ríos analizados. Esta prueba no paramétrica, posee la ventaja de que es posible comparar muestras de distintos tamaños como sucede en el presente estudio.

Además, se realizó un análisis multivariante de ordenación del tipo Análisis de Componentes Principales o ACP. Se tuvieron en cuenta las variables físico-químicas y los índices hiromorfológicos, para dilucidar los principales gradientes ambientales del área de estudio. Aquellas variables que más influencia ejercen para diferenciar entre tipos de ríos fueron así establecidas.

De forma paralela, para estudiar la distribución de las comunidades de macroinvertebrados en el área de estudio y su relación con las variables ambientales medidas (físico-químicas, hidromorfológicas y fisiográficas), se llevó a cabo un análisis de correspondencias canónicas o CCA. El CCA es una de las llamadas "técnicas de ordenación directa". Este método extraen ejes de variación a partir de la información introducida en el análisis, optimizando explícitamente el ajuste de los datos biológicos a las variables ambientales consideradas (ter Braak & Prentice, 1988). Así, en el CCA, los ejes que explican la respuesta biológica están forzados a ser una suma ponderada de las variables ambientales estudiadas (ter Braak & Smilauer, 1998).

3. RESULTADOS

3.1. Consideraciones previas

En los siguientes apartados se describen los principales resultados obtenidos durante la campaña de muestreo de verano de 2007.

Los resultados se estructuran de la siguiente forma:

- En un primer apartado, se exponen los resultados físico-químicos e hidromorfológicos en tres módulos o bloques independientes: un primer módulo corresponde a los resultados de las variables físico-químicas y químicas medidas en el campo y laboratorio; un segundo bloque recoge los resultados de los índices hidromorfológicos (IHF y QBR); y en un tercer bloque se lleva a cabo un análisis estadístico global de los resultados físico-químicos e hidromorfológicos que intenta resumir o explicar la variabilidad ambiental observada durante el presente trabajo.
- En el segundo apartado se incluyen los principales resultados relativos a los parámetros o indicadores biológicos disponibles hasta la fecha, esto es, los macroinvertebrados acuáticos, los macrófitos y el fitobentos.
- Finalmente se presentan los resultados de evaluación del Estado Ecológico en base a los diferentes indicadores utilizados.

Los resultados físico-químicos, hidromorfológicos, y los de analítica de laboratorio, en forma de tablas, se incluyen en el **Anexos 1**, así como los informes parciales finales de resultados para los estudios de macroinvertebrados y fitobentos (**Anexos 2 y 3**).

Asimismo, se presentan como anexos los análisis de resultados por comunidades autónomas (**Anexo 4**) y subcuencas hidrográficas (**Anexo 5**). También se ha incluido un apartado sobre los resultados obtenidos en las estaciones pertenecientes a la Red de Referencia (**Anexo 6**)

3.2. Resultados físico-químicos e hidromorfológicos

3.2.1. Resultados físico-químicos

En el **Anexo 1** se incluyen los resultados obtenidos para los parámetros físico-químicos e hidromorfológicos tomados *in situ*, así como de las analíticas de de laboratorio, relativas a nutrientes (nitratos, nitritos, amonio, ortofosfatos y sílice), obtenidos durante los muestreos de 2007.

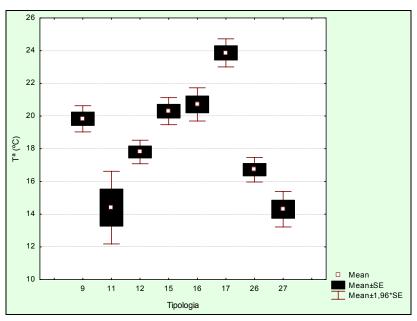
En los siguientes apartados se sintetizan los resultados obtenidos y se realizan comentarios sobre cada uno de los parámetros físico-químicos analizados. Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 1**. Para el tratamiento estadístico de los datos de los análisis de laboratorio, el límite de cuantificación más alto de cada ensayo se consideró como medida basal, con el fin de ser prudentes a la hora de posibles sesgos a la baja debidos a la metodología.

TABLA 1

Tests de Kruskal-Wallis H por TIPOS

En rojo y negrita aquellas diferencias significativas (p < 0.05)

	_		
Variable	Н	N	р
Ta (°C)	101,85	276	0,000
Ph	16,70	276	0,019
Conductividad (µS/cm)	152,89	276	0,000
O ₂ disuelto (mg/l)	16,84	276	0,018
Nitratos (mg/l NO3)	48,29	276	0,000
Nitritos (mg/l NO2)	18,81	276	0,009
Amonio (mg/l NH4)	6,09	276	0,528
Fosfato (mg/l PO ₄)	28,81	276	0,000
Sílice (mg/l Si)	30,89	276	0,000


Los comentarios relativos a la **Tabla 1** se realizan, para cada parámetro, en los apartados siguientes. Los diagramas de cajas muestran el comportamiento de las diferentes variables en las diferentes tipologías de ríos. Estos resultados se acompañan de tablas resumen de los principales estadísticos observados (número de casos o N, media, desviación estándar, máximo –Max- y mínimo –Min-) para cada variable. Asimismo, las variables han sido cartografiadas para

interpretar su dimensión espacial en la Cuenca del Ebro durante la presente campaña de muestreo.

a) Temperatura

Las temperaturas oscilaron entre los 8.7 °C medidos el día 22 de agosto en la estación 1270 (Ésera en el Plan de l'Hospital de Benasque) hasta los 27.9 °C registrados el primero de agosto en la localidad 1260 (Jalón en Bubierca). La temperatura media, para el conjunto de estaciones, fue de 18.1 °C.

Las temperaturas fueron significativamente diferentes entre tipos de ríos (**Tabla 1**; **Figura 5**), con las tipologías 11 (*Ríos de montaña mediterránea silícea*) y 27 (*Ríos de alta montaña*) presentando las temperaturas más frías y los tipos 17 (*Grandes ejes en ambiente mediterráneo*), 16 (*Ejes mediterráneo-continentales mineralizados*) y 15 (*Ejes mediterráneo-continentales poco mineralizados*), las más cálidas.

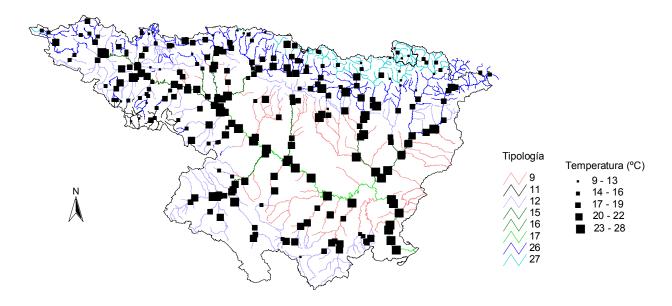
Figura 5. Temperatura del agua (T, °C) para las diferentes tipologías de estaciones durante la campaña de muestreo 2007.

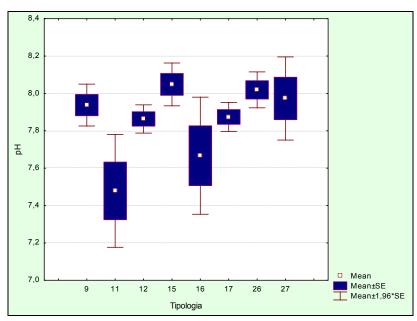
TABLA 2

Temperatura media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en °C) durante el muestreo de 2007.

TIPOLOGÍA	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	19.83	38	2.52	14.28	24.90
11	Ríos de montaña mediterránea silícea	14.40	6	2.78	9.50	17.60
12	Ríos de montaña mediterránea calcárea	17.80	78	3.24	11.07	27.90
15	Ejes mediterráneo-continentales poco mineralizados	20.30	34	2.46	14.48	25.60
16	Ejes mediterráneo-continentales mineralizados	20.71	3	0.90	19.70	21.40
17	Grandes ejes en ambiente mediterráneo	23.86	15	1.70	20.57	25.60
26	Ríos de montaña húmeda calcárea	16.72	75	3.32	10.66	26.39
27	Ríos de Alta Montaña	14.30	27	2.88	8.67	21.14

La distribución espacial de las temperaturas observadas se muestra en la **Figura 6**. Como se puede ver, las temperaturas más elevadas corresponden a los tramos medios y bajos del eje principal y de los principales afluentes (tipos 15, 16 y 17), mientras que las más frías corresponden a las cabeceras montañosas (tipos 11, 12, 26 y 27)




Figura 6. Temperatura (°C) medida en las estaciones de muestreo en 2007.

b) pH

El pH registrado durante los muestreos del año 2007, mostró un rango de variación relativamente amplio, desde los 6.91 medidos en la estación 1298 (Garona en Artíes) hasta los 9.36 alcanzados en la 2029 (Aragón Subordán en Hecho, en la Selva de Oza).

De todas las masas de agua estudiadas, el 75% presentaban valores de pH superiores a 7.66, con un valor mediano igual a 7.97 y un valor medio de 7,94. Podemos concluir, por tanto, que las aguas estudiadas son aguas con una cierta basicidad, lo cual es propio de sistemas con predominancia de geologías calizas.

El pH resultó significativamente diferente entre tipos (**Tabla 1**; **Figura 7**). Los tipos más extremos fueron el tipo 11 (*ríos de montaña mediterránea silícea*), de carácter más ácido debido a la litología dominante, de carácter ácido, con una media de 7, 48 y el tipo 15 (*Ejes mediterráneo-continentales poco mineralizados*), con una media de 8,05.

Figura 7. pH (unidades de pH) para las diferentes tipologías de ríos durante la campaña de muestreo de 2007.

TABLA 3

pH promedio, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos durante el muestreo de 2007.

TIPOLOGÍA	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	7.94	38	0.35	7.27	8.78
11	Ríos de montaña mediterránea silícea	7.48	6	0.38	7.02	7.83
12	Ríos de montaña mediterránea calcárea	7.86	78	0.34	7.08	8.57
15	Ejes mediterráneo-continentales poco mineralizados	8.05	34	0.34	7.51	9.01
16	Ejes mediterráneo-continentales mineralizados	7.67	3	0.28	7.41	7.96
17	Grandes ejes en ambiente mediterráneo	7.87	15	0.15	7.64	8.12
26	Ríos de montaña húmeda calcárea	8.02	75	0.42	7.26	9.25
27	Ríos de Alta Montaña	7.97	27	0.59	6.91	9.36

La distribución espacial de los valores de pH observados se muestra en la **Figura 8**. Como se puede ver, gran parte de los valores más elevados (pH básico) corresponden a estaciones de muestreo de la cuenca del Aragón, en concreto de los ríos Veral, Esca, Subordán y del propio Aragón. En las mediciones de campo, estos valores resultaron llamativos, por lo que se tomó especial cuidado en calibrar la sonda varias veces, dando los mismos valores de pH.

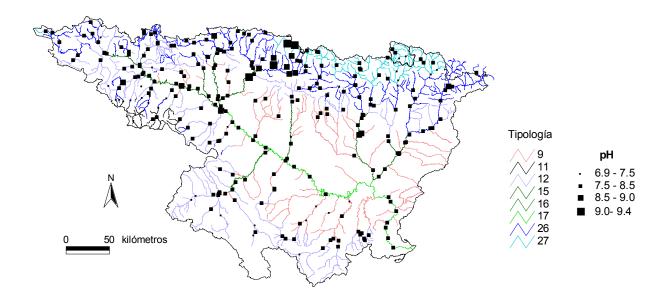
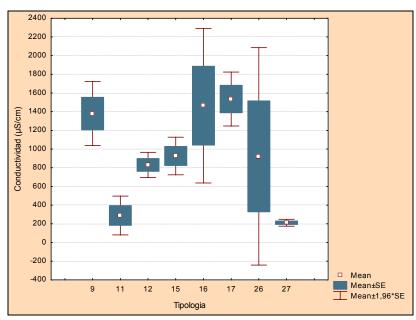



Figura 8. pH medido en las estaciones de muestreo en 2007.

En las zonas muestreadas, la litología predominante es caliza, por lo que la geología de la zona podría ser la responsable. No obstante, estimamos estos resultados algo extremos, más aún si los comparamos con series históricas de datos de la CHE. Además, las conductividades en estos pultos no superaron los 500 μS·cm⁻¹. Por ello, estos valores habrán de ser tratados con cautela.

c) Conductividad

Los valores de conductividad oscilaron entre los $35.8~\mu S \cdot cm^{-1}$ de la localidad 1294 (Río Noguera Cardós en Lladorre), hasta los $44825~\mu S \cdot cm^{-1}$ de la 1422 (Río Salado en Estenoz) cuya eleveda conductividad es debida a una elevada salinidad natural de origen geológico. A escala global del estudio, se obtuvo un valor mediano de $476~\mu S \cdot cm^{-1}$ y un P75 de 1032. El hecho de que la conductividad eléctrica esté influenciada en gran manera por las características geológicas naturales, además de por la carga de contaminantes, hace de este parámetro un pobre indicador de contaminación a escala de cuenca, donde la variabilidad geológica se podría superponer, en determinados casos, sobre los posibles focos contaminantes difusos o puntuales.

Figura 9. Conductividad (μS·cm⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2007.

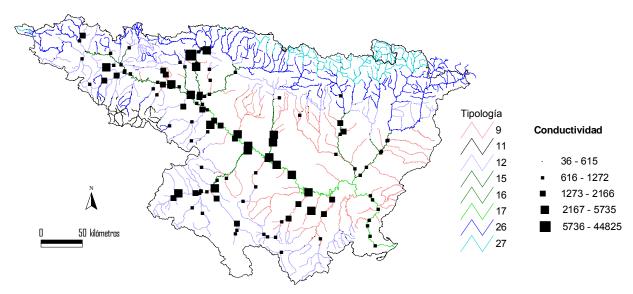

Se observaron diferencias entre los diferentes tipos de masas fluviales (**Figura 9**), con los tipos 17 (conductividad media = 1546.36 μS·cm⁻¹) y 11 (289,42 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos, como el 16 (*Ejes mediterráneo-continentales mineralizados*) o el 26 (*Ríos de montaña húmeda calcárea*).

TABLA 3

Conductividad media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos (valores en μS⋅cm⁻¹)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	1380.79	38	1074.67	369.00	5735.00
11	Ríos de montaña mediterránea silícea	289.42	6	259.82	71.90	785.00
12	Ríos de montaña mediterránea calcárea	830.31	78	609.84	242.00	3294.00
15	Ejes mediterráneo-continentales poco mineralizados	926.29	34	598.41	289.00	2532.00
16	Ejes mediterráneo-continentales mineralizados	1464.67	3	731.23	1038.00	2309.00
17	Grandes ejes en ambiente mediterráneo	1535.93	15	570.69	1087.00	2625.00
26	Ríos de montaña húmeda calcárea	922.00	75	5141.13	44.10	44825.00
27	Ríos de Alta Montaña	211.35	27	97.53	35.80	495.00

En el mapa de conductividades (**Figura 10**) se aprecia claramente como el eje principal del río Ebro, junto con las partes medias y bajas de los principales tributarios, son las zonas que preesentan valores más elevados de conductividad, por ser las partes más afectadas por la contaminación.

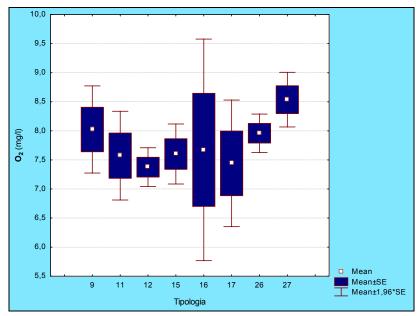


Figura 10. Conductividad (μS·cm⁻¹) medida en las estaciones de muestreo en 2007.

d) Oxigeno disuelto

Los valores de oxígeno disuelto en las estaciones muestreadas oscilaron entre los 3,61 mg/l del río Gállego a su paso por Zaragoza (estación 0089), hasta los 17,94 mg/l medidos en el río Alhama, en la localidad de Alfaro (estación 0214).

Sólo el 25% de las observaciones presentó valores inferiores a 7.66 mg/l, por lo que podemos concluir que, en general, la oxigenación de las aguas es óptima en la gran mayoría de estaciones prospectadas (**Figura 11**).

Figura 11. Concentraciones de oxígeno (mg·l⁻¹) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2007.

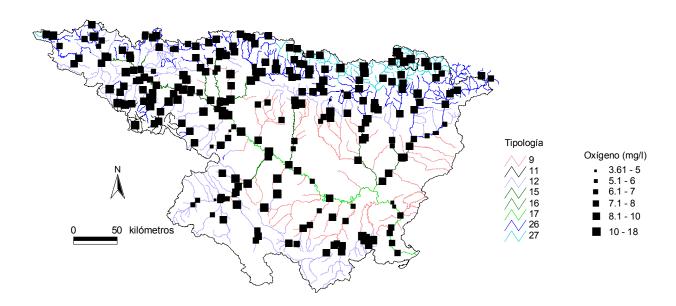

Se encontraron diferencias entre tipos de ríos (**Tabla 1**), aunque al igual que para el pH o la conductividad, estas diferencias en ningún caso (excepto en contadas excepciones de episodios de cierta anoxia) comprometerían al *buen estado* físico-químico en las estaciones de muestreo.

TABLA 4

Concentración de oxígeno media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg⋅Γ¹)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	8.02	38	2.36	4.84	17.94
11	Ríos de montaña mediterránea silícea	7.57	6	0.95	6.53	8.99
12	Ríos de montaña mediterránea calcárea	7.38	78	1.50	3.61	11.64
15	Ejes mediterráneo-continentales poco mineralizados	7.60	34	1.54	3.61	10.56
16	Ejes mediterráneo-continentales mineralizados	7.67	3	1.68	6.48	9.60
17	Grandes ejes en ambiente mediterráneo	7.44	15	2.15	4.59	11.34
26	Ríos de montaña húmeda calcárea	7.96	75	1.46	3.86	10.61
27	Ríos de Alta Montaña	8.54	27	1.25	6.33	10.77

La concentración de oxígeno (**Figura 12**) mostró una distribución acorde con el sentido común y la experiencia de los operarios. En el mapa se observa como los valores bajos de concentración de oxígeno se localizan en puntos cercanos a focos de contaminación (sobre todo de tipo urbano).

Figura 12. Concentración de oxígeno (mg·Γ¹) medida en las estaciones de muestreo en 2007.

e) Nitratos

Las concentraciones de nitratos (mg/l NO₃) en las estaciones muestreadas oscilaron entre niveles basales (<1 mg/l, en 88 de las 323 estaciones, esto es, un 27%) hasta niveles superiores a los 100 mg/l en las estaciones 1307 (Zidacos en Barasoain) y 1382 (Huerva aguas abajo de Villanueva).

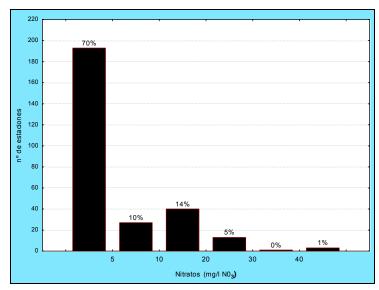
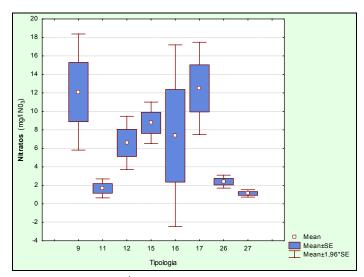

Para hacernos una idea aproximada de la calidad del agua en base al contenido en nitratos, nos basamos en la clasificación propuesta por la *Agencia Medioambiental* del Reino Unido[†] (**Tabla 5**).

TABLA 5
CLASIFICACIÓN DE LOS TIPOS DE RÍOS SEGÚN
SU CONCENTRACIÓN EN NITRATOS

Clasificación para nitrato	Umbrales (mg NO ₃ /I)	Descripción
1	<5	Muy baja
2	>5 a 10	Baja
3	>10 a 20	Moderada-baja
4	>20 a 30	Moderada
5	>30 a 40	Alta
6	>40	Muy Alta


Un 70% de las observaciones presentó valores inferiores a 5 mg/l (concentración *Muy Baja*), y alrededor de un 24% de las mediciones mostraron valores de bajos a *moderado*s. Sólo el 1% de las estaciones prospectadas (4 estaciones) superaron el valor de 30 mg/l (**Figura 13**). Por tanto, podemos concluir que, en general, la concentración de nitratos de las estaciones prospectadas no es alta en la mayoría de los casos.

[†] http://www.environment-agency.gov.uk/commondata/acrobat/nutrients.pdf

Figura 13. Distribución de frecuencias de las concentraciones de NO₃ para el conjunto de estaciones durante la campaña de muestreo de 2007.

Se encontraron diferencias significativas entre tipos de ríos (**Tabla 1, Figura 14**). Los tipos 11, 26 y 27 (Ríos de montaña mediterránea silícea, Ríos de montaña húmeda calcárea y Ríos de alta montaña, respectivamente), correspondientes a cabeceras montañosas, presentaron los valores más bajos de nitratos, frente a los tipos 9 y 17 (Ríos mineralizados de baja montaña mediterránea y Grandes ejes en ambiente mediterráneo), más ricos en este nutriente. El tipo 16 mostró la variabilidad más alta en los valores de nitrato.

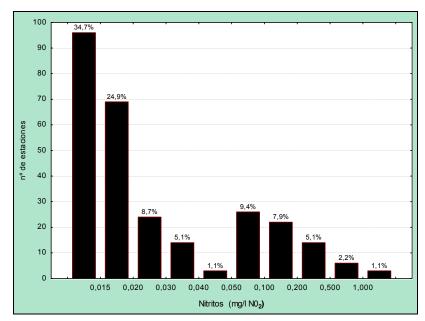
Figura 14. Concentraciones de nitrato (mg·l⁻¹ NO₃) para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2007

TABLA 6

Concentración de nitrato media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg⋅Γ¹ NO₃)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	12.09	38	19.76	0.05	106.21
11	Ríos de montaña mediterránea silícea	1.67	6	1.29	0.45	3.10
12	Ríos de montaña mediterránea calcárea	6.59	78	12.96	0.05	103.29
15	Ejes mediterráneo-continentales poco mineralizados	8.76	34	6.69	0.05	25.80
16	Ejes mediterráneo-continentales mineralizados	7.36	3	8.68	2.30	17.39
17	Grandes ejes en ambiente mediterráneo	12.49	15	9.86	0.25	27.34
26	Ríos de montaña húmeda calcárea	2.40	75	3.11	0.05	15.42
27	Ríos de Alta Montaña	1.13	27	1.05	0.05	3.15

Como se aprecia en la cartografía de nitratos (**Figura 15**), las cuencas más afectadas durante el muestreo del verano de 2007 fueron las de los ríos Zadorra, Linares, Zidacos, Queiles, Arba de Luesia, Huerva, Regalló, Barranco de La Violada o Corb, además del eje principal del Río Ebro.


Figura 15. Concentración de nitrato (mg·l⁻¹ NO₃) medida en las estaciones de muestreo en 2007.

f) Nitritos

Las concentraciones de nitritos (mg/l NO₂) en las estaciones muestreadas oscilaron entre niveles no detectables, circunstancia bastante común entre las estaciones muestreadas (<0.01 mg/l, con un total de 96 estaciones) hasta niveles superiores a 1 mg/l, como en las estaciones 0217 (Arga en Ororbia), 0179 (Zadorra en Vitoria –Trespuentes) y 1351 (Val en Agreda).

Para hacernos una idea aproximada de la calidad del agua en base al contenido en nitritos, nos basamos en los límites propuestos en la legislación para aguas aptas para la vida de los peces (DIRECTIVA 2006/44/CE) para tramos ciprinícolas, establecido en 0,03 mg/l de NO₂.

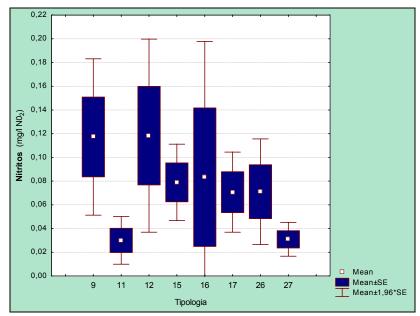

Aproximadamente el 68.3% (**Figura 16**) de las observaciones presentaron valores inferiores a 0,03 mg/l (concentraciones guía recomendadas para la protección de los tramos ciprinícolas para la vida piscícola). Por tanto, podemos concluir que, en general, la concentración de nitritos de las estaciones prospectadas no es alta en la mayoría de los casos.

Figura 16. Distribución de frecuencias de las concentraciones de NO₂ para el conjunto de estaciones y durante las dos campañas de muestreo de 2007.

También se encontraron diferencias entre tipos de ríos (**Figura 17**; **Tabla 7**). Los tipos 11 y 27 presentaron los valores más bajos de nitritos (además de presentar pocas variaciones entre

estaciones), y los tipos 9 y 12, los más altos. En estos dos tipos, la variabilidad fue especialmente alta, al igual que en el tipo 16 (**Figura 17**).

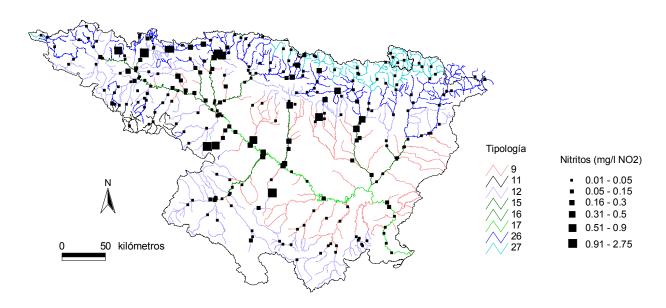
Figura 17. Concentraciones de nitritos $(mg \cdot \Gamma^1 NO_2)$ para las diferentes tipologías de ríos en las estaciones muestreadas durante la campaña de 2007

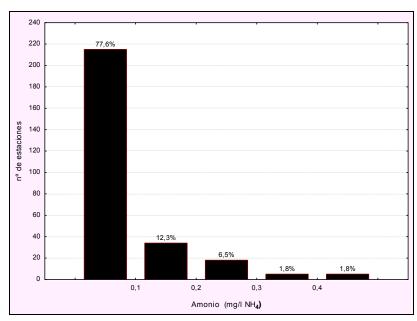
TABLA 7

Concentración de nitrito media, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg·l⁻¹ NO₂)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	0.117	38	0.207	0.015	0.920
11	Ríos de montaña mediterránea silícea	0.030	6	0.025	0.015	0.080
12	Ríos de montaña mediterránea calcárea	0.118	78	0.367	0.015	2.750
15	Ejes mediterráneo-continentales poco mineralizados	0.079	34	0.096	0.015	0.420
16	Ejes mediterráneo-continentales mineralizados	0.083	3	0.101	0.020	0.200
17	Grandes ejes en ambiente mediterráneo	0.071	15	0.067	0.015	0.250
26	Ríos de montaña húmeda calcárea	0.071	75	0.197	0.015	1.450
27	Ríos de Alta Montaña	0.031	27	0.038	0.015	0.180

En la cartografía de nitritos (**Figura 18**), las cuencas más afectadas durante el muestreo del verano de 2007, aunque de manera más puntual que para el caso de nitratos, fueron las de los ríos Omecillo, Zadorra, Elorz, Val, Queiles, Arba de Luesia, Flumen, Cinca, Vero y Huerva.




Figura 18. Concentración de nitrito (mg·l⁻¹ NO₂) medida en las estaciones de muestreo en 2007.

g) Amonio

Las concentraciones de amonio (mg/l NH₄) en las estaciones muestreadas, oscilaron entre niveles no detectables (concentraciones menores de 0,1 mg/l NH₄ según la metodología empleada), en un total de 216 estaciones, hasta niveles superiores a los 1 mg/l en las estaciónes 0605 (Ebro en Amposta), 0095 (Vero en Barbastro) y 1398 (Guatizalema en Nocito).

Para hacernos una idea aproximada de la calidad del agua en base al contenido en amonio, nos basamos en los límites propuestos en la legislación para aguas aptas para la vida de los peces (DIRECTIVA 2006/44/CE) para tramos ciprinícolas, de 0,2 mg/l de NH₄.

Aproximadamente el 89.9% de las localidades muestreadas presentó valores inferiores a 0,2 mg/l (concentraciones permitidas para la protección de los tramos ciprinícolas para la vida piscícola), y alrededor de un 2% mostraron valores superiores a 0,4 mg/l. Por tanto, podemos concluir que, en general, la concentración de amonio de las estaciones prospectadas no es alta en la mayoría de los casos (**Figura 19**).

Figura 19. Distribución de frecuencias de las concentraciones de NH₄ para el conjunto de estaciones y durante las dos campañas de muestreo de 2007.

No se encontraron diferencias significativas entre tipos de ríos (Figura 20; Tabla 1).

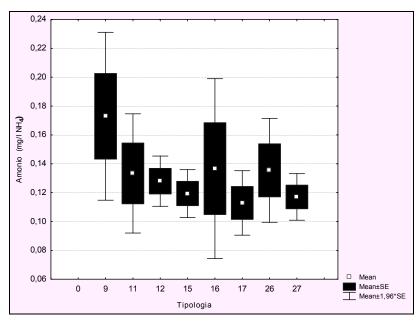


Figura 20. Distribución de las concentraciones de NH₄ por tipos de ríos.

TABLA 8

Concentración media de amonio, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg·l⁻¹ NH₄)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	0.17	38.00	0.18	0.10	1.07
11	Ríos de montaña mediterránea silícea	0.13	6.00	0.05	0.10	0.20
12	Ríos de montaña mediterránea calcárea	0.13	78.00	0.08	0.10	0.64
15	Ejes mediterráneo-continentales poco mineralizados	0.12	33.00	0.05	0.10	0.30
16	Ejes mediterráneo-continentales mineralizados	0.14	3.00	0.06	0.10	0.20
17	Grandes ejes en ambiente mediterráneo	0.11	14.00	0.04	0.10	0.26
26	Ríos de montaña húmeda calcárea	0.14	75.00	0.16	0.10	1.41
27	Ríos de Alta Montaña	0.12	27.00	0.04	0.10	0.28

Las estaciones donde se alcanzaron las concentraciones de amonio más elevadas (>0.4 mg·l⁻¹ NH₄) se localizaron en los ríos Elorz, Queiles, Ebro, Martín, Sío y Vero. Otras cuencas con valores altos, aunque no tan extremos (0.2 a 0.4 mg·l⁻¹ NH₄), fueron las del Zadorra, Cidacos, Linares, Aranda, Huerva o Jalón, entre otras (**Figura 21**)

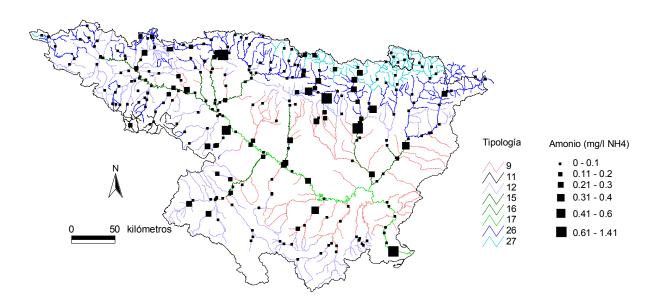


Figura 21. Concentración de amonio (mg·l⁻¹ NH₄) medida en las estaciones de muestreo en 2007.

h) Fosfatos

Las concentraciones de fosfatos (mg/l PO₄) en las estaciones muestreadas oscilaron entre niveles no detectables (<0,05 mg/l, en un 49 % de las muestras) hasta niveles superiores a los 5 mg/l en las estaciones 0595 (Ebro en San Vicente de la Sonsierra), 1429 (Cárdenas en San Millán de la Cogolla), 1398 (Guatizalema en Nocito) y 1140 (Alcanadre en Laguarta - Carretera Boltaña), esta última con una concentración de 11.2 mg/l PO₄.

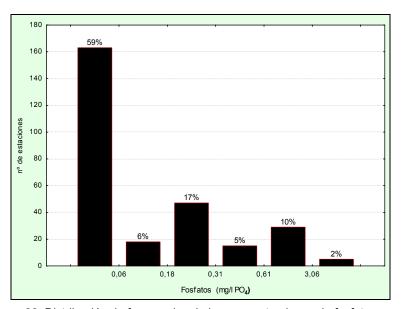

Al igual que en el caso de los nitratos, como aproximación a la calidad del agua en base al contenido en fosfatos, nos basamos en la clasificación propuesta por la *Agencia Medioambiental* del Reino Unido[‡] (**Tabla 9**), modificada en el presente Informe para fosfatos (el original trataba con P total)

TABLA 9
CLASIFICACIÓN DE LOS RÍOS POR SU CONCENTRACIÓN EN FOSFATOS

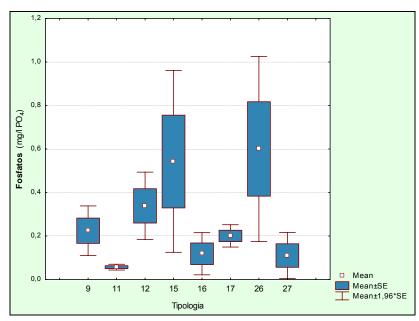
Clasificación para fosfato	Umbrales (mg PO₄/I)	Descripción
1	<0,06	Muy baja
2	>0,06 a 0,18	Baja
3	>0,8 a 0,31	Moderada-Baja
4	>0,31 a 0,61	Moderada
5	>0,61 a 3,06	Alta
6	> 3,06	Muy Alta

Un 82% de las observaciones presentó valores inferiores a 0,31 mg/l (concentraciones de *Moderada-Baja* a *Muy Baja*), y alrededor de un 17% de las mediciones mostraron valores de *moderado*s a muy altos (**Figura 22**). A su vez, aproximadamente el 85% de las observaciones presentó valores inferiores a 0,4 mg/l (valores indicativos en la legislación para la protección de los tramos ciprinícolas) y alrededor de un 69 % presentó valores inferiores a 0,2 mg/l (valores indicativos en la legislación para la protección de los tramos salmonícolas). Por tanto, podemos concluir que, en general, la concentración de fosfatos de las estaciones prospectadas no es alta en la mayoría de los casos.

[‡] http://www.environment-agency.gov.uk/commondata/acrobat/nutrients.pdf

Figura 22. Distribución de frecuencias de las concentraciones de fosfatos para el conjunto de estaciones en la campaña de 2007.

En el caso del PO4, sí se encontraron diferencias entre tipos de ríos (**Tabla 1**), con los tipos 15 y 26 (Ejes mediterráneo-continentales poco mineralizados y Ríos de montaña húmeda calcárea) presentando los valores más elevados y la mayor variabilidad, frente al tipo 11 (Ríos de montaña mediterránea silicea), con los valores más bajos y la menor variabilidad.



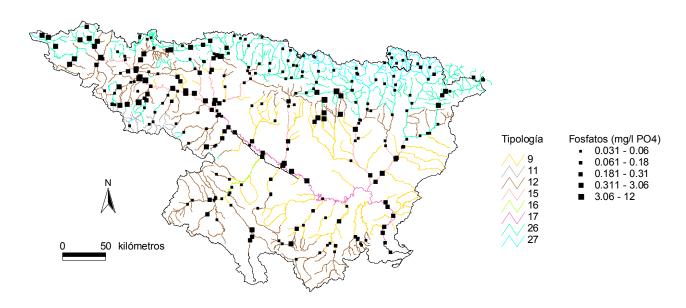

Figura 23. Distribución de las concentraciones de PO₄ por tipos de ríos.

TABLA 10

Concentración media de fosfatos, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg·l⁻¹ PO₄)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	0.224	38	0.358	0.050	1.502
11	Ríos de montaña mediterránea silícea	0.057	6	0.016	0.050	0.090
12	Ríos de montaña mediterránea calcárea	0.339	78	0.699	0.050	4.870
15	Ejes mediterráneo-continentales poco mineralizados	0.543	34	1.244	0.050	7.260
16	Ejes mediterráneo-continentales mineralizados	0.118	3	0.086	0.050	0.215
17	Grandes ejes en ambiente mediterráneo	0.200	15	0.101	0.050	0.429
26	Ríos de montaña húmeda calcárea	0.600	75	1.881	0.050	11.216
27	Ríos de Alta Montaña	0.110	27	0.281	0.050	1.510

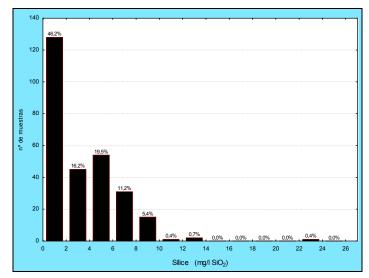

En la cartografía de fosfatos (**Figura 24**), las cuencas más afectadas durante el muestreo del verano de 2007, fueron algunas de la zona del Alto Ebro como las cuencas de los ríos Cárdenas, Nela, Trueba, Zadorra o Rudrón: otras cuencas afectadas fueron las del Alcanadre (con los valores más extremos) o la del Vero, además del propio eje principal del Ebro. Puntos aislados del Segre o el Martín también presentaron altos niveles de fosfatos.

Figura 24. Concentración de fosfatos (mg·l⁻¹ PO₄) medida en las estaciones de muestreo en 2007.

i) Sílice

Las concentraciones de sílice (mg/l SiO₂) en las estaciones muestreadas oscilaron entre niveles no detectables, (<0,25 mg/l, en un 14.2% de las muestras) hasta niveles superiores a los 10 mg/l, como en las estaciones 1354 (Najima en Monreal de Ariza), 0638 (Son en Esterri d'Aneu), 1096 (Segre en Llivia) y 1411 (Peregiles en el Puente de la antigua N-II), esta última superando los 22 mg/l. La **Figura 25** muestra la distribución de los valores de sílice en 2007.

Figura 25. Distribución de frecuencias de las concentraciones de sílice para el conjunto de estaciones durante la segunda campaña de muestreo de 2007.

Se encontraron diferencias entre tipos de ríos (**Tabla 1**). El tipo 15 (Ejes mediterráneo-continentales poco mineralizados) presentó los valores más bajos de sílice, frente al tipo 11 (Ríos de montaña mediterránea silícea), con los más elevados. Los demás tipos 12, 15 y 16 presentaron valores intermedios, de unos 2 a 4.5 mg/l SiO₂ (**Tabla 11 y Figura 26**).

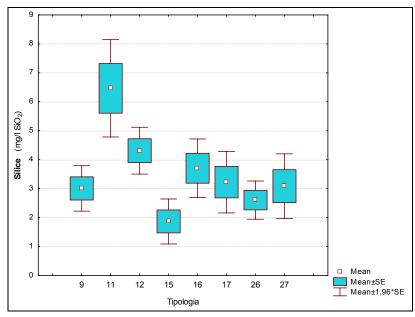
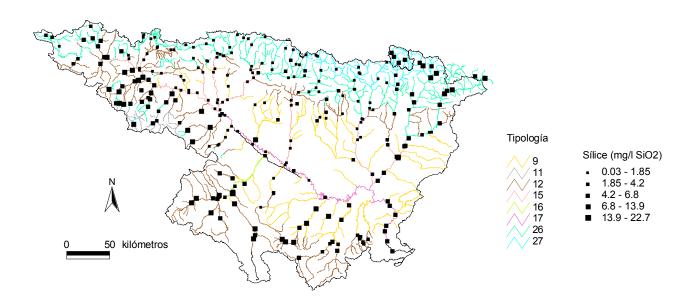



Figura 26. Distribución de las concentraciones de sílice (SiO₂) por tipos fluviales.

TABLA 11
Concentración media de sílice, desviación estándar (SD), valor máximo y mínimo y número de casos (N) para los diferentes tipos de ríos en 2007 (valores en mg·l⁻¹ SiO₂)

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	3.01	38	2.47	0.03	8.60
11	Ríos de montaña mediterránea silícea	6.46	6	2.10	3.70	9.20
12	Ríos de montaña mediterránea calcárea	4.31	78	3.64	0.05	22.70
15	Ejes mediterráneo-continentales poco mineralizados	1.87	34	2.31	0.03	9.20
16	Ejes mediterráneo-continentales mineralizados	3.70	3	0.90	2.81	4.60
17	Grandes ejes en ambiente mediterráneo	3.22	15	2.10	0.37	6.20
26	Ríos de montaña húmeda calcárea	2.60	75	2.91	0.03	13.90
27	Ríos de Alta Montaña	3.08	27	2.96	0.04	12.30

La distribución espacial de los datos de sílice se muestra en la Figura 27.

Figura 27. Concentración de sílice (mg·l⁻¹ SO₂) medida en las estaciones de muestreo en 2007.

3.2.2. Resultados hidromorfológicos

En el **Anexo 1** se incluyen los índices QBR e IHF obtenidos durante los muestreos realizados en el año 2007.

Se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la Tablas KW.

TABLA 12

TESTS DE KRUSKAL-WALLIS H POR TIPOS*

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IHF	10,04	251	0,1863
QBR	58,9	285	0,0000

Los comentarios para estas dos tablas se realizan, para cada parámetro, en los puntos siguientes.

A) Índice de Hábitat Fluvial (IHF)

La calidad del hábitat fluvial, evaluada mediante el índice IHF, osciló entre los 15 puntos de la estación 0216 (Huerva en Zaragoza) y los 88 de las estaciones 1403 y 0583 (Aranda en Aranda del Moncayo y Grío en La Almunia de Doña Godina) o los 91 puntos de la 1193 (Alhama en Magaña)

Las diferencias entre tipos de masas de agua no fueron significativas (**Tabla 12**), aunque se podría intuir cierta tendencia a presentar los valores más bajos en los ejes principales (tipos 15 y 17, aunque la única estación del tipo 16 tuviera un IHF alto) y los más altos en ríos de montaña (tipos 11, 12, 26 y 27) (**Figura 29; Tabla 13**)

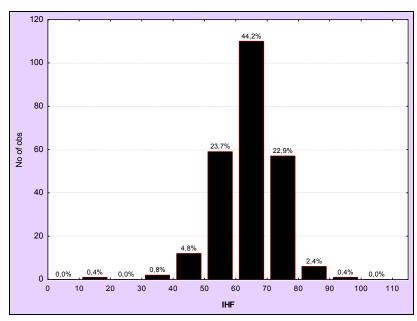


Figura 28. Distribución de frecuencias del índice de calidad del hábitat fluvial (IHF) en 2007

Figura 29. Distribución del índice de calidad del hábitat fluvial (IHF) por tipos de ríos.

TABLA 13

Valos medio del índice de calidad del bosque de ribera (QBR), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	63.69	35	12.40	15	88
11	Ríos de montaña mediterránea silícea	69.80	5	4.82	66	78
12	Ríos de montaña mediterránea calcárea	65.28	74	9.92	37	91
15	Ejes mediterráneo-continentales poco mineralizados	59.90	29	14.36	0	76
16	Ejes mediterráneo-continentales mineralizados	71.00	1	0.00	71	71
17	Grandes ejes en ambiente mediterráneo	61.20	10	6.91	48	71
26	Ríos de montaña húmeda calcárea	66.30	70	8.03	49	82
27	Ríos de Alta Montaña	64.81	27	7.84	53	85

B) Índice de Calidad del Bosque de Ribera (QBR)

La calidad de las riberas, evaluada mediante el índice QBR, fue bastante variable (**Figura 30**). Los valores oscilaron entre los 0 puntos obtenidos para diferentes estaciones, como por ejemplo, la 0027 y la1038 (Ebro en Tortosa y Linares en Mendavia), hasta los máximos de 100 obtenidos en numerosas ocasiones, como por ejemplo en la estación 1183 (Iregua en Villoslada de Cameros) o en la 1062 (Irati en Oroz-Betelu), entre otras.

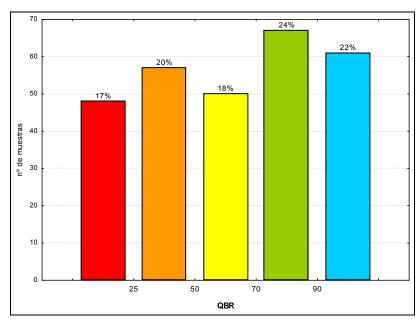


Figura 30. Distribución de frecuencias del índice de calidad del bosque de ribera (QBR) en 2007

Las diferencias entre tipos de masas de agua fueron significativas en el caso del QBR (**Tabla 12**), con los tipos 11 (*ríos de montaña mediterránea silícea*), 26 (*ríos de montaña húmeda calcárea*) y 27 (*ríos de alta montaña*) presentando riberas de mayor calidad y el tipo 17 (grandes ejes en ambiente mediterráneo) las de peor calidad (**Figura 31**; **Tabla 14**).

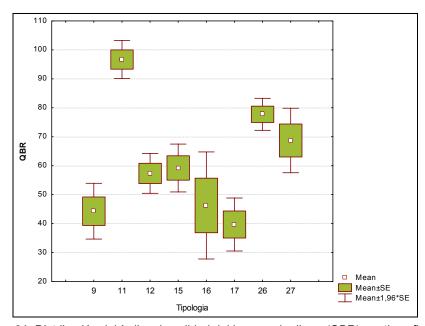


Figura 31. Distribución del índice de calidad del bosque de ribera (QBR) por tipos fluviales

TABLA 14

Valos medio del índice de calidad del bosque de ribera (QBR), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	44.27	41	31.48	0	100
11	Ríos de montaña mediterránea silícea	96.67	6	8.16	80	100
12	Ríos de montaña mediterránea calcárea	57.32	82	31.73	0	100
15	Ejes mediterráneo-continentales poco mineralizados	59.19	37	25.62	0	100
16	Ejes mediterráneo-continentales mineralizados	46.25	4	18.87	30	65
17	Grandes ejes en ambiente mediterráneo	39.67	15	18.07	0	65
26	Ríos de montaña húmeda calcárea	77.73	77	24.73	10	100
27	Ríos de Alta Montaña	68.70	23	27.27	5	100

3.2.3. Resultados de los análisis físicoquímicos globales

La variabilidad de las estaciones de muestreo prospectadas, en cuanto a las variables físicoquímicas y geomorfológicas medidas *in situ* y en laboratorio, fue analizada por medio de un Análisis de Componentes Principales (ACP).

Esta técnica de ordenación permite determinar qué variables y en qué medida, son las principales responsables de la variabilidad espacial y/o temporal observada.

Al no tener todas las estaciones de muestreo las baterías completas de datos (aspecto necesario para la realización de este análisis estadístico), se eliminaron aquellas estaciones con falta de datos, resultando una matriz final de 270 estaciones.

Ocho tipos de ríos estuvieron representados, aunque de manera desigual (**Figura 32**). Se utilizaron un total de 14 variables. Todas las variables fueron transformadas logarítmicamente con el fin de aminorar el efecto de los valores más extremos, y centradas sobre su media para evitar el efecto de las unidades de medida sobre los resultados del análisis.

Para la interpretación de los resultados, los diferentes tipos de ríos fueron propuestos como grupos a contrastar a priori, para comprobar si existían diferencias apreciables entre ellos en base a las variables medidas in situ, así como determinar las variables implicadas en mayor o menor grado.

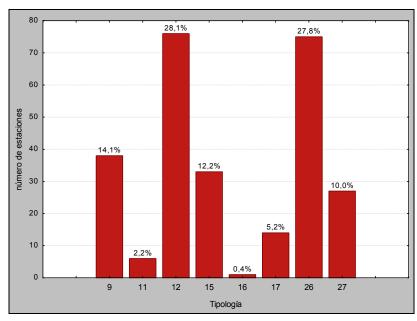
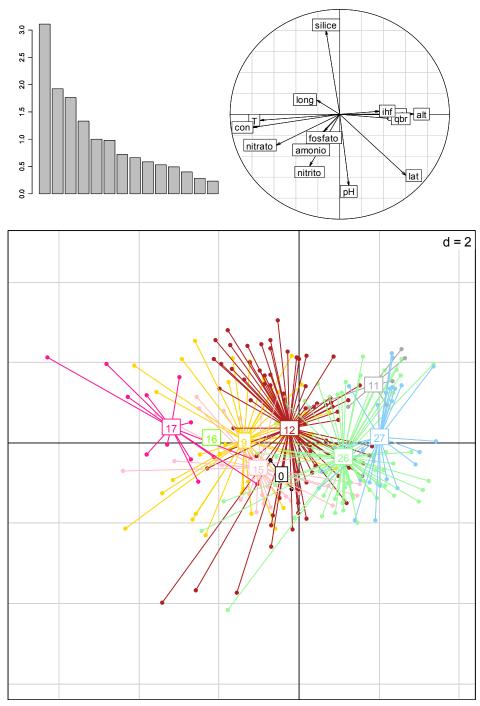


Figura 32. Distribución de las estaciones utilizadas en el ACP por tipos de ríos.

Los dos primeros ejes del ACP explicaron un 36 % de la varianza total o inercia de los datos. El primer eje, que explicaba un 22.2 % de variación, se correlacionó negativamente con las variables conductividad, temperatura y nitrato. La altitud, la latitud N, el oxígeno disuelto y los índices de calidad de ribera (QBR) y de hábitat (IHF) se correlacionaron positivamente con este primer eje (**Tabla 15, Figura 33**). En cuanto al segundo, que explicó el 13,8 % de variación, presentó correlación positiva con la sílice y negativa con el pH, la latitud N y el nitrito.

La variabilidad espacial de los datos (diferencias entre tipos de ríos) quedó reflejada principalmente a lo largo del gradiente ambiental representado por el primer eje del ACP. Las estaciones de los tipos 17 (grandes ejes en ambiente mediterráneo), 16 (ejes mediterráneo-continentales mineralizados) y 9 (ríos mineralizados de baja montaña mediterránea), caracterizadas por conductividades elevadas, carácter más térmico, mayor contenido de nitratos, y con peor calidad del hábitat fluvial y la ribera, ocuparon posiciones negativas, seguidas por los tipos 12 y 15, en posiciones más intermedias. La parte positiva correspondió a los tipos 27, 11 y 26 (ríos de alta montaña, ríos de montaña mediterránea silícea y ríos de montaña húmeda calcárea), con estaciones a mayor altitud, de aguas más dulces, frías y oxigenadas, con menor contenido en nitratos y con riberas y hábitat fluvial de mejor calidad (Figura 33).

TABLA 15


CORRELACIÓN DE LAS VARIABLES CON LOS DOS PRIMEROS EJES DEL ACP.

Se muestran los códigos de las variables usados en las figuras y las unidades de medida. En negrita aparecen aquellas correlaciones más marcadas en uno y otro sentido.

Variables	Eje 1 ACP	Eje 2 ACP
Temperatura (T, °C)	-0.731	-0.057
pH (pH)	0.082	-0.682
Conductividad (Cond, µS/cm)	-0.793	-0.125
Oxígeno disuelto (Ox; mg/l)	0.444	-0.002
Nitrito (NO ₂ , mg/l)	-0.276	-0.495
Nitrato (NO ₃ , mg/l)	-0.580	-0.295
Amonio (NH ₄ , mg/l)	-0.261	-0.283
Fosfatos (PO ₄ , mg/l)	-0.144	-0.166
Sílice (SiO ₂ , mg/l)	-0.126	0.798
QBR (QBR)	0.472	-0.043
IHF (IHF)	0.363	0.030
Altitud (m.s.n.m.)	0.677	0.004
Longitud (E, m.)	-0.212	0.138
Latitud (N, m)	0.603	-0.586

En cuanto al segundo eje del ACP (13.8% de varianza explicada), con la excepción del tipo 11 (*ríos de montaña mediterránea silícea*), cuyas estaciones se localizaron en la parte positiva del eje (mayos contenido en sílice y menor pH), ninguno de los restantes tipos se diferenciaron, presentando todos ellos, en general, estaciones en uno y otro extremo del mismo).

El solapamiento fue muy marcado entre la mayoría de los tipos. Los tipos 11 y 27 (*ríos de montaña mediterránea silícea y ríos de alta montaña*) en la parte positiva del gradiente, y el tipo 17 (*grandes ejes en ambiente mediterráneo*) en la parte negativa, resultaron mejor delimitados y relativamente separados de los otros tipos en base a las variables manejadas. Los tipos 9, 12, 15 y 26 (*ríos de montaña húmeda calcárea, ríos de montaña mediterránea calcárea, ejes mediterráneo-continentales poco mineralizados y ríos mineralizados de baja montaña mediterránea*) presentaron posiciones muy similares en el plano de los dos ejes principales del ACP. El tipo 16 (*ejes mediterráneo-continentales mineralizados*), representado sólo por dos estaciones, ocupó posiciones cercanas al 17.

Figura 33. Ordenación de las muestras agrupadas por tipos en los dos primeros ejes del análisis del ACP. Las etiquetas de los tipos ocupan el centro de gravedad de las muestras. En la parte superior se muestra el gráfico de *autovalores* (o *eigenvalues*, varianza relativa explicada por cada eje) y el círculo de correlaciones de las variables con los dos primeros ejes.

3.3. Resultados biológicos. Macroinvertebrados, macrófitos y diatomeas.

En el presente Informe se incluyen los resultados obtenidos en el análisis de las muestras de macroinvertebrados, vegetación macrofítica acuática y fitobentos (diatomeas) y la aplicación de los índices bióticos (IBMWP, IASPT, IVAM e IPS).

En el **Anexo 2** se incluyen los informes elaborados por los dos equipos de especialistas, con los resultados de los dos índices biológicos, IBMWP (*Iberian Biological Monitoring Working Party*) e IASPT (*Iberian Average Score Per Taxon*), así como del número de familias de macroinvertebrados incluidas o evaluadas en el índice IBMWP, una estima de la riqueza taxonómica del sistema (en adelante NFAM, de Numero de FAMilias).

Por su parte, los datos del IVAM se incluyen en el **Anexo 1** junto con los datos físico-químicos e hidromorfológicos.

A partir de estos datos, en los siguientes apartados se resumen y sintetizan los resultados obtenidos para los indicadores y métricas de macroinvertebrados, macrófitos y diatomeas.

Asimismo, se realizaron contrastes no paramétricos de Kruskal-Wallis para testar diferencias biológicas entre los distintos tipos de ríos. Los resultados de estos análisis se sintetizan en la **Tabla 16**.

TABLA 16

TESTS DE KRUSKAL-WALLIS *H* POR TIPOS DE RÍOS
PARA LOS INDICADORES BIOLÓGICOS.

Se incluyen los valores de probabilidad p, en rojo y negrita aquellas diferencias significativas

Variable	Н	N	р
IBMWP	85,86	270	0,000
NFAM	59,48	270	0,000
IASPT	119,30	270	0,000
IVAM	74,88	238	0,000
IPS	52,79	204	0,000

3.3.1. Macroinvertebrados

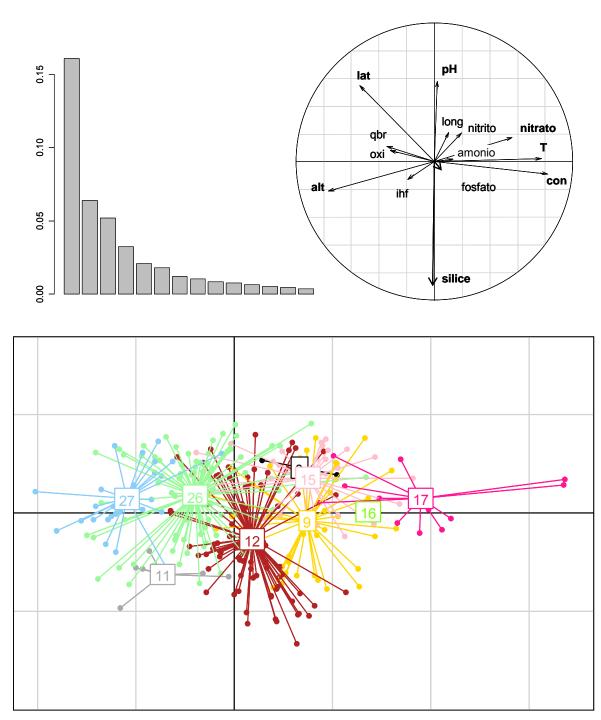
3.3.1.1. Composición de las comunidades. Análisis Multivariante.

Se realizó un análisis de correspondencias canónicas (CCA) sobre datos de presencia/ausencia de familias por estación, y sobre 14 variables ambientales transformadas logarítmicamente. Se incluyeron las variables espaciales latitud, longitud y altitud para tener en cuenta la influencia espacial en la distribución de los invertebrados. Las especies raras (considerando como tales aquellas que aparecían en menos del 5% de las estaciones) fueron eliminadas para la realización del análisis, con el fin de ganar claridad en las representaciones y en la posterior interpretación de los resultados, quedando una matriz de 88 familias y 270 estaciones.

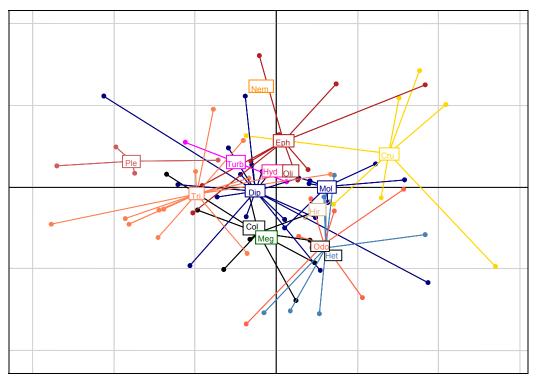
Los ejes canónicos proporcionaron una buena solución a la ordenación global de la composición de las comunidades de macroinvertebrados en función de las variables ambientales consideradas (porcentaje de la varianza o inercia explicada = 17.2%). La correlación entre las matrices de fauna y de variables ambientales fue de 0,875 y 0,746 para los dos primeros ejes respectivamente.

De las variables consideradas (**Tabla 18**), en el primer eje las más explicativas fueron: conductividad, temperatura, altitud y concentración de nitratos (ligadas espacialmente a la latitud). La variabilidad observada en el segundo eje del CCA se debió principalmente a la concentración de sílice disuelta y al pH, también con un componente espacial (latitud).

TABLA 18


CORRELACIÓN DE LAS VARIABLES CON LOS DOS PRIMEROS EJES DEL CCA. Se muestran los códigos de las variables usados en las figuras y las unidades de medida. En negrita aparecen aquellas correlaciones más marcadas en uno y otro sentido.

Variables	Eje 1	Eje 2
Temperatura (T, °C)	0.772	0.022
pH (pH)	0.022	0.579
Conductividad (cond, µS/cm)	0.818	-0.088
Oxígeno disuelto (oxi; mg/l)	-0.319	0.080
Nitrito (mg/l)	0.195	0.208
Nitrato (mg/l)	0.561	0.175
Amonio (mg/l)	0.134	0.018
Fosfato (mg/l)	0.058	-0.068
Sílice (mg/l)	-0.013	-0.905
QBR (qbr)	-0.341	0.112
IHF (ihf)	-0.192	-0.126
Altitud (m)	-0.764	-0.211
Longitud E (m.)	0.104	0.213
Latitud N (m)	-0.539	0.548


La variabilidad espacial de los datos (diferencias entre estaciones) quedó reflejada principalmente a lo largo del gradiente ambiental representado por el primer eje del CCA. Las estaciones de los tipos 16, 17, 9 y 15 (*Ejes mediterráneo-continentales mineralizados, grandes ejes en ambiente mediterráneo, ríos mineralizados de baja montaña mediterránea y ejes mediterráneo-continentales poco mineralizados*) caracterizadas por bajas altitudes, normalmente en zonas meridionales de la cuenca, con conductividades elevadas, de carácter más térmico y con mayor contenido de nitratos, ocuparon posiciones positivas en el espacio de ordenación, seguidas por las localidades de tipo 12 (*ríos de montaña mediterránea calcárea*), en posiciones más intermedias. La parte negativa correspondió a las estaciones en tramos de montaña, correspondientes a los tipos 27, 11 y 26 (*ríos de alta montaña, ríos de montaña mediterránea silícea* y *ríos de montaña húmeda calcárea*), de mayor altitud, aguas poco mineralizadas, más frías y mejor oxigenadas, y con menor contenido en nitratos (**Figura 34**).

La posición de las principales familias de macroinvertebrados en el plano del Análisis de Correspondencias Canónicas (CCA, ejes 1 y 2) se muestra en las **Figuras 35 y 36**. Agrupadas por órdenes (u otros grupos taxonómicos, **Figura 35**) se observa cómo las posiciones más negativas en el eje 1 (aquel ocupado por los grupos 11, 27 y 26) son ocupadas por los plecópteros, la mayoría de tricópteros, los turbelarios (planarias) o algunos representantes de los dípteros, coleópteros o efemerópteros. Aquellas posiciones más positivas (tipos 16, 17, 9 y 15), en contraste, se corresponden con los crustáceos, moluscos, hirudineos, heterópteros y odonatos. La posición en el gradiente de cada una de las familias en particular se muestra en la

Figura 36. En cuanto al eje 2, se observa un predominio de estaciones de los grupos 11, 12, 26 y 9 en las zonas negativas, correspondiendo a estaciones de zonas meridionales con mayores concentraciones de sílice y pH más bajos. En esta zona se disponen los centros de gravedad de grupos como los heterópteros, odonatos, megalópteros o coleópteros. En el otro extremo, ocupando valores positivos del eje de ordenadas o eje 2, encontramos a los grupos 15, 17 y 27, además de numerosas estaciones de los grupos 12 y 26. A esta región del gradiente corresponden grupos como los nemátodos, efemerópteros o crustáceos.

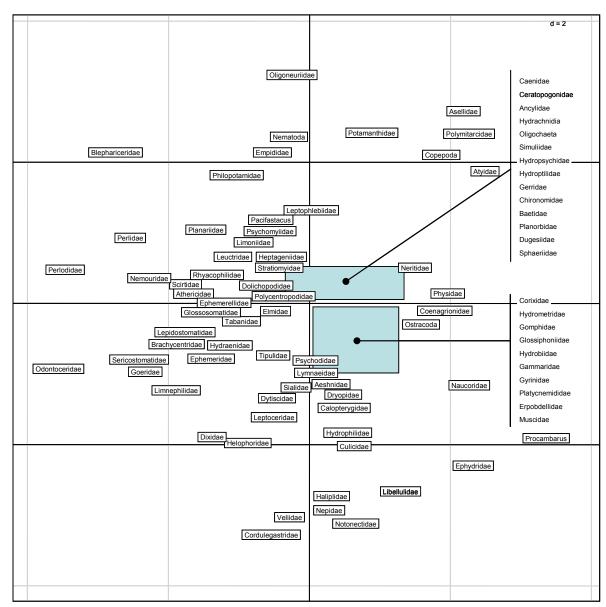


Figura 34. Proyección de las variables ambientales y de las estaciones de muestreo en el plano definido por los ejes CCA1 y CCA2 del análisis de macroinvertebrados. Las estaciones aparecen agrupadas por tipos mediante vectores. Las variables explicativas se muestran como vectores en el círculo de correlaciones. Se muestra también el gráfico de autovalores.

Figura 35. Proyección de las 88 familias de macroinvertebrados (puntos), agrupadas en grandes grupos taxonómicos (etiquetas), en el plano definido por los ejes 1 y 2 del CCA. (Col=Coleoptera; Cru=Crustacea; Dip=Diptera; Eph=Ephemeroptera; Het=Heteroptera; Hir=Hirudinea; Hyd=Hydrachnidia; Meg=Megaloptera; Mol=Mollusca; Nem=Nematoda; Odo= Odonata; Oli=Oligochaeta; Ple=Plecoptera; Tri=Trichoptera; Turb=Turbelaria)

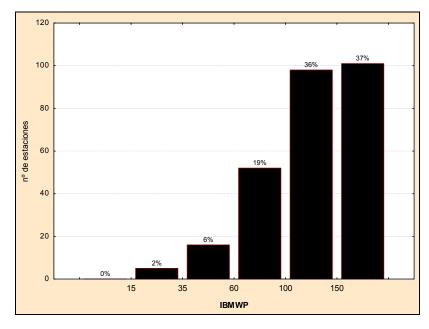

La observación de las posiciones relativas de estaciones y táxones en este plano de ordenación, hace pensar, asimismo, en un gradiente de caudal y/o velocidad de corriente (aunque esta variable no fue medida y por tanto no fue incluida en el análisis), estando aquellas estaciones típicas de ríos caudalosos y alta velocidad en las posiciones más positivas del segundo eje (tipos 15, 16 y 17 y familias como Oligoneuriidae, Potamanthidae, Polymirtacidae o Blephariceridae). En la zona negativa de este mismo eje, encontraríamos, por su parte, estaciones con poco caudal y/o velocidad de corriente, predominando los tipos 9 y 12, con familias características de pequeños ríos o con preferencia por velocidades de corriente bajas, como Cordulegastridae, Libellulidae, Haliplidae, Nepidae, Veliidae o Notonectidae.

Figura 36. Proyección de las 88 familias de macroinvertebrados incluidas en la ordenación (etiquetas), en el plano definido por los ejes 1 y 2 del Análisis de Correspondencias Canónicas (CCA)

A) IBMWP (Iberian Biological Monitoring Working Party)

La calidad del ecosistema fluvial, evaluada mediante el índice IBMWP, fue en general bastante buena. Los valores oscilaron entre los 22 puntos obtenidos en la localidad 1119 (Corb en Vilanova de la Barca) hasta los 317 de la estación 1004 (Nela en Puentedey). Un 73% de las muestras presentaron valores por encima de 100. (**Figura 37**), y un 37% de muestras superaron los 150 puntos. Los valores superiores a 100 corresponderían con la clase de calidad I (Buena) del índice IBMWP, y los superiores a 150 con la clase I' (Muy Buena) (ver hoja de campo en los protocolos de Alba-Tercedor et al. 2005). Un 27% de estaciones presentó valores por debajo de 100.

Figura 37. Distribución del índice IBMWP para el conjunto de las muestras. Los rangos utilizados se correspondieran con las seis clases de calidad que el índice posee: (<15, muy crítica; 16-35, crítica; 36-60, dudosa; 61-100, aceptable; 101-150, buena; >150, muy buena)

Las diferencias entre tipos de ríos fueron significativas (**Tabla 16**), con los tipos 11, 26 y 27 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 19**; **Figura 38**). Los tipos 17 y 16 (aunque éste último con un solo dato) presentaron los valores más bajos.

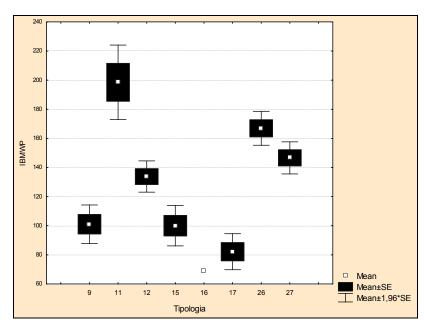


Figura 38. Distribución del índice IBMWP por tipos de ríos.

TABLA 19

Valos medio del IBMWP, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	101.05	40	42.62	33	196
11	Ríos de montaña mediterránea silícea	198.50	6	31.97	145	235
12	Ríos de montaña mediterránea calcárea	133.78	76	47.78	49	265
15	Ejes mediterráneo-continentales poco mineralizados	101.88	33	40.77	22	174
16	Ejes mediterráneo-continentales mineralizados	69.00	1	0.00	69	69
17	Grandes ejes en ambiente mediterráneo	84.93	14	24.20	50	126
26	Ríos de montaña húmeda calcárea	166.91	75	51.45	23	317
27	Ríos de Alta Montaña	146.63	27	29.20	99	241

B) IASPT (Iberian Average Score per Taxon)

La calidad del ecosistema fluvial, evaluada mediante el índice IASPT, fue en general bastante buena. Los valores oscilaron entre los 2.87 puntos obtenidos en la localidad 1422 (Río Salado en Estenoz), hasta los 7,44 de la estación 1106* (§río Noguera Vallferrera en Llavorsí). Un 56% de las muestras presentaron valores por encima del valor 5 (**Figura 39**).

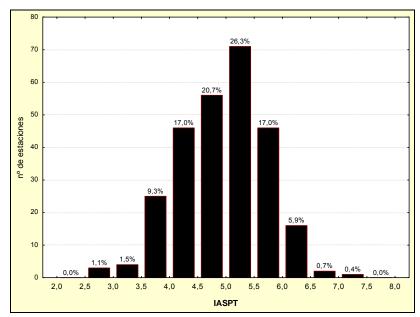


Figura 39. Distribución de frecuencias del índice IASPT durante la campaña de muestreo de 2007.

Las diferencias entre tipos de ríos fueron significativas (**Tabla 16**), con los tipos 11, 26 y 27 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 20**; **Figura 40**). Los tipos 16 y 17 presentaron, otra vez, los valores más bajos.

_

^{*} Ver incidencias / comentarios a la estación 1106 en el Cuadro 1.

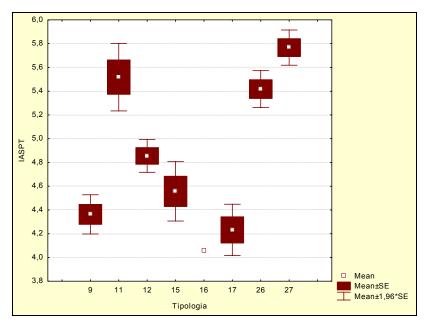


Figura 40. Distribución del índice IASPT por tipos de ríos.

TABLA 20

Valos medio del IASPT, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	4.36	40	0.53	3.00	5.40
11	Ríos de montaña mediterránea silícea	5.52	6	0.36	5.06	6.04
12	Ríos de montaña mediterránea calcárea	4.85	76	0.61	3.50	7.00
15	Ejes mediterráneo-continentales poco mineralizados	4.58	33	0.72	3.00	5.80
16	Ejes mediterráneo-continentales mineralizados	4.06	1	0.00	4.06	4.06
17	Grandes ejes en ambiente mediterráneo	4.31	14	0.47	3.53	5.26
26	Ríos de montaña húmeda calcárea	5.42	75	0.69	2.88	7.44
27	Ríos de Alta Montaña	5.77	27	0.39	5.20	6.81

C) NFAM (Número de FAMILIAS IBMWP)

La calidad del ecosistema fluvial, evaluada mediante el número de familias utilizadas en el cálculo del IBMWP (NFAM), ha sido bastante buena.

Los valores oscilaron entre las 7 familias recogidas en la localidad 1119 (Corb en Vilanova de la Barca) hasta las 53 de la estación 1004 (Nela en Puentedey). Un 74% de las muestras presentaron valores por encima de 20 familias. (**Figura 41**)

Las diferencias entre tipos de ríos resultaron significativas (**Tabla 16**), con los tipos 11, 12 y 26 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 21**; **Figura 42**). Los tipos 16 y 17 presentaron otra vez los valores más bajos.

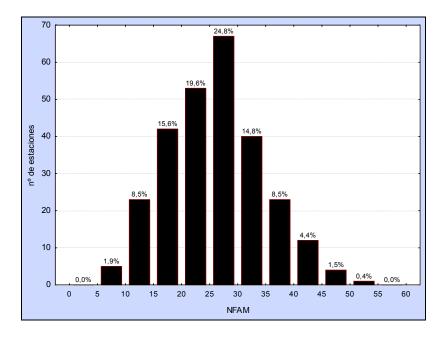


Figura 41. Distribución del Nº de Familias (NFAM) durante la campaña de muestreo de 2007.

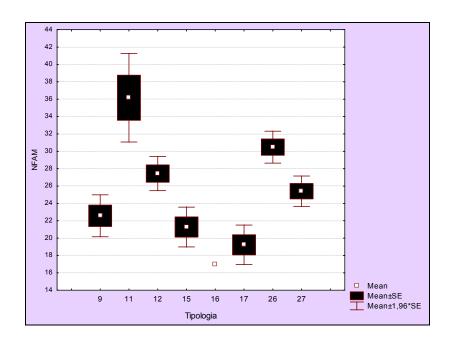
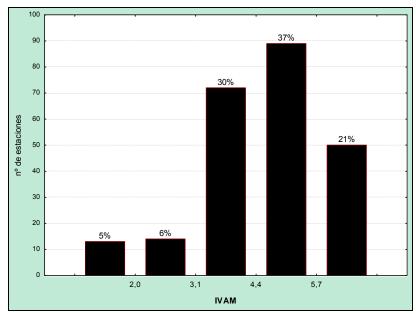


Figura 42. Distribución del número de familias (NFAM) por tipos de ríos.


TABLA 21

Valos medio del número de familias (NFAM), desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TPPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	22.58	40	7.80	11	39
11	Ríos de montaña mediterránea silícea	36.17	6	6.37	24	41
12	Ríos de montaña mediterránea calcárea	27.43	76	8.73	9	49
15	Ejes mediterráneo-continentales poco mineralizados	21.55	33	6.67	7	32
16	Ejes mediterráneo-continentales mineralizados	17.00	1	0.00	17	17
17	Grandes ejes en ambiente mediterráneo	19.50	14	4.15	13	26
26	Ríos de montaña húmeda calcárea	30.48	75	8.12	8	53
27	Ríos de Alta Montaña	25.41	27	4.63	18	41

3.3.2. Macrófitos: IVAM (Índice de Vegetación Acuática Macroscópica)

El índice IVAM, aplicado en un total de 238 estaciones, osciló entre los 0 puntos, obtenidos en la localidad 0089 (Gállego en Zaragoza) hasta los 7,33 de la estación 0705 (Garona en el Valle de Arán). Un 58% de las muestras presentaron valores correspondientes a las clases buena y muy buena definidos para el IVAM en Castilla-La Mancha (por encima de 4,4. Ver Moreno *et al.* 2006). Un 42% de las estaciones no alcanzaron la calidad buena (**Figura 43**).

Figura 43. Distribución del índice IVAM para el conjunto de las estaciones (N=238). Los rangos utilizados se correspondieran con las cinco clases de calidad que el índice posee para el conjunto de Castilla-La Mancha. (<2: mala; 2.1 - 3,1: *deficiente*; 3,2 - 4,4: moderada; 4,5 - 5,7: buena; > 5,7: muy buena)

Las diferencias entre tipos de ríos también fueron significativas (**Tabla 16**), con los tipos 11, 27 y 26 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 22**; **Figura 44**). Las estaciónes del tipo 17 presentaron los valores más bajos del índice.

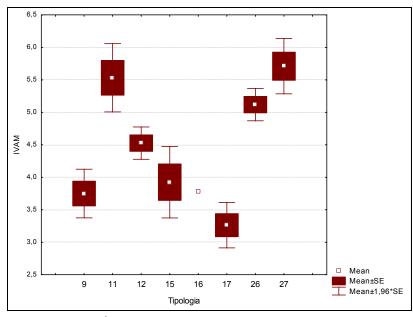
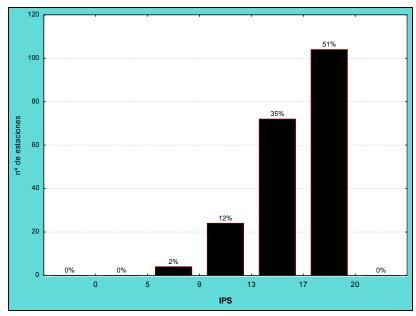


Figura 44. Distribución del Índice de Vegetación Acuática Macrofítica (IVAM) por tipos de ríos.


TABLA 22

Valos medio del índice IVAM, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	3.75	32	1.08	2.00	5.88
11	Ríos de montaña mediterránea silícea	5.53	5	0.60	4.67	6.29
12	Ríos de montaña mediterránea calcárea	4.53	69	1.05	2.00	7.04
15	Ejes mediterráneo-continentales poco mineralizados	3.98	25	1.38	0.00	5.82
16	Ejes mediterráneo-continentales mineralizados	3.78	1	0.00	3.78	3.78
17	Grandes ejes en ambiente mediterráneo	3.31	13	0.61	2.00	4.00
26	Ríos de montaña húmeda calcárea	5.12	69	1.05	2.00	7.05
27	Ríos de Alta Montaña	5.71	26	1.11	2.00	7.33

3.3.2. Fitobentos (diatomeas): IPS (Índice de Poluosensibilidad Espacífica)

El índice IPS, aplicado en un total de 206 estaciones, osciló entre los 6.5 puntos, obtenidos en la localidad 0095 (Vero en Barbastro) hasta el máximo de 20 puntos en la estación 1065 (Urrobi en el puente de la carretera a Garralda). El 86% de las muestras presentaron valores correspondientes a las clases buena y muy buena definidos para el IPS (por encima de 13. CEMAGREF 1982). Un 14% de las estaciones no alcanzaron la calidad buena (**Figura 37**).

Figura 45. Distribución del Índice de Poluosensibilidad Específica (IPS) para el conjunto de las estaciones de 2007 (N=206). Los rangos utilizados se correspondieran con las cinco clases de calidad del índice: (0-<5: mala; 5 - <9: deficiente; 9 - <13: moderada; 13 - <17: buena; 17-20: muy buena)

Las diferencias entre tipos de ríos fueron significativas (**Tabla 16**), con los tipos 27 y 26 (ríos de montaña) destacando por encima de los demás tipos (**Tabla 23**; **Figura 46**). Las estaciónes de los tipos 15 y 17 presentaron los valores más bajos del índice.

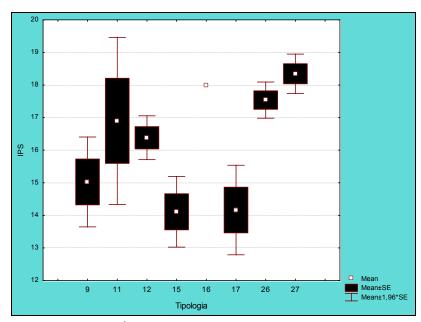


Figura 46. Distribución del Índice de Poluosensibilidad Específica (IPS) por tipos de ríos.

TABLA 23

Valos medio del índice IPS, desviación estándar (SD), valores máximo y mínimo, y número de casos (N) para los diferentes tipos de ríos muestreados en 2007

TIPOS	Denominación	Media	N	SD	Min	Max
9	Ríos mineralizados de baja montaña mediterránea	15.03	27	3.66	6.50	19.50
11	Ríos de montaña mediterránea silícea	16.90	5	2.92	13.00	19.40
12	Ríos de montaña mediterránea calcárea	16.38	55	2.55	6.90	19.60
15	Ejes mediterráneo-continentales poco mineralizados	14.30	24	2.76	9.80	18.70
16	Ejes mediterráneo-continentales mineralizados	18.00	1	0.00	18.00	18.00
17	Grandes ejes en ambiente mediterráneo	13.80	9	2.15	10.90	17.20
26	Ríos de montaña húmeda calcárea	17.54	59	2.18	12.30	20.00
27	Ríos de Alta Montaña	18.35	26	1.57	12.10	19.80

4. ESTADO ECOLÓGICO

Una vez analizados los resultados de los indicadores biológicos, hidromorfológicos y físicoquímicos para los diferentes puntos y masas de agua estudiadas, y en aplicación de la Directiva Marco del Agua (DMA, DOCE 2000), se ha procedido a valorar el estado ecológico de las masas de agua muestreadas en el año 2007.

A este respecto, en un primer apartado se incluye un avance del estado ecológico sobre la base de los indicadores hidromorfológicos y físico-químicos de las masas de agua estudiadas, teniendo en cuenta los índices QBR e IHF y los resultados físico-químicos de los análisis de agua en el año 2007.

En un segundo apartado se han utilizado las métricas basadas en macroinvertebrados, macrófitos y diatomeas. En un tercer apartado, y como conclusión, se propone un método para evaluar el estado ecológico final de las masas de agua (ríos), presentando los resultados para los diferentes tramos fluviales.

También se ha incluido un análisis de los resultados por Comunidades Autónomas (**Anexo 4**) y un análisis por subcuencas (**Anexo 5**). Asimismo, se incluye un anexo específico dedicado a las estaciones muestreadas que pertenecen a la *Red de Referencia* (**Anexo 6**).

4.1. Indicadores de calidad hidromorfológicos

Según la DMA, aquellos parámetros o indicadores hidromorfológicos que afectan a los indicadores biológicos son:

Régimen hidrológico:

Caudales e hidrodinámica del flujo de las aguas Conexión con masas de agua subterránea

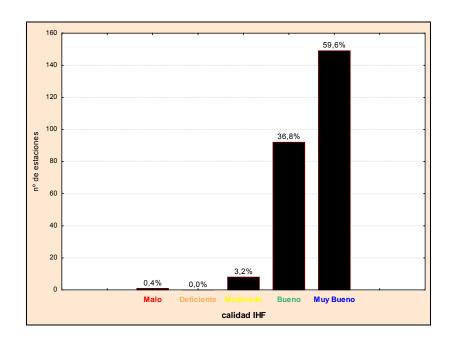
Continuidad del río

Condiciones morfológicas

Variación de la profundidad y anchura del río Estructura y sustrato del lecho del río Estructura de la zona ribereña

La mayoría de estos aspectos de la hidromorfología fluvial, junto con otros relativos a la composición y estructura de la ribera o la diversidad de hábitats son evaluados mediante los índices IHF y QBR, con lo que su utilización se ha considerado adecuada para la estima del estado ecológico de las masas fluviales. Debemos señalar, no obstante, algunas de las limitaciones de estos índices, destacando la variabilidad estacional del IHF, ligada al régimen hidrológico (Pardo et al. 2004) y las restricciones de aplicación del QBR en cuencas de regiones semiáridas y áridas (Suárez et al. 2004).

En los apartados siguientes se expone la metodología utilizada en el establecimiento de rangos de calidad para la evaluación del estado ecológico mediante estos dos indicadores.


4.1.1. Índice de hábitat fluvial (IHF)

Los valores de referencia (mediana de la distribución de valores en estaciones de referencia) y los límites entre el estado ecológico *bueno* y *muy bueno* (el percentil *p25* de la misma distribución), base para el establecimiento de los rangos de calidad o estado ecológico, fueron calculados por Pardo *et al.* (2004) para 5 tipos diferentes de ríos Mediterráneos en el proyecto Guadalmed.

105

Como aproximación a la estima del estado ecológico mediante el uso del IHF, se ha utilizado como punto de corte entre estado *bueno* y *moderado*, el resultante de dividir la media de los *p25* propuestos (69.8; 59; 66; 61 y 62, media igual a 63.5), entre 4 y restar el resultado a la misma media. Se obtiene así un valor de 47,7. Redondeando este valor al entero más próximo, se sitúa entonces el límite del *buen estado* hidromorfológico para el IHF en 48 puntos. El límite entre las clases *muy bueno* y *bueno* sería pues, el entero más próximo al p25 (63,5), esto es, 64 puntos. Se trata de la misma metodología de establecimiento de rangos que se usará para las métricas o indicadores biológicos, basada en el *Documento Guía número 13* de la Comisión Europea sobre la clasificación del estado ecológico (European Comisión, 2003).

En general, sólo en un 3.4% de los casos, los valores de este índice fueron inferiores a 48 (**Figura 47**). Así, en la gran mayoría de muestras, –más del 95%- las estaciones alcanzarían un buen o *muy buen estado* hidromorfológico según este índice.

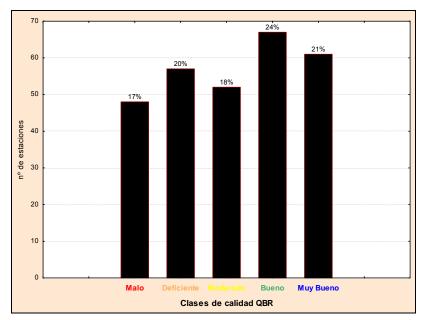


Figura 47. Distribución de frecuencias de Isas clases de calidad del IHF (índice de hábitat fluvial) para la campaña de 2007.

4.1.2. Índice de calidad del bosque de ribera

A partir de los datos del índice QBR obtenidos en cada punto de muestreo, e interpretados sobre la base de las clases de calidad originalmente propuestas en Munné et al. 1998 (**Figura 48**), se pueden realizar los siguientes comentarios.

- Del total de muestras tomadas en el año 2007, un 21% de los datos presentan un valor comprendido entre 95 y 100, por tanto, la calidad de la vegetación de ribera es Muy Buena, por ejemplo la estación 0114 del río Segre en Puente de Gualter.
- Aproximadamente un 24 % de las estaciones de muestreo presentan una vegetación de ribera de calidad Buena, con QBR comprendido entre 75 y 95, como por ejemplo la estación 1398 del río Guatizalema en Nocito.
- Con calidad moderada, esto es, QBR comprendido entre 55 y 70, aparecieron el 18%, como por ejemplo la localidad 1380 del río Bergantes en Mare Deu de la Balma.
- La vegetación de ribera de un 37% de las estaciones muestreadas en el año 2007, presentan una calidad deficiente o Mala según el QBR (de 0 a 50), por ejemplo la estación 2073 del río Sosa aguas arriba de Monzón.

Figura 48. Clases de calidad según el QBR para el total de muestras de 2007. Ma=*malo*; D=*deficiente*;Mo=*moderado*; B=*bueno*; MB=*muy bueno*

4.1.3. Resumen de los indicadores hidromorfológicos

En el **Cuadro 9** se incluye la clasificación final de las condiciones hidromorfológicas obtenidas mediante los índices IHF y QBR en 2007.

CUADRO 9

ESTADO HIDROMORFOLÓGICO

MB=*muy bueno*; B=*bueno*; Mo=*moderado*; D=*deficiente*; Ma=*malo* E-IHF: estado según el índice IHF. E-QBR: estado según el índice QBR.

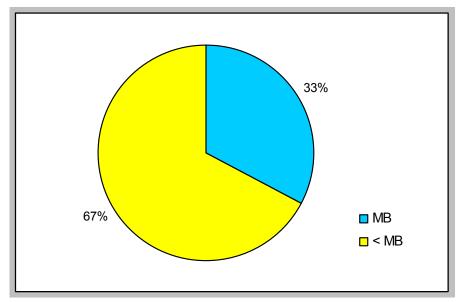
EE-HMF: estado hidromorfológico final (MB: muy bueno; <MB: Inferior a muy bueno). En blanco sin datos

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
0001	Ebro / Miranda de Ebro					
0002	Ebro / Castejón	20	Ma	67	MB	< MB
0003	Ega / Andosilla	35	D	66	MB	< MB
0004	Arga / Funes	50	D	41	Мо	< MB
0005	Aragón / Caparroso	40	D	62	В	< MB
0009	Jalón / Huérmeda	30	D			< MB
0013	Ésera / Graus	60	Мо	57	В	< MB
0014	Martín / Hijar	15	Ma	54	В	< MB
0015	Guadalope / Der. acequia vieja de Alcañiz					
0017	Cinca / Fraga	55	Мо			< MB
0018	Aragón / Jaca	75	В	65	MB	MB
0022	Valira / Seo de Urgel (ICA)	40	D	65	MB	< MB
0023	Segre / Seo de Urgel	80	В	74	MB	MB
0024	Segre / Lleida					
0025	Segre / Serós	30	D			< MB
0027	Ebro / Tortosa	0	Ma	48	В	< MB
0032	Guatizalema / Peralta de Alcofea					
0036	Iregua / Islallana	45	D	65	MB	< MB
0038	Najerilla / Torremontalbo	90	В	68	MB	MB
0042	Jiloca / Calamocha (El Poyo del Cid)	80	В	64	MB	MB
0050	Tirón / Cuzcurrita (ICA)	0	Ma	70	MB	< MB
0060	Arba de Luesia / Tauste	60	Мо	64	MB	< MB
0065	Irati / Liédena	80	В	64	MB	MB
0068	Arakil / Asiain	70	Мо	67	MB	< MB
0069	Arga / Etxauri	85	В	69	MB	MB
0071	Ega / Estella (aguas arriba)	80	В	63	В	< MB
0074	Zadorra / Arce - Miranda de Ebro	45	D			< MB
0087	Jalón / Grisén	30	D	71	MB	< MB
0089	Gállego / Zaragoza	40	D	45	Мо	< MB
0090	Queiles / Azud alimentación Emb. del Val	100	MB	64	MB	MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
0092	Nela / Trespaderne	60	Мо			< MB
0093	Oca / Oña	100	MB			< MB
0095	Vero / Barbastro	70	Мо	69	MB	< MB
0096	Segre / Balaguer	35	D	59	В	< MB
0097	Noguera Ribagorzana / Derivación canal de Piñana	100	MB	76	MB	MB
0101	Aragón / Yesa	65	Мо	58	В	< MB
0106	Guadalope / Santolea - Derivación Ac. Mayor	50	D	56	В	< MB
0114	Segre / Puente de Gualter	65	Мо	74	MB	< MB
0118	Martín / Oliete	10	Ma	75	MB	< MB
0120	Ebro / Mendavia (Der. Canal Lodosa)	45	D	64	MB	< MB
0123	Gállego / Anzánigo	100	MB	62	В	MB
0126	Jalón / Ateca (aguas arriba)	65	Мо			< MB
0146	Noguera Pallaresa / Pobla de Segur	100	MB	71	MB	MB
0159	Arga / Huarte	65	Мо	69	MB	< MB
0161	Ebro / Cereceda	100	MB			< MB
0162	Ebro / Pignatelli	55	Мо	71	MB	< MB
0163	Ebro / Ascó	60	Мо			< MB
0165	Bayas / Miranda de Ebro					
0166	Jerea / Palazuelos de Cuesta Urria	75	В	71	MB	MB
0176	Matarraña / Nonaspe	10	Ma			< MB
0179	Zadorra / Vitoria -Trespuentes	85	В	66	MB	MB
0180	Zadorra / Entre Mendivil y Durana	75	В	68	MB	MB
0184	Manubles / Ateca	25	Ma	62	В	< MB
0197	Leza / Ribafrecha (ICA)	25	Ma	71	MB	< MB
0203	Híjar / Espinilla	85	В	71	MB	MB
0205	Aragón / Cáseda	75	В	64	MB	MB
0206	Segre / Puente de Arfá (RVA)	95	MB	62	В	MB
0207	Segre / Vilanova de la Barca	85	В	70	MB	MB
0208	Ebro / Conchas de Haro	50	D			< MB
0211	Ebro / Presa Pina					
0214	Alhama / Alfaro	10	Ma	62	В	< MB
0216	Huerva / Zaragoza	55	Мо	15	Ma	< MB
0217	Arga / Ororbia	30	D	71	MB	< MB
0218	Isuela / Pompenillo	50	D	72	MB	< MB
0219	Segre / Torres de Segre	15	Ma	39	Мо	< MB
0221	Subialde o Zayas / Larrinoa (ICA)	100	MB	54	В	MB
0225	Clamor Amarga / Aguas abajo de Zaidín					
0226	Alcanadre / Ontiñena	85	В	71	MB	MB
0227	Flumen / Sariñena					
0228	Cinca / Monzón (aguas arriba)					
0241	Najerilla / Anguiano	100	MB	75	MB	MB
0242	Cidacos / Autol	95	MB	77	MB	MB
0243	Alhama / Venta de Baños de Fitero	25	Ma	58	В	< MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
0244	Jiloca / Luco de Jiloca	45	D	79	MB	< MB
0247	Gállego / Villanueva	75	В	59	В	< MB
0504	Ebro / Rincón de Soto	85	В	66	MB	MB
0505	Ebro / Alfaro	60	Мо	62	В	< MB
0506	Ebro / Tudela	30	D	56	В	< MB
0508	Ebro / Gallur (abto.	35	D	62	В	< MB
0511	Ebro / Benifallet	35	D			< MB
0512	Ebro / Xerta	40	D			< MB
0516	Oropesa / Pradoluengo	100	MB	66	MB	MB
0517	Oja / Ezcaray	60	Мо	60	В	< MB
0523	Najerilla / Nájera	0	Ma	63	В	< MB
0528	Jubera / Murillo de Río Leza	75	В			< MB
0529	Aragón / Castiello de Jaca	75	В	55	В	< MB
0530	Aragón / Milagro	45	D	62	В	< MB
0534	Alzania / Embalse de Urdalur	100	MB	59	В	MB
0537	Arba de Biel / Luna					
0538	Aguas Limpias / E. Sarra					
0539	Aurin / Isín					
0540	Fontobal / Ayerbe	80	В	69	MB	MB
0541	Huecha / Bulbuente					
0549	Cinca / Ballobar					
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	100	MB	75	MB	MB
0561	Gállego / Jabarrella	100	MB	72	MB	MB
0562	Cinca / Aguas abajo Monzón	90	В	57	В	< MB
0564	Zadorra / Salvatierra	35	D	64	MB	< MB
0565	Huerva / Fuente de la Junquera					
0569	Arakil / Alsasua	40	D	60	В	< MB
0570	Huerva / Muel	10	Ma	68	MB	< MB
0571	Ebro / Logroño - Varea	35	D	69	MB	< MB
0572	Ega / Arinzano	70	Мо	71	MB	< MB
0574	Najerilla / Nájera, Aguas abajo	85	В	70	MB	MB
0577	Arga / Puentelarreina	80	В	66	MB	MB
0582	Canaleta / Bot	15	Ma			< MB
0583	Grío / La Almunia de Doña Godina	90	В	88	MB	MB
0586	Jalón / Saviñán	60	Мо			< MB
0590	Ebro / Escatrón					
0592	Ebro / Pina de Ebro	35	D	55	В	< MB
0593	Jalón / Terrer	95	MB			< MB
0594	Najerilla / Baños de Río Tobia	65	Мо	57	В	< MB
0595	Ebro / San Vicente de la Sonsierra	30	D	70	MB	< MB
0605	Ebro / Amposta	0	Ma			< MB
0608	Noguera Pallaresa / Tremp	70	Мо	74	MB	< MB
0609	Salón / Villatomil (ICA) -	95	MB	55	В	MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
0612	Huerva / Villanueva de Huerva	80	В	64	MB	MB
0618	Gállego / Embalse del Gállego	25	Ma	58	В	< MB
0619	Negro / Viella	100	MB	70	MB	MB
0621	Segre / Derivación Canal Urgell	100	MB	82	MB	MB
0623	Algas / Mas de Bañetes	70	Мо	37	Мо	< MB
0625	Noguera Ribagorzana / Alfarrás	80	В	62	В	< MB
0627	Noguera Ribagorzana / Derivación Acequia Corbins	75	В	71	MB	MB
0628	Barranco Calvó					
0638	Son / Esterri de Aneu	60	Мо	58	В	< MB
0643	Padrobaso / Zaya	20	Ma	49	В	< MB
0644	Bayas / Aldaroa	90	В	68	MB	MB
0647	Arga / Peralta	30	D	67	MB	< MB
0649	Santa Engracia / Villarreal de Álava	80	В	58	В	< MB
0650	Aragón / Derivación Acequia Río Molinar	70	Мо	67	MB	< MB
0657	Ebro / Zaragoza-Almozara					
0701	Omecillo / Espejo	65	Mo	69	MB	< MB
0702	Esca / Sigües	100	MB	71	MB	MB
0703	Arba de Luesia / Malpica de Arba	80	В	54	В	< MB
0705	Garona / Valle de Arán	75	В	68	MB	MB
0706	Matarraña / Valderrobres	25	Ma	59	В	< MB
0802	Cinca / Puente de las Pilas	80	В	76	MB	MB
0804	Aragón Subordán / La Peñeta	60	Мо	71	MB	< MB
0806	Bergantes / Aguaviva, Canalillas (ICA	30	D	60	В	< MB
0808	Gállego / Santa Eulalia	100	MB	62	В	MB
0810	Segre / Camarasa	95	MB			< MB
0815	Urederra / Central Amescoa Baja (ICA)	100	MB	68	MB	MB
0816	Esca / Burgui	65	Mo	67	MB	< MB
1004	Nela / Puentedey	100	MB	75	MB	MB
1006	Trueba / El Vado	100	MB	68	MB	MB
1017	Omecillo / Bergüenda	25	Ma	53	В	< MB
1024	Zadorra / Salvatierra / Zuazo	75	В	70	MB	MB
1025	Zadorra / Durana	75	В	73	MB	MB
1028	Zadorra / La Puebla de Arganzón	15	Ma			< MB
1032	Ayuda / Carretera Miranda					
1034	Inglares / Peñacerrada	75	В	71	MB	MB
1036	Linares / Espronceda	20	Ma	61	В	< MB
1037	Linares / Torres del Río	45	D	66	MB	< MB
1038	Linares / Mendavia	0	Ma	64	MB	< MB
1039	Ega / Lagran	10	Ma	63	В	< MB
1045	Aragón / Candanchú - Puente de Santa Cristina			60	В	< MB
1047	Aragón / Puentelarreina de Jaca	80	В			< MB
1056	Veral / Biniés	95	MB	57	В	MB
1062	Irati / Oroz-Betelu	100	MB	56	В	MB


Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
1064	Irati / Lumbier	65	Мо	61	В	< MB
1065	Urrobi / Puente carretera Garralda	90	В	68	MB	MB
1070	Salazar / Aspurz	95	MB	73	MB	MB
1072	Arga / Quinto Real	100	MB	73	MB	MB
1083	Arba de Luesia / Luesia					
1087	Gállego / Formigal			59	В	< MB
1088	Gállego / Biescas	5	Ma	58	В	< MB
1089	Gállego / Sabiñánigo	50	D	74	MB	< MB
1090	Gállego / Hostal de Ipiés	100	MB	76	MB	MB
1092	Gállego / Murillo de Gállego	85	В	72	MB	MB
1096	Segre / Llivia	80	В	80	MB	MB
1101	Segre / Puente de Alentorn	95	MB	70	MB	MB
1105	Noguera Pallaresa / Isil	65	Мо	79	MB	< MB
1106	Noguera Pallaresa / Llavorsí	100	MB	76	MB	MB
1108	Noguera Pallaresa / Guerri de la Sal	10	Ma			< MB
1110	Flamisell / Pobleta de Bellvehi	100	MB	58	В	MB
1113	Noguera Ribagorzana / Pont De Suert E.A.	75	В	61	В	< MB
1114	Noguera Ribagorzana / Puente de Montañana	45	D	70	MB	< MB
1119	Corp / Vilanova de la Barca	80	В	52	В	< MB
1120	Cinca / Salinas	45	D	59	В	< MB
1121	Cinca / Laspuña	80	В	61	В	< MB
1122	Cinca / Ainsa	55	Мо	57	В	< MB
1123	Cinca / El Grado	50	D	50	В	< MB
1127	Cinqueta / Salinas	85	В	71	MB	MB
1128	Vellós / Aguas Abajo del Nacimiento					
1130	Ara / Torla E.A. 196	100	MB	67	MB	MB
1132	Ara / Ainsa	100	MB	64	MB	MB
1133	Ésera / Castejón de Sos	40	D	57	В	< MB
1134	Ésera / Carretera Ainsa - Campo					
1135	Ésera / Perarrua	60	Мо	55	В	< MB
1137	Isábena / Laspaúles	95	MB	76	MB	MB
1139	Isábena / Capella E.A.	65	Мо	61	В	< MB
1140	Alcanadre / Laguarta - Carretera Boltaña	100	MB	56	В	MB
1141	Alcanadre / Puente a las Cellas					
1149	Ebro / Reinosa	10	Ma	70	MB	< MB
1150	Ebro / Aldea de Ebro	100	MB			< MB
1154	Ebro / Aguas arriba Haro	85	В			< MB
1156	Ebro / Puente de El Ciego	90	В			< MB
1157	Ebro / Mendavia	55	Мо	67	MB	< MB
1164	Ebro / Alagón	55	Мо	59	В	< MB
1167	Ebro / Mora de Ebro	35	D			< MB
1169	Oca / Villalmondar	90	В	79	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	100	MB	75	MB	MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
1174	Tirón / Belorado	90	В	70	MB	MB
1175	Tirón / Cerezo del Río Tirón	5	Ma	60	В	< MB
1177	Tirón / Haro	0	Ma	66	MB	< MB
1178	Najerilla / Villavelayo (aguas arriba)	100	MB	68	MB	MB
1183	Iregua / Pte. Villoslada de Cameros	100	MB			< MB
1184	Iregua / Puente De Almarza	100	MB			< MB
1191	Linares / San Pedro Manrique	45	D	62	В	< MB
1193	Alhama / Magada o Magaña?	90	В	91	MB	MB
1203	Jiloca / Morata de Jiloca	70	Мо	49	В	< MB
1207	Jalón / Santa María de Huerta	80	В	53	В	< MB
1208	Jalón / Ateca	80	В	66	MB	MB
1210	Jalón / Épila	65	Мо			< MB
1216	Piedra / Castejón de las Armas	70	Мо			< MB
1219	Huerva / Cerveruela	40	D	79	MB	< MB
1225	Aguas Vivas / Blesa					
1227	Aguas Vivas / Azaila					
1228	Martín / Martín del Río Martín	5	Ma	54	В	< MB
1234	Guadalope / Aliaga	65	Мо	74	MB	< MB
1235	Guadalope / Mas de las Matas	90	В	80	MB	MB
1238	Guadalope / Alcañiz (aguas abajo)	40	D	58	В	< MB
1239	Guadalope / Caspe E.A.	5	Ma	43	Мо	< MB
1240	Matarraña / Beceite, Parrizal	75	В	69	MB	MB
1251	Queiles / Los Fayos	85	В	79	MB	MB
1252	Queiles / Novallas	15	Ma	57	В	< MB
1253	Guadalope / Ladruñán	60	Мо	46	Мо	< MB
1255	Martín / Vivel del Río Martín	10	Ma	44	Мо	< MB
1260	Jalón / Bubierca	100	MB	76	MB	MB
1263	Piedra / Cimballa	60	Мо	60	В	< MB
1264	Mesa / Calmarza	100	MB	70	MB	MB
1270	Ésera / Plan de l'Hospital de Benasque			57	В	< MB
1277	Arba de Riguel / Sádaba					
1280	Arba de Biel / Erla	60	Мо	69	MB	< MB
1285	Guatizalema / Sietamo	95	MB	73	MB	MB
1294	Noguera Cardós / Lladorre	30	D	69	MB	< MB
1295	Ebro / El Burgo de Ebro	65	Мо	68	MB	< MB
1296	Ebro / Azud de Rueda	50	D	64	MB	< MB
1297	Ebro / Flix (aguas abajo de la presa)	20	Ma			< MB
1298	Garona / Arties	35	D	69	MB	< MB
1299	Garona / Bossots	70	Mo	71	MB	< MB
1304	Sio / Balaguer E.A. 182	40	D	57	В	< MB
1306	Ebro / Ircio	90	В			< MB
1307	Zidacos / Barasoain	35	D	66	MB	< MB
1308	Zidacos / Olite	20	Ma	64	MB	< MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
1309	Onsella / Sangüesa	65	Мо	71	MB	< MB
1311	Arga / Landaben -Pamplona	50	D	69	MB	< MB
1314	Salado / Mendigorria	75	В	66	MB	MB
1315	Ulzama / Olave	80	В	63	В	< MB
1317	Larraun / Urritza	35	D	57	В	< MB
1332	Oroncillo / Pancorvo	10	Ma	70	MB	< MB
1338	Oja / Casalarreina	70	Мо	66	MB	< MB
1341	Rudrón / Valdelateja	50	D	85	MB	< MB
1342	Oroncillo / Bugedo	20	Ma	66	MB	< MB
1347	Leza / Agoncillo	10	Ma	69	MB	< MB
1350	Huecha / Mallén					
1351	Val / Agreda	5	Ma	63	В	< MB
1354	Najima / Monreal de Ariza	15	Ma	55	В	< MB
1358	Jiloca / Calamocha	10	Ма	59	В	< MB
1365	Martín / Montalban	40	D	69	MB	< MB
1368	Escuriza / Ariño	15	Ma	51	В	< MB
1375	Pena / Aguas Abajo embalse Pena	55	Mo			< MB
1376	Guadalope / Palanca-Caspe					
1380	Bergantes / Mare Deu de la Balma	55	Мо	54	В	< MB
1382	Huerva / Aguas abajo de Villanueva	25	Ma	64	MB	< MB
1387	Urbión / Soto del Valle	80	В	67	MB	MB
1393	Erro / Sorogain	75	В	78	MB	MB
1396	Trema / Torme	65	Мо	68	MB	< MB
1398	Guatizalema / Nocito	80	В	63	В	< MB
1399	Guatizalema / Molinos de Sipán	100	MB	78	MB	MB
1400	Isuela / Cálcena	60	Мо			< MB
1403	Aranda / Aranda del Moncayo	75	В	88	MB	MB
1404	Aranda / Brea	45	D	71	MB	< MB
1411	Peregiles / Puente Antigua N-II	30	D	64	MB	< MB
1417	Barrosa / Parzán	85	В	66	MB	MB
1419	Vallferrera / Alins	100	MB	85	MB	MB
1421	Noguera de Tor / Llesp	100	MB	63	В	MB
1422	Salado / Estenoz	35	D	69	MB	< MB
1423	Ubagua / Muez	95	MB	71	MB	MB
1429	Cárdenas / San Millán de la Cogolla	30	D	52	В	< MB
1430	Cárdenas / Cárdenas	0	Ma	64	MB	< MB
1435	Areta / Rípodas	45	D	64	MB	< MB
1440	Trueba / Villacomparada	100	MB	78	MB	MB
1446	Irati / Cola Embalse de Irabia	100	MB	65	MB	MB
1448	Veral / Zuriza			53	В	< MB
1453	Segre / Organyá	85	В	76	MB	MB
1454	Ebro / Trespaderne	100	MB			< MB
1455	Cidacos / Yanguas E.A. 44.	100	MB	66	MB	MB

Cod. CEMAS	Estación	QBR	E-QBR	IHF	E-IHF	EE-HMF
1457	Iregua / Alberite	15	Ma	67	MB	< MB
1464	Algas / Maella - Batea	0	Ma			< MB
1465	Flumen / Sariñena					
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	35	D	58	В	< MB
1476	Ésera/Desembocadura	70	Мо	63	В	< MB
1492	Gállego / Central de Marracos					
1519	Carol / La Tour De Carol.	70	Мо	74	MB	< MB
1520	Arakil / Irañeta	80	В	59	В	< MB
2001	Urbión / Viniegra de Abajo	100	MB	70	MB	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	100	MB	78	MB	MB
2003	Rudrón / Tablada de Rudrón	100	MB	82	MB	MB
2005	Isuala / Alberuela de la Liena	95	MB	64	MB	MB
2006	Isuala / Las Bellostas	90	В	62	В	< MB
2007	Alcanadre / Casbas					
2008	Ribera Salada / Altés	85	В	60	В	< MB
2009	Matarraña / Beceite, aguas arriba	65	Мо	64	MB	< MB
2011	Omecillo / Corro	100	MB	74	MB	MB
2012	Estarrón / Aisa	95	MB	60	В	MB
2013	Osia / Jasa	75	В	55	В	< MB
2014	Guarga / Ordovés	65	Мо	62	В	< MB
2015	Susía / Castejón Sobrarbe	75	В	50	В	< MB
2017	Cámaras / Herrera de los Navarros					
2027	Arazas / Torla (pradera Ordesa)					
2029	Aragón Subordán / Hecho (Selva de Oza)	100	MB	59	В	MB
2055	Arba de Luesia / Ejea					
2060	Barranco de la Violada / Zuera (aguas arriba)	10	Ma	63	В	< MB
2073	Sosa / Aguas arriba de Monzón	20	Ma	74	MB	< MB
2079	Ciurana / Bellmunt del Priorat	25	Ma			< MB
2086	Homino / Terminón	60	Мо	50	В	< MB
2142	Aragón / Aguas arriba de Puente La Reina	100	MB			< MB
2174	Noguera Ribagorzana / Senet	85	В	75	MB	MB
2193	Noguera Pallaresa / Cola de E. De Camarasa	100	MB			< MB
2204	Regallo / Puigmoreno	40	D	47	Мо	< MB
3000	Queiles / Aguas arriba de Tudela	35	D	68	MB	< MB
3001	Elorz / Pamplona	40	D	53	В	< MB

En la **Figura 48b** se incluye la clasificación final de las condiciones hidromorfológicas (o índice HMF) con valores de muy buen estado, "MB", o no alcanzando el muy buen estado, "< MB". Esta clasificación de estaciones resulta de la combinación de los índices IHF y QBR.

Figura 48b. Estado hidromorfológico de las estaciones muesstreadas en 2007. Clasificación obtenida de la combinación de los índices IHF y QBR (Ver texto).

Como se observa, un tercio de las estaciones presentaron unas condiciones hidromorfológicas propias del muy buen estado ecológico o condiciones de referencia, mientras que los restantes dos tercios no alcanzaron estas condiciones.

4.2. Indicadores de calidad físico-químicos

En lo que respecta a los indicadores fisicoquímicos, aquellos de carácter general (no contaminantes específicos) que afectan a los indicadores biológicos se agrupan en:

- Condiciones térmicas
- Condiciones de oxigenación
- Salinidad
- Estado de acidificación
- Condiciones en cuanto a nutrientes

Según la DMA, se deben conocer las condiciones fisicoquímicas específicas del tipo para el *Muy buen estado ecológico*. Esto implica establecer los umbrales, propios para cada ecotipo, entre las clases de estado *muy bueno*, *bueno* y *moderado*. Por el momento y según la información que se ha manejado para la redacción del presente Informe, estos aspectos no se han desarrollado para la cuenca del Ebro. Por ello, los resultados del presente Informe deberán ser contrastados una vez se disponga de esta información.

Se expone a continuación la metodología aplicada en la estima de la calidad mediante cada uno de los indicadores físico-químicos contemplados.

a) Temperatura

Las actividades humanas pueden afectar al régimen térmico de los ecosistemas fluviales. Algunas de estas actividades incluyen: descargas de efluentes calientes procedentes de la industria o de plantas de energía térmicas o geotérmicas, descargas desde embalses, extracciones de caudal o eliminación de la sombra por impacto sobre la vegetación ribereña.

La Directiva 2006/44/CEE sobre calidad de las aguas para la vida de los peces, establece umbrales de temperaturas máximas para dos tipos de tramos de ríos diferenciados: por un lado aquellos cursos fluviales con predominio de los salmónidos, y por otro, aquellos con predominio de ciprínidos. El umbral de calidad de 28°C para aguas ciprinícolas se estableció en el presente estudio como límite del *buen estado*.

117

b) Oxígeno disuelto

La Directiva 2006/44/CEE sobre calidad de las aguas para la vida de los peces, establece umbrales de oxigenación mínima (mg/l O_2 disuelto) para dos tipos de tramos de ríos diferenciados: por un lado aquellos cursos fluviales con predominio de los salmónidos, y por otro, aquellos con predominio de ciprínidos. El umbral de calidad de > 5 mg/l de O_2 para aguas ciprinícolas se asignó a todos los puntos de muestreo (independientemente del tipo) del presente estudio, a instancias de la Confederación Hidrográfica del Ebro (CHE).

c) pH

En las estaciones muestreadas, como se comprobó en los resultados físico-químicos, el pH siempre se mantuvo en el rango 6-9, propuesto en la Directiva 2006/44/CEE sobre calidad de las aguas para la vida de los peces como intervalo de buena calidad. Por lo tanto, todas las estaciones alcanzaron un *Buen estado* en base a este parámetro.

d) Conductividad

La conductividad del agua nos da una estimación acerca de la concentración aproximada de las sales minerales presentes en el río. Como se ha señalado anteriormente en el capítulo de resultados físico-químicos, el hecho de que la conductividad eléctrica esté influenciada en gran manera por las características geológicas naturales, además de por la carga de contaminantes, hace de este parámetro un pobre indicador de contaminación a escala de cuenca, donde la variabilidad geológica se superpone sobre los posibles focos contaminantes difusos o puntuales. Además, ya han sido considerados indicadores de contaminación como nitritos o amonio.

e) Nutrientes

Los umbrales de calidad para el caso de los nutrientes fueron propuestos por la Confederación Hidrográfica del Ebro (comunicación personal). Estos se presentan en la siguiente tabla:

TABLA 24UMBRALES DE CALIDAD PARA EL *BUEN ESTADO* QUÍMICO

PO₄< 0,30 mg/l
NH₄ < 0,40 mg/l
NO ₃ < 20 mg/l
NO₂ < 0,15 mg/l

En consecuencia, teniendo en cuenta estos 7 criterios (temperatura, oxígeno, pH, nitratos, nitritos, amonio y fosfatos), en el **Cuadro 10** se resume el estado físico-químico sobre la base de los indicadores. El estado final (E-FQ) se definió como *Estado Físico-Químicomuy bueno o "propio de las condiciones de referencia"* cuando la estación alcanzaba el *buen estado* para 6 o 7 de los 7 parámetros. Asimismo, se asumieron las condiciones físico-químicas que "garantizan el funcionamiento del ecosistema" cuando las estaciones complían 5 de los 7 parámetros. Seguidamente se analiza el comportamiento de cada uno de los parámetros por separado.

CUADRO 10

ESTADO DE LAS MASAS

MEDIANTE INDICADORES FISICOQUÍMICOS

B = estado *bueno*, azul; NB = No alcanza el estado *bueno*, rojo.

EE-FQ: estado físico-químico final: *muy bueno* (MB, azul, 6 o 7 criterios); *permite el funcionamiento del ecosistema* (B, verde, 5 criterios); no *bueno* (NB, rojo, menos de 5 criterios)

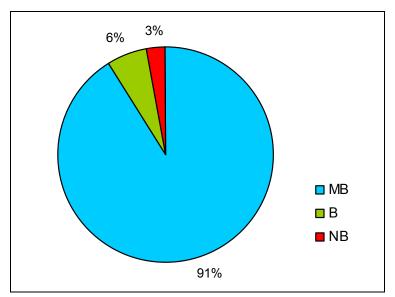
Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
0001	Ebro / Miranda de Ebro								
0002	Ebro / Castejón	В	В	В	В	В	В	В	MB
0003	Ega / Andosilla	В	В	В	В	В	В	NB	MB
0004	Arga / Funes	В	В	В	В	В	В	NB	MB
0005	Aragón / Caparroso	В	В	В	В	В	В	В	MB
0009	Jalón / Huérmeda	В	В	В	В	В	В	В	MB
0013	Ésera / Graus	В	В	В	В	В	В	В	MB
0014	Martín / Hijar	В	В	В	В	В	В	В	MB
0015	Guadalope / Der. Acequia vieja de Alcañiz								
0017	Cinca / Fraga	В	В	В	В	В	В	В	MB
0018	Aragón / Jaca	В	В	В	В	В	В	В	MB
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	В	В	В	В	В	В	NB	MB
0023	Segre / Seo de Urgel	В	В	В	В	В	В	В	MB
0024	Segre / Lleida								
0025	Segre / Serós	В	В	В	В	В	В	В	MB
0027	Ebro / Tortosa	В	В	В	В	В	В	В	MB
0032	Guatizalema / Peralta de Alcofea								
0036	Iregua / Islallana	В	В	В	В	В	В	В	MB
0038	Najerilla / Torremontalbo	В	В	В	В	В	В	В	MB
0042	Jiloca / Calamocha (El Poyo del Cid)	В	В	В	В	В	В	В	MB
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	В	В	В	В	В	В	В	MB
0060	Arba de Luesia / Tauste	В	В	В	NB	NB	В	В	В
0065	Irati / Liédena	В	В	В	В	В	В	В	MB
0068	Arakil / Asiain	В	В	В	В	В	В	В	MB
0069	Arga / Etxauri	В	В	В	NB	В	В	В	MB
0071	Ega / Estella (aguas arriba)	В	В	В	В	В	В	В	MB

119

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
0074	Zadorra / Arce - Miranda de Ebro	В	В	В	В	В	В	NB	MB
0087	Jalón / Grisén	В	В	В	NB	В	В	В	MB
0089	Gállego / Zaragoza	В	В	NB	NB	В	В	NB	NB
0090	Queiles / Azud alimentación Emb. del Val	В	В	В	NB	В	В	В	MB
0092	Nela / Trespaderne	В	В	В	В	В	В	NB	MB
0093	Oca / Oña								
0095	Vero / Barbastro	В	В	В	NB	В	NB	NB	NB
0096	Segre / Balaguer	В	В	В	В	В	В	В	MB
0097	Noguera Ribagorzana / Derivación canal de Piñana	В	В	В	В	В	В	В	MB
0101	Aragón / Yesa	В	В	В	В	В	В	В	MB
0106	Guadalope / Santolea - Derivación Ac. Mayor	В	В	В	В	В	В	В	MB
0114	Segre / Puente de Gualter	В	В	В	В	В	В	В	MB
0118	Martín / Oliete	В	В	В	В	В	В	В	MB
0120	Ebro / Mendavia (Der. Canal Lodosa)	В	В	В	В	В	В	NB	MB
0123	Gállego / Anzánigo	В	В	В	В	В	В	В	MB
0126	Jalón / Ateca (aguas arriba)	В	В	В	В	В	В	В	MB
0146	Noguera Pallaresa / Pobla de Segur	В	В	В	В	В	В	В	MB
0159	Arga / Huarte	В	В	В	В	В	В	В	MB
0161	Ebro / Cereceda								
0162	Ebro / Pignatelli	В	В	В	В	В	В	В	MB
0163	Ebro / Ascó	В	В	В	В	В	В	В	MB
0165	Bayas / Miranda de Ebro								
0166	Jerea / Palazuelos de Cuesta Urria	В	В	В	В	В	В	В	MB
0176	Matarraña / Nonaspe								
0179	Zadorra / Vitoria -Trespuentes	В	В	В	NB	NB	В	NB	NB
0180	Zadorra / Entre Mendivil y Durana	В	В	В	В	В	В	В	MB
0184	Manubles / Ateca	В	В	В	В	В	В	В	MB
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	В	В	В	В	В	В	В	MB
0203	Híjar / Espinilla	В	В	В	В	В	В	NB	MB
0205	Aragón / Cáseda	В	NB	В	В	В	В	В	MB
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)	В	В	В	В	В	В	В	MB
0207	Segre / Vilanova de la Barca	В	В	В	В	В	В	В	MB
0208	Ebro / Conchas de Haro	В	В	В	В	В	В	NB	MB
0211	Ebro / Presa Pina								
0214	Alhama / Alfaro	В	В	В	В	В	В	В	MB
0216	Huerva / Zaragoza	В	В	В	NB	В	В	NB	В
0217	Arga / Ororbia	В	В	В	NB	В	В	NB	В
0218	Isuela / Pompenillo	В	В	В	В	В	В	В	MB
0219	Segre / Torres de Segre	В	В	В	В	В	В	NB	MB
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	В	В	В	В	В	В	В	MB
0225	Clamor Amarga / Aguas abajo de Zaidín								
0226	Alcanadre / Ontiñena	В	В	В	В	В	В	В	MB

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
0227	Flumen / Sariñena								
0228	Cinca / Monzón (aguas arriba)								
0241	Najerilla / Anguiano	В	В	В	В	В	В	В	MB
0242	Cidacos / Autol	В	В	В	В	В	В	В	MB
0243	Alhama / Venta de Baños de Fitero	В	В	В	В	В	В	В	MB
0244	Jiloca / Luco de Jiloca	В	В	В	В	В	В	NB	MB
0247	Gállego / Villanueva	В	В	В	В	В	В	В	MB
0504	Ebro / Rincón de Soto	В	В	В	В	В	В	NB	MB
0505	Ebro / Alfaro	В	В	В	В	В	В	В	MB
0506	Ebro / Tudela	В	В	В	В	В	В	В	MB
0508	Ebro / Gallur (abto.	В	В	В	NB	В	В	В	MB
0511	Ebro / Benifallet	В	В	В	В	В	В	В	MB
0512	Ebro / Xerta	В	В	В	В	В	В	В	MB
0516	Oropesa / Pradoluengo	В	В	В	В	В	В	В	MB
0517	Oja / Ezcaray	В	В	В	В	В	В	NB	MB
0523	Najerilla / Nájera	В	В	В	В	В	В	В	MB
0528	Jubera / Murillo de Río Leza								
0529	Aragón / Castiello de Jaca	В	В	В	В	В	В	В	MB
0530	Aragón / Milagro	В	В	В	В	В	В	В	MB
0534	Alzania / Embalse de Urdalur	В	В	В	В	В	В	В	MB
0537	Arba de Biel / Luna								
0538	Aguas Limpias / E. Sarra								
0539	Aurin / Isín								
0540	Fontobal / Ayerbe	В	В	В	В	В	В	В	MB
0541	Huecha / Bulbuente								
0549	Cinca / Ballobar								
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	В	В	В	NB	В	В	NB	В
0561	Gállego / Jabarrella	В	В	В	В	В	В	В	MB
0562	Cinca / Aguas abajo Monzón (ICA)	В	В	В	В	В	В	В	MB
0564	Zadorra / Salvatierra	В	В	В	NB	В	В	NB	В
0565	Huerva / Fuente de la Junquera								
0569	Arakil / Alsasua	В	В	В	NB	В	В	NB	В
0570	Huerva / Muel	В	В	В	В	В	В	В	MB
0571	Ebro / Logroño - Varea	В	В	В	В	В	В	NB	MB
0572	Ega / Arinzano	В	В	В	В	В	В	В	MB
0574	Najerilla / Nájera, Aguas abajo	В	В	В	В	В	В	В	MB
0577	Arga / Puentelarreina	В	В	В	В	В	В	В	MB
0582	Canaleta / Bot								
0583	Grío / La Almunia de Doña Godina	В	В	В	В	В	В	В	MB
0586	Jalón / Saviñán	В	В	В	В	В	В	В	MB
0590	Ebro / Escatrón								
0592	Ebro / Pina de Ebro	В	В	В	В	NB	В	NB	В
0593	Jalón / Terrer	В	В	В	В	В	В	В	MB

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
0594	Najerilla / Baños de Río Tobia	В	В	В	В	В	В	В	MB
0595	Ebro / San Vicente de la Sonsierra	В	В	В	В	В	В	NB	MB
0605	Ebro / Amposta	В	В	В	В	В	NB	В	MB
0608	Noguera Pallaresa / Tremp	В	В	В	В	В	В	В	MB
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	В	В	В	В	В	В	NB	MB
0612	Huerva / Villanueva de Huerva	В	В	В	В	В	В	В	MB
0618	Gállego / Embalse del Gállego	В	В	В	В	В	В	В	MB
0619	Negro / Viella	В	В	В	В	В	В	В	MB
0621	Segre / Derivación Canal Urgell	В	В	В	В	В	В	В	MB
0623	Algas / Mas de Bañetes	В	В	В	В	В	В	В	MB
0625	Noguera Ribagorzana / Alfarrás	В	В	В	В	В	В	В	MB
0627	Noguera Ribagorzana / Derivación Acequia Corbins	В	В	В	В	В	В	В	MB
0628	Barranco Calvó								
0638	Son / Esterri de Aneu	В	В	В	В	В	В	В	MB
0643	Padrobaso / Zaya	В	В	В	В	В	В	В	MB
0644	Bayas / Aldaroa	В	В	В	В	В	В	В	MB
0647	Arga / Peralta	В	В	В	В	В	В	NB	MB
0649	Santa Engracia / Villarreal de Álava	В	В	В	В	В	В	В	MB
0650	Aragón / Derivación Acequia Río Molinar	В	В	В	В	В	В	В	MB
0657	Ebro / Zaragoza-Almozara								
0701	Omecillo / Espejo	В	В	В	В	В	В	В	MB
0702	Esca / Sigües	В	NB	В	В	В	В	В	MB
0703	Arba de Luesia / Malpica de Arba	В	В	В	В	В	В	В	MB
0705	Garona / Valle de Arán	В	В	В	В	В	В	В	MB
0706	Matarraña / Valderrobres	В	В	В	В	В	В	В	MB
0802	Cinca / Puente de las Pilas	В	В	В	В	В	В	В	MB
0804	Aragón Subordán / La Peñeta	В	В	В	В	В	В	В	MB
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas	В	В	В	В	В	В	В	MB
0808	Gállego / Santa Eulalia	В	В	В	NB	В	В	В	MB
0810	Segre / Camarasa	В	В	В	В	В	В	В	MB
	Urederra / Central Amescoa Baja (ICA)	В	В	В	В	В	В	В	MB
0816	Esca / Burgui	В	В	В	В	В	В	В	MB
1004	Nela / Puentedey	В	В	В	В	В	В	NB	MB
1006	Trueba / El Vado	В	В	В	В	В	В	В	MB
1017	Omecillo / Bergüenda	В	В	В	В	В	В	В	MB
1024	Zadorra / Salvatierra / Zuazo	В	В	В	NB	В	В	NB	В
1025	Zadorra / Durana	В	В	В	В	В	В	В	MB
1028	Zadorra / La Puebla de Arganzón	В	В	В	В	В	В	NB	MB
1032	Ayuda / Carretera Miranda								
1034	Inglares / Peñacerrada	В	В	В	В	В	В	В	MB
1036	Linares / Espronceda	В	В	В	NB	NB	В	В	В

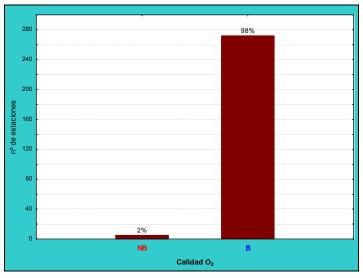

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
1037	Linares / Torres del Río	В	В	В	В	NB	В	NB	В
1038	Linares / Mendavia	В	В	В	В	NB	В	NB	В
1039	Ega / Lagran	В	В	В	В	В	В	В	MB
1045	Aragón / Candanchú - Puente de Santa Cristina	В	В	В	В	В	В	В	MB
1047	Aragón / Puentelarreina de Jaca	В	В	В	В	В	В	В	MB
1056	Veral / Biniés	В	В	В	В	В	В	В	MB
1062	Irati / Oroz-Betelu	В	В	В	В	В	В	В	MB
1064	Irati / Lumbier	В	В	В	В	В	В	В	MB
1065	Urrobi / Puente carretera Garralda	В	В	В	В	В	В	В	MB
1070	Salazar / Aspurz	В	В	В	В	В	В	В	MB
1072	Arga / Quinto Real	В	В	В	В	В	В	В	MB
1083	Arba de Luesia / Luesia								
1087	Gállego / Formigal	В	В	В	В	В	В	В	MB
1088	Gállego / Biescas	В	В	В	NB	В	В	В	MB
1089	Gállego / Sabiñánigo	В	В	В	В	В	В	В	MB
1090	Gállego / Hostal de Ipiés	В	В	В	В	В	В	В	MB
1092	Gállego / Murillo de Gállego	В	В	В	В	В	В	NB	MB
1096	Segre / Llivia	В	В	В	В	В	В	В	MB
1101	Segre / Puente de Alentorn	В	В	В	В	В	В	В	MB
1105	Noguera Pallaresa / Isil	В	В	В	В	В	В	В	MB
1106	Noguera Pallaresa / Llavorsí	В	В	В	В	В	В	В	MB
1108	Noguera Pallaresa / Guerri de la Sal								
1110	Flamisell / Pobleta de Bellvehi	В	В	В	В	В	В	В	MB
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	В	В	В	В	В	В	В	MB
1114	Noguera Ribagorzana / Puente de Montañana	В	В	В	В	В	В	В	MB
1119	Corp / Vilanova de la Barca	В	В	В	В	NB	В	В	MB
1120	Cinca / Salinas	В	В	В	В	В	В	В	MB
1121	Cinca / Laspuña	В	В	В	В	В	В	В	MB
1122	Cinca / Ainsa	В	В	В	В	В	В	В	MB
1123	Cinca / El Grado	В	В	В	В	В	В	В	MB
1127	Cinqueta / Salinas	В	В	В	В	В	В	В	MB
1128	Vellós / Aguas Abajo del Nacimiento								
1130	Ara / Torla E.A. 196	В	В	В	В	В	В	В	MB
1132	Ara / Ainsa	В	В	В	В	В	В	В	MB
1133	Ésera / Castejón de Sos	В	В	В	В	В	В	В	MB
1134	Ésera / Carretera Ainsa - Campo								
1135	Ésera / Perarrua	В	В	В	В	В	В	В	MB
1137	Isábena / Laspaúles	В	В	В	В	В	В	В	MB
1139	Isábena / Capella E.A.	В	В	В	В	В	В	В	MB
1140	Alcanadre / Laguarta - Carretera Boltaña	В	В	NB	NB	В	В	NB	NB
1141	Alcanadre / Puente a las Cellas								
1149	Ebro / Reinosa	В	В	В	В	В	В	NB	MB
1150	Ebro / Aldea de Ebro	В	В	В	В	В	В	NB	MB

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
1154	Ebro / Aguas arriba Haro								
1156	Ebro / Puente de El Ciego								
1157	Ebro / Mendavia	В	В	В	В	В	В	NB	MB
1164	Ebro / Alagón	В	В	В	NB	NB	В	В	В
1167	Ebro / Mora de Ebro	В	В	В	В	В	В	В	MB
1169	Oca / Villalmondar	В	В	В	В	В	В	В	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	В	В	В	В	В	В	NB	MB
1174	Tirón / Belorado	В	В	В	В	В	В	В	MB
1175	Tirón / Cerezo del Río Tirón	В	В	В	В	В	В	NB	MB
1177	Tirón / Haro	В	В	В	В	В	В	NB	MB
1178	Najerilla / Villavelayo (aguas arriba)	В	В	В	В	В	В	В	MB
1183	Iregua / Pte. Villoslada de Cameros	В	В	В	В	В	В	В	MB
1184	Iregua / Puente De Almarza	В	В	В	В	В	В	В	MB
1191	Linares / San Pedro Manrique	В	В	В	В	В	В	В	MB
1193	Alhama / Magada o Magaña?	В	В	В	В	В	В	В	MB
1203	Jiloca / Morata de Jiloca	В	В	В	В	В	В	В	MB
1207	Jalón / Santa María de Huerta	В	В	В	В	В	В	В	MB
1208	Jalón / Ateca	В	В	В	В	В	В	В	MB
1210	Jalón / Épila								
1216	Piedra / Castejón de las Armas	В	В	В	В	В	В	В	MB
1219	Huerva / Cerveruela	В	В	В	В	В	В	В	MB
1225	Aguas Vivas / Blesa								
1227	Aguas Vivas / Azaila								
1228	Martín / Martín del Río Martín	В	В	В	В	В	В	В	MB
1234	Guadalope / Aliaga	В	В	В	В	В	В	В	MB
1235	Guadalope / Mas de las Matas	В	В	В	В	В	В	В	MB
1238	Guadalope / Alcañiz (aguas abajo)	В	В	В	В	В	В	В	MB
1239	Guadalope / Caspe E.A.	В	В	В	В	В	В	В	MB
1240	Matarraña / Beceite, Parrizal	В	В	В	В	В	В	В	MB
1251	Queiles / Los Fayos	В	В	В	В	В	В	В	MB
1252	Queiles / Novallas	В	В	В	В	NB	В	NB	В
1253	Guadalope / Ladruñán	В	В	В	В	В	В	В	MB
1255	Martín / Vivel del Río Martín	В	В	В	В	В	В	В	MB
1260	Jalón / Bubierca	В	В	NB	В	В	В	В	MB
1263	Piedra / Cimballa	В	В	В	В	В	В	В	MB
1264	Mesa / Calmarza	В	В	В	В	В	В	В	MB
1270	Ésera / Plan de l'Hospital de Benasque	В	В	В	В	В	В	В	MB
1277	Arba de Riguel / Sádaba	В	В	В	В	В	В	В	MB
1280	Arba de Biel / Erla	В	В	В	В	В	В	В	MB
1285	Guatizalema / Sietamo	В	В	В	В	В	В	NB	MB
1294	Noguera Cardós / Lladorre	В	В	В	В	В	В	В	MB
1295	Ebro / El Burgo de Ebro	В	В	В	В	NB	В	NB	В
1296	Ebro / Azud de Rueda	В	В	В	В	NB	В	В	MB

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
1297	Ebro / Flix (aguas abajo de la presa)	В	В	В	В	В	В	В	MB
1298	Garona / Arties	В	В	В	В	В	В	В	MB
1299	Garona / Bossots	В	В	В	В	В	В	В	MB
1304	Sio / Balaguer E.A. 182	В	В	В	В	В	В	В	MB
1306	Ebro / Ircio	В	В	В	В	В	В	В	MB
1307	Zidacos / Barasoain	В	В	В	В	NB	В	В	MB
1308	Zidacos / Olite	В	В	В	В	NB	В	В	MB
1309	Onsella / Sangüesa	В	В	В	В	В	В	В	MB
1311	Arga / Landaben -Pamplona	В	В	В	NB	В	В	В	MB
1314	Salado / Mendigorria	В	В	В	В	В	В	В	MB
1315	Ulzama / Olave	В	В	В	В	В	В	NB	MB
1317	Larraun / Urritza	В	В	В	В	В	В	В	MB
1332	Oroncillo / Pancorvo	В	В	В	В	В	В	В	MB
1338	Oja / Casalarreina	В	В	В	В	В	В	В	MB
1341	Rudrón / Valdelateja	В	В	В	В	В	В	NB	MB
1342	Oroncillo / Bugedo	В	В	В	NB	В	В	В	MB
1347	Leza / Agoncillo	В	В	В	В	В	В	В	MB
1350	Huecha / Mallén								
1351	Val / Agreda	В	В	В	NB	NB	В	NB	NB
1354	Najima / Monreal de Ariza	В	В	В	В	В	В	В	MB
1358	Jiloca / Calamocha	В	В	В	В	В	В	В	MB
1365	Martín / Montalban	В	В	В	В	В	В	NB	MB
1368	Escuriza / Ariño	В	В	В	В	В	В	В	MB
1375	Pena / Aguas Abajo embalse Pena	В	В	В	В	В	В	В	MB
1376	Guadalope / Palanca-Caspe								
1380	Bergantes / Mare Deu de la Balma	В	В	В	В	В	В	В	MB
1382	Huerva / Aguas abajo de Villanueva	В	В	В	NB	NB	В	В	В
1387	Urbión / Soto del Valle	В	В	В	В	В	В	В	MB
1393	Erro / Sorogain	В	В	В	В	В	В	В	MB
1396	Trema / Torme	В	В	В	В	В	В	NB	МВ
1398	Guatizalema / Nocito	В	В	NB	NB	В	NB	NB	NB
1399	Guatizalema / Molinos de Sipán	В	В	В	В	В	В	NB	MB
1400	Isuela / Cálcena								
1403	Aranda / Aranda del Moncayo	В	В	В	В	В	В	В	MB
1404	Aranda / Brea	В	В	В	В	В	В	В	MB
1411	Peregiles / Puente Antigua N-II	В	В	В	В	В	В	В	MB
1417	Barrosa / Parzán	В	В	В	В	В	В	В	MB
1419	Vallferrera / Alins	В	В	В	В	В	В	В	MB
1421	Noguera de Tor / Llesp	В	В	В	В	В	В	В	MB
1422	Salado / Estenoz	В	В	В	В	В	В	В	MB
1423	Ubagua / Muez	В	В	В	В	В	В	В	MB
1429	Cárdenas / San Millán de la Cogolla	В	В	В	В	В	В	NB	MB
1430	Cárdenas / Cárdenas	В	В	В	В	В	В	В	MB

Cod. CEMAS	Estación	Т	рН	O ₂	NO ₂	NO ₃	NH ₄	PO ₄	E-FQ
1435	Areta / Rípodas	В	В	В	В	В	В	В	MB
1440	Trueba / Villacomparada	В	В	В	В	В	В	NB	MB
1446	Irati / Cola Embalse de Irabia	В	В	В	В	В	В	В	MB
1448	Veral / Zuriza	В	NB	В	В	В	В	В	MB
1453	Segre / Organyá	В	В	В	В	В	В	NB	MB
1454	Ebro / Trespaderne	В	В	В	В	В	В	NB	MB
1455	Cidacos / Yanguas E.A. 44.	В	В	В	В	В	В	В	MB
1457	Iregua / Alberite	В	В	В	В	В	В	В	MB
1464	Algas / Maella - Batea								
1465	Flumen / Sariñena								
4 474	Matarraña / Aguas arriba de la desembocadura del	_	_	_	_	_	_	_	MD
1471	Tastavins. Ésera/Desembocadura	В	В	В	В	В	В	В	MB
1476		В	В	В	NB	В	В	В	MB
1492	Gállego / Central de Marracos		Б	<u> </u>	<u> </u>	D	D	П	MD
1519 1520	Carol / La Tour De Carol. Arakil / Irañeta	В	В	В	В	В	В	В	MB
		В		В	NB	В		NB	В
2001	Urbión / Viniegra de Abajo	В	В	В	В	В	В	B B	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	В		В	В	В	В		MB
2003 2005	Rudrón / Tablada de Rudrón Isuala / Alberuela de la Liena	В	В	В	В	В	В	NB	MB
2005	Isuala / Alberdeia de la Lieria	В	В	В	В	В	В	NB	MB
		В	В	В	В	В	В	NB	MB
2007	Alcanadre / Casbas	В	В	В	В	В	В	В	MB
2008	Ribera Salada / Altés	B B	В	В	В	В	В	В	
2009	Matarraña / Beceite, aguas arriba								MB
2011 2012	Omecillo / Corro Estarrón / Aisa	B B	В	В	NB NB	B B	В	В	MB MB
2012	Osia / Jasa	В	В	В	В	В	В	В	MB
2013	Guarga / Ordovés	В	В	В	В	В	В	NB	MB
2015	Susía / Castejón Sobrarbe	В	В	В	В	В	В	В	MB
2017	Cámaras / Herrera de los Navarros	В	D	D	D	D	U	ט	IVID
2027	Arazas / Torla (pradera Ordesa)								
2029	Aragón Subordán / Hecho (Selva de Oza)	В	NB	В	В	В	В	В	MB
2055	Arba de Luesia / Ejea		,,,,						.110
2060	Barranco de la Violada / Zuera (aguas arriba)	В	В	В	NB	NB	В	NB	NB
2073	Sosa / Aguas arriba de Monzón	В	В	В	В	В	В	В	MB
2079	Ciurana / Bellmunt del Priorat								
2086	Homino / Terminón	В	В	В	В	В	В	В	MB
2142	Aragón / Aguas arriba de Puente La Reina	В	В	В	NB	В	В	В	MB
2174	Noguera Ribagorzana / Senet	В	В	В	В	В	В	В	MB
2193	Noguera Pallaresa / Cola de E. De Camarasa								
2204	Regallo / Puigmoreno	В	В	В	В	NB	В	В	МВ
3000	Queiles / Aguas arriba de Tudela	В	В	NB	В	В	NB	В	В
3001	Elorz / Pamplona	В	В	В	NB	В	NB	NB	NB

En la **Figura 48c** se incluye la clasificación final de las condiciones físico-químicas, con valores de: muy buen estado, "MB"; estado que "permite el funcionamiento del escosistema", B; y no alcanzando el buen estado, "NB". Esta clasificación de estaciones resulta de la combinación de las siete métricas de estado físico-químico analizadas.


Figura 48c. Estado físico-químico de las estaciones muestreadas en 2007. Clasificación obtenida de la combinación de las siete métricas físico-químicas (Ver texto).

Como se observa, más de un 90% de las estaciones presentaron unas condiciones físicoquímicas propias del muy buen estado ecológico en base a las definiciones adoptadas (cumplimiento de 6-7 de 7 criterios). Este resultado podría parecer excesivamente optimista respecto del estado físico-químico de las estaciones analizadas, pero hemos querido ser prudentes, en el sentido de no penalizar una estación sólo teniendo en cuenta un valor analítico puntual y concreto (y por tanto portador de una incertidumbre alta). Por ello, se decidió "penalizar" el estado físico-químico a partir de dos incumplimientos de los umbrales definidos para los parámetros analizados. La temperatura del agua no superó los límites definidos como umbral para el *buen estado* (28 ° C) en ninguna estación.

El oxígeno disuelto es un parámetro muy importante en el control de la calidad del agua. Las aguas superficiales limpias normalmente están saturadas de oxígeno disuelto, pero la demanda de oxígeno de los desechos orgánicos puede consumirlo rápidamente. Este parámetro fue inferior a los límites definidos como umbral para el *buen estado* (<5 mg/l O₂) en cinco estaciones:

	0089	Gállego / Zaragoza
\triangleright	1398	Guatizalema / Nocito
\triangleright	1260	Jalón / Bubierca
\triangleright	1140	Alcanadre / Laguarta - Carretera Boltaña
>	3000	Queiles / Aguas arriba de Tudela

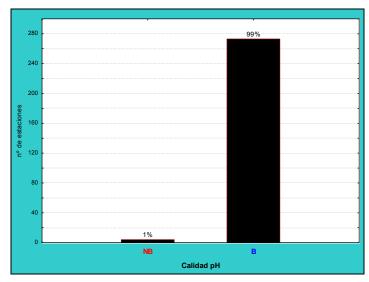
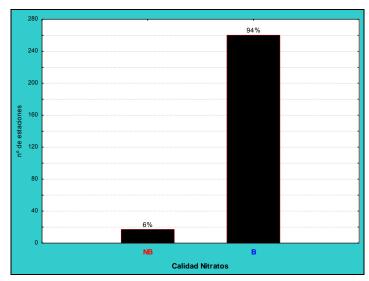
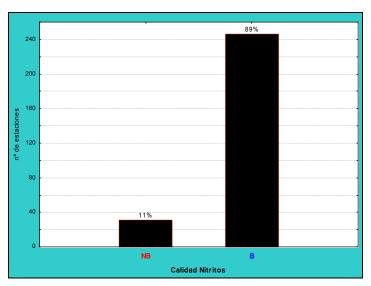

Por tanto, no se detectaron impactos significativos debidos a anoxia en la inmensa mayoría de estaciones estudiadas, con un 99% de las mismas alcanzando un *buen estado* según este parámetro (**Figura 49**).

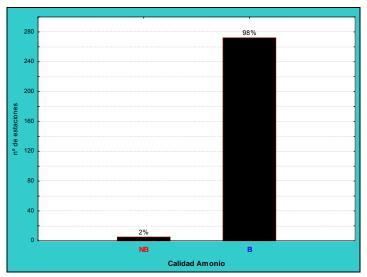
Figura 49. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según la concentración de oxígeno disuelto. El umbral considerado fue de 5 mg/l de O2.


El pH indicó un *buen estado* en el 99 % de las estaciones prospectadas en 2007. Sólo cuatro estaciones presentaron un pH superior al umbral de basicidad admitido (pH>9). Ninguna presentó un pH inferior a 6. (**Figura 50**). Es de destacar el pH de la estación 1448 (pH=9,28), ya que forma parte de la red de estaciones de referencia en la Cuenca del Ebro. Recomendamos por tanto revisar este dato y vigilar las condiciones de pH en esta estación.

- 0205 Aragón / Cáseda
- > 0702 Esca / Sigües
- > 1448 Veral / Zuriza
- > 2029 Aragón Subordán / Hecho (Selva de Oza)


Figura 50. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según el pH. Los umbrales considerados fueron <5 y >9 unidades de pH.

Los nitratos en las aguas, son el producto final de la oxidación del nitrógeno, que proviene en su mayoría de desechos fecales, de la ganadería y de la agricultura. El contenido en nitratos (mg/l NO₃) fue superior al límite definido como umbral para el *buen estado* (20 mg/l) en un 6% de estaciones. Por tanto, un 94% de estaciones alcanzó el *buen estado* relativo a este parámetro (**Figura 51**).


Figura 51. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según la concentración de nitratos. El umbral considerado fue de 20 mg/l de NO₃.

La presencia de nitritos es indicadora de contaminación fecal reciente. Ésta suele ser debida a vertidos industriales o de aguas residuales domésticas. Las aguas limpias y bien oxigenadas, no suelen tener concentraciones superiores a 0.1 mg/l. Éste parámetro fue superior al límite definido como umbral para el *buen estado* (0.15 mg/l) en un 11% de estaciones. (**Figura 52**).

Figura 52. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según la concentración de nitritos. El umbral considerado fue de 0.15 mg/l de NO₂.

Respecto al contenido en amonio (mg/l NH₄), este es un nutriente proveniente de vertidos de origen urbano o de la actividad agrícola, aunque también ligado a procesos naturales de de desnitrificación y descomposición de materia orgánica. Éste parámetro resultó superior al límite establecido como umbral para el *buen estado* (0.40 mg/l) en un 2% de estaciones. Por tanto, un 98% de estaciones alcanzó el *buen estado* relativo a este parámetro (**Figura 53**).

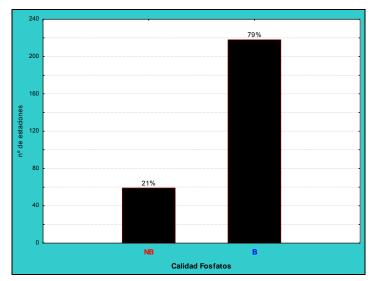
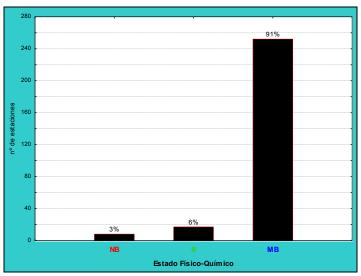
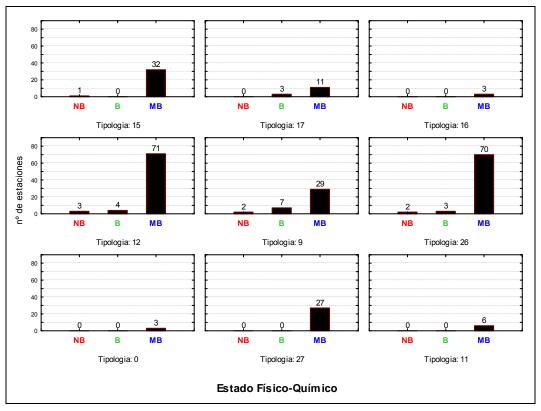


Figura 53. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según la concentración de amonio. El umbral considerado fue de 0.40 mg/l de NH4.

Las estaciones que superaron el umbral de concentración de amonio (0.4 mg/l) fueron:


- > 3000 Queiles / Aguas arriba de Tudela
- > 1398 Guatizalema / Nocito
- > 0605 Ebro / Amposta
- > 0095 Vero / Barbastro
- > 3001 Elorz / Pamplona

En cuanto al contenido en fosfatos (mg/l PO₄), este es el principal nutriente limitante en sistemas fluviales, y por ello el responsable de procesos de eutrofización en estos ambientes. Los principales aportes de fosfatos provienen de la actividad agrícola. También puede provenir de contaminación por detergentes. Éste parámetro resultó superior al límite establecido como umbral para el *buen estado* (0.40 mg/l) en un 21% de estaciones (**Figura 54**). Se trata por tanto, del parámetro más restrictivo en la determinación del estado o condiciones físico-químicas, seguido de las formas de nitrógeno, nitratos y nitritos principalmente.


Figura 54. Porcentaje de estaciones en *buen estado* (B) y por debajo del *buen estado* (NB) según la concentración de fosfatos. El umbral considerado fue de 0.4 mg/l de PO₄.

A nivel global, el porcentaje de estaciones según el número de criterios físico-químicos cumplidos, y considerando los umbrales de 6 criterios (referencia) y 5 criterios (permite el funcionamiento del ecosistema) se muestran en la **Figura 55**. Como se puede observar, sólo el 3% de las estaciones presentaron un estado químico tal que no permitía el buen funcionamiento del ecosistema, según condiciones definidas en el presente Estudio.

Figura 55. Porcentaje de estaciones en *muy buen estado físico-químico* (MB), en aquel estado que *permite el funcionamiento del ecosistema* (B) y de calidad inferior (NB) según el número de criterios físico-químicos de *buen estado* alcanzados.

En cuanto al estado fisicoquímico analizado por tipologías, se observa como las tipologías 9, 12, 15 y 26 presentan evaluaciones por debajo del *buen estado* físico-químico (**Figura 56**). Esto sería debido, muy probablemente, a las prácticas agrícolas frecuentes en las áreas de distribución de este tipo de ríos, que aportan a las aguas de escorrentía gran cantidad de nutrientes.

Figura 56. Porcentaje de estaciones en *muy buen estado físico-químico* (MB), en aquel estado que *permite el funcionamiento del ecosistema* (B) y de calidad inferior (NB) según el número de criterios físico-químicos de *buen estado* alcanzados, agrupadas por tipologías.

4.3. Indicadores de calidad biológicos: macroinvertebrados, macrófitos y diatomeas.

4.3.1. Macroinvertebrados. Condiciones de referencia.

El estado ecológico de una masa de agua, definido como "una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales", deberá expresarse mediante índices que representen la relación entre los valores de los parámetros biológicos observados en una masa determinada de aguas superficiales y los valores correspondientes a dichos parámetros en las condiciones de referencia (CR) aplicables a la masa.

Estos índices se expresarán como un valor numérico entre 0 y 1, donde un estado ecológico *muy bueno* estará representado por valores cercanos a 1 y un estado *malo*, por valores cercanos a 0. Es el llamado cociente o ratio de calidad ecológica (*ecological quality rat*io o EQR). Así, es del todo indispensable a efectos del cumplimiento de la DMA, el establecimiento de las condiciones de referencia para cada uno de los tipos de masas de agua superficiales comprendidas en el área de estudio, y para cada uno de los indicadores utilizados.

La Confederación Hidrográfica del Ebro ya realizó en el año 2006 un estudio específico donde se establecieron las condiciones de referencia en los tipos de masas fluviales de la cuenca (CHE, 2006, de título *Establecimiento de condiciones de referencia y redefinición de redes en la cuenca del Ebro, según la Directiva 2000/60/CE*) para diferentes métricas del indicador biológico de macroinvertebrados, entre ellas los índices IBMWP e IASPT y el número total de familias. Sin embargo, en este trabajo se constata la imposibilidad de establecer, mediante redes de estaciones de referencia propias de la cuenca, las condiciones de referencia para algunos de los tipos. En realidad sólo las CR (así como los límites entre clases de estado ecológico) para los tipos 11, 12, 26 y 27 (correspondientes a zonas altas y aún bien preservadas) pudieron ser establecidos con datos propios de la cuenca.

No obstante, haciendo uso de estaciones de otras cuencas (3 estaciones de la cuenca del Júcar) se proponen también las CR y los límites para el tipo 9. Asimismo, utilizando una estación de referencia y 4 estaciones que representan las mejores condiciones del tipo –aunque no validadas como de referencia- se proponen en dicho informe los valores de referencia para el tipo 15.

Cabe indicar que en el informe citado no fue posible encontrar estaciones de referencia o que representen condiciones biológicas buenas en los tipos 16 y 17 (grandes ejes).

La metodología seguida en este estudio se ha basado en considerar como valor de referencia, la mediana de los valores considerados en cada caso, y como límite entre las clases de estado ecológico *bueno* y *muy bueno*, el percentil 25. De esta forma, haciendo uso de las CR y límites de clases establecidos en el estudio citado (CHE 2006), en el presente Informe se calculó el estado ecológico basado en macroinvertebrados (expresado como EQR) para los puntos y masas de agua muestreadas durante el año 2006.

En el caso del tipo 15, se optó por definir el valor de referencia como la mediana de las cinco estaciones y como límite entre el estado *bueno* y *muy bueno* el percentil 25, como se había completado para los demás tipos.

Respecto a los tipos 16 y 17, aunque sólo de forma orientativa, se consideraron las clases de de estado ecológico propuestas de forma provisional en los protocolos de la CHE para el índice IBMWP para estos ecotipos (Alba-Tercedor et al. 2005).

En el **Cuadro 11** se muestran las condiciones de referencia utilizadas para los diferentes tipos de masas de agua y para las diferentes métricas o indicadores utilizados de macroinvertebrados (IBMWP, IASPT y NFAM –N° de Familias-).

Los límites de clases de calidad se expresan como: B-MB, bueno-muy bueno; Mo-B, moderado-bueno; D-Mo, deficiente-moderado; y Ma-D, malo-deficiente. Los valores de referencia se expresan como VR. Para su expresión en EQR o ratios de estado ecológico basta con dividir cada uno de los límites entre el valor de referencia VR.

CUADRO 11

CONDICIONES DE REFERENCIA PARA MÉTRICAS DE MACROINVERTEBRADOS

(Valores de Referencia –VR- y Límites de Clase para los diversos Ecotipos, expresados tanto en valores absolutos como en EQR's –ratios de estado ecológico-)

Ecotipos	Ríos	s minera	alizados	s de baj	a monta	ıña (9)			Ríos de	montañ	a silíce	a (11)					
Métricas	IBM	WP	IAS	SPT	NI	-AM		IBM	WP	IAS	PT	NF	AM				
VR	147	,40	5,	60	24	1,80		179	,00	5,	83	28,80					
B-MB	95,70	0,65	5,35	0,96	16,65	0,67		142,25	0,79	5,59	0,96	24,87	0,86				
Mo-B	71,78	0,49	4,01	0,72	12,49	0,50		106,69 0,60		4,19	0,72	18,65	0,65				
D-Mo	47,85	0,32	2,68	0,48	8,33	0,34		71,13	0,40	2,80	0,48	12,44	0,43				
Ma-D	23,93	0,16	1,34	0,24	4,16	0,17		35,56	0,20	1,40	0,24	6,22	0,22				
Ecotipos	Ríos d	le mont	aña me	diterrán	ea calcá	área (12)		Eje	s mediterr mir	aneo co neralizad			со				
Métricas	IBM	WP	IAS	SPT	NI	-AM		IBM	WP	IAS	PT	NF	AM				
VR	126	,00	4,	89	25	5,30		159,00		159,00		159,00		5,	30	30	,00
B-MB	105,75	0,84	4,79	0,98	19,35	0,76		146,00	0,92	5,19	0,98	29,00	0,97				
Mo-B	79,31	0,63	3,59	0,73	14,51	0,57		109,50	0,69	3,89	0,73	21,75	0,73				
D-Mo	52,88	0,42	2,40	0,49	9,68	0,38		73,00	0,46	2,60	0,49	14,50	0,48				
Ma-D	26,44	0,21	1,20	0,25	4,84	0,19		36,50	0,23	1,30	0,25	7,25	0,24				
Ecotipos	1		diterrár ninerali		tinental 16)	es		Grand	es ejes en	ambier	nte med	iterráne	o (17)				
Métricas	IBM	WP	IAS	SPT	NI	-AM		IBMWP IASPT		SPT	NF	AM					
VR	,	•	,	*		*		,	* *		* *		*				
B-MB	65,	00						65	,00								
Mo-B	56,	00						56	,00								
D-Mo	41,	00						41	,00								
Ma-D	20,	00						20	,00								
Ecotipos	Río	s de mo	ntaña h	númeda	calcáre	a (26)			Ríos de	e alta m	ontaña	(27)					
Métricas	IBM	WP	IAS	SPT	NI	-AM		IBMWP		IAS	SPT	NF	AM				
VR	147	,00	5,	71	29	9,00		142,00		5,	69	21	,80				
B-MB	116,00	0,79	5,07	0,89	25,27	0,87		119,50 0,84		5,40	0,95	17,50	0,80				
Mo-B	87,00	0,59	3,80	0,67	18,95	0,65		89,63	0,63	4,05	0,71	13,13	0,60				
D M-	58,00	0,39	2,54	0,44	12,64	0,44		50.75	0,42	2,70	0,47	8,75	0,40				
D-Mo	56,00	0,59	2,54	0,44	12,04	0,44		59,75	0,42	2,70	0,41	0,75	0,70				

En el **Cuadro 12**se muestran los valores de estado ecológico en cada una de las estaciones de muestreo para las dos campañas de muestreo y para cada indicador biológico utilizado del grupo de los macroinvertebrados.

CUADRO 12

ESTADO ECOLÓGICO

MEDIANTE INDICADORES DE MACROINVERTEBRADOS

MB (azul) = *muy bueno*; B (verde) = *bueno*; Mo (amarillo) = *moderado*; D (anaranjado) = *deficiente*; Ma (rojo) = *malo*

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0001	Ebro / Miranda de Ebro	15									
0002	Ebro / Castejón	17	96	4.57	21				MB		
0003	Ega / Andosilla	15	135	5.00	27	0.85	0.94	0.90	В	В	В
0004	Arga / Funes	15	74	4.63	16	0.47	0.87	0.53	Mo	В	Мо
0005	Aragón / Caparroso	15	87	3.63	24	0.55	0.68	0.80	Mo	Мо	В
0009	Jalón / Huérmeda	16									
0013	Ésera / Graus	12	101	5.32	19	0.80	1.09	0.75	В	MB	В
0014	Martín / Hijar	9	63	4.20	15	0.43	0.75	0.60	Mo	В	В
0015	Guadalope / Der. Acequia vieja de Alcañiz	9									
0017	Cinca / Fraga	15	106	4.61	23	0.67	0.87	0.77	Mo	В	В
0018	Aragón / Jaca	26	149	5.73	26	1.01	1.00	0.90	MB	MB	MB
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	26	113	5.38	21	0.77	0.94	0.72	В	MB	В
0023	Segre / Seo de Urgel	26	164	5.86	28	1.12	1.03	0.97	MB	MB	MB
0024	Segre / Lleida	15									
0025	Segre / Serós	15	45	3.75	12	0.28	0.71	0.40	D	Мо	D
0027	Ebro / Tortosa	17	56	3.73	15				Mo		
0032	Guatizalema / Peralta de Alcofea	9									
0036	Iregua / Islallana	26	133	5.12	26	0.90	0.90	0.90	MB	MB	MB
0038	Najerilla / Torremontalbo	12	116	4.30	27	0.92	0.88	1.07	MB	В	MB
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)	12	55	5.50	10	0.44	1.12	0.40	Мо	MB	Мо
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	12	73	4.29	17	0.58	0.88	0.67	Мо	В	В

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR-	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0060	Arba de Luesia / Tauste	9	53	4.08	13	0.36	0.73	0.52	Мо	В	В
0065	Irati / Liédena	15	140	5.19	27	0.88	0.98	0.90	В	В	В
0068	Arakil / Asiain	26	130	4.64	28	0.88	0.81	0.97	MB	В	MB
0069	Arga / Etxauri	15	117	4.33	27	0.74	0.82	0.90	В	В	В
0071	Ega / Estella (aguas arriba)	12	93	5.17	18	0.74	1.06	0.71	В	MB	В
0074	Zadorra / Arce - Miranda de Ebro	15	71	4.44	16	0.45	0.84	0.53	D	В	Мо
0087	Jalón / Grisén	16	69	4.06	17				MB		
0089	Gállego / Zaragoza	15	33	3.00	11	0.21	0.57	0.37	Ma	Мо	D
0090	Queiles / Azud alimentación Emb. del Val	12	120	5.00	24	0.95	1.02	0.95	MB	MB	MB
0092	Nela / Trespaderne	12									
0093	Oca / Oña	12									
0095	Vero / Barbastro	9	40	3.33	12	0.27	0.60	0.48	D	Мо	Mo
0096	Segre / Balaguer	15	158	4.94	32	0.99	0.93	1.07	MB	В	MB
0097	Noguera Ribagorzana / Derivación canal de Piñana	12	119	5.41	22	0.94	1.11	0.87	MB	MB	MB
0101	Aragón / Yesa	15	112	4.67	24	0.70	0.88	0.80	В	В	В
0106	Guadalope / Santolea - Derivación Ac. Mayor	9	153	5.28	29	1.04	0.94	1.17	MB	В	MB
0114	Segre / Puente de Gualter	26	144	4.80	30	0.98	0.84	1.03	MB	В	MB
0118	Martín / Oliete	9	90	4.09	22	0.61	0.73	0.89	В	В	MB
0120	Ebro / Mendavia (Der. Canal Lodosa)	15	107	5.35	20	0.67	1.01	0.67	Мо	MB	Mo
0123	Gállego / Anzánigo	12	187	5.34	35	1.48	1.09	1.38	MB	MB	MB
0126	Jalón / Ateca (aguas arriba)	9	56	4.31	13	0.38	0.77	0.52	Mo	В	В
0146	Noguera Pallaresa / Pobla de Segur	26	156	6.00	26	1.06	1.05	0.90	MB	MB	MB
0159	Arga / Huarte	26	122	5.08	24	0.83	0.89	0.83	MB	MB	В
0161	Ebro / Cereceda	12									
0162	Ebro / Pignatelli	0	121	5.26	23				MB		
0163	Ebro / Ascó	17	50	3.85	13				Mo		
0165	Bayas / Miranda de Ebro	12									
0166	Jerea / Palazuelos de Cuesta Urria	12	168	5.42	31	1.33	1.11	1.23	MB	MB	MB
											138

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0176	Matarraña / Nonaspe	9	159	4.97	32	1.08	0.89	1.29	MB	В	MB
0179	Zadorra / Vitoria -Trespuentes	12	63	3.71	17	0.50	0.76	0.67	Mo	В	В
0180	Zadorra / Entre Mendivil y Durana	26	98	4.26	23	0.67	0.75	0.79	В	В	В
0184	Manubles / Ateca	12	146	4.29	34	1.16	0.88	1.34	MB	В	MB
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	9	148	4.48	33	1.00	0.80	1.33	MB	В	MB
0203	Híjar / Espinilla	27	241	5.88	41	1.70	1.03	1.88	MB	MB	MB
0205	Aragón / Cáseda	15	149	5.14	29	0.94	0.97	0.97	MB	В	В
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)	26	68	4.25	16	0.46	0.74	0.55	Мо	В	Мо
0207	Segre / Vilanova de la Barca	15	59	3.93	15	0.37	0.74	0.50	D	В	Мо
0208	Ebro / Conchas de Haro	15									
0211	Ebro / Presa Pina	17									
0214	Alhama / Alfaro	9	113	4.71	24	0.77	0.84	0.97	MB	В	MB
0216	Huerva / Zaragoza	9	62	3.65	17	0.42	0.65	0.69	Мо	Мо	MB
0217	Arga / Ororbia	26	65	3.61	18	0.44	0.63	0.62	Мо	Мо	Мо
0218	Isuela / Pompenillo	9	33	3.00	11	0.22	0.54	0.44	D	Мо	Mo
0219	Segre / Torres de Segre	15	32	3.56	9	0.20	0.67	0.30	Ma	Мо	D
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	26	212	6.42	33	1.44	1.13	1.14	MB	MB	MB
0225	Clamor Amarga / Aguas abajo de Zaidín	9									
0226	Alcanadre / Ontiñena	9	108	5.40	20	0.73	0.96	0.81	MB	MB	MB
0227	Flumen / Sariñena	9									
0228	Cinca / Monzón (aguas arriba)	15									
0241	Najerilla / Anguiano	26	263	5.37	49	1.79	0.94	1.69	MB	MB	MB
0242	Cidacos / Autol	12	127	4.54	28	1.01	0.93	1.11	MB	В	MB
0243	Alhama / Venta de Baños de Fitero	12	133	4.29	31	1.06	0.88	1.23	MB	В	MB
0244	Jiloca / Luco de Jiloca	12	93	4.65	20	0.74	0.95	0.79	В	В	MB
0247	Gállego / Villanueva	15	76	3.80	20	0.48	0.72	0.67	Мо	Мо	Мо
0504	Ebro / Rincón de Soto	15	135	5.19	26	0.85	0.98	0.87	В	MB	В
0505	Ebro / Alfaro	17	126	4.85	26				MB		
											139

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0506	Ebro / Tudela	17	96	4.57	21				MB		
0508	Ebro / Gallur (abto.	17	80	4.44	18				MB		
0511	Ebro / Benifallet	17	76	4.22	18				MB		
0512	Ebro / Xerta	17									
0516	Oropesa / Pradoluengo	26	171	6.33	27	1.16	1.11	0.93	MB	MB	MB
0517	Oja / Ezcaray	26	161	5.03	32	1.10	0.88	1.10	MB	В	MB
0523	Najerilla / Nájera	12	129	4.30	30	1.02	0.88	1.19	MB	В	MB
0528	Jubera / Murillo de Río Leza	12									
0529	Aragón / Castiello de Jaca	27	127	5.77	22	0.89	1.01	1.01	MB	MB	MB
0530	Aragón / Milagro	15	89	4.45	20	0.56	0.84	0.67	Mo	В	Mo
0534	Alzania / Embalse de Urdalur	26	122	6.10	20	0.83	1.07	0.69	MB	MB	В
0537	Arba de Biel / Luna	9									
0538	Aguas Limpias / E. Sarra	27									
0539	Aurin / Isín	26									
0540	Fontobal / Ayerbe	9	134	4.79	28	0.91	0.85	1.13	MB	В	MB
0541	Huecha / Bulbuente	12									
0549	Cinca / Ballobar	15									
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	9	110	5.00	22	0.75	0.89	0.89	MB	В	MB
0561	Gállego / Jabarrella	26	213	5.33	40	1.45	0.93	1.38	MB	MB	MB
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	15	127	5.29	24	0.80	1.00	0.80	В	MB	В
0564	Zadorra / Salvatierra	12	141	4.41	32	1.12	0.90	1.26	MB	В	MB
0565	Huerva / Fuente de la Junquera	9									
0569	Arakil / Alsasua	26	123	4.24	29	0.84	0.74	1.00	MB	В	MB
0570	Huerva / Muel	9	54	3.86	14	0.37	0.69	0.56	Mo	Мо	В
0571	Ebro / Logroño - Varea	15	126	4.85	26	0.79	0.91	0.87	В	В	В
0572	Ega / Arinzano	12	101	5.32	19	0.80	1.09	0.75	В	MB	В
0574	Najerilla / Nájera, Aguas abajo	12	105	4.38	24	0.83	0.89	0.95	В	В	MB
0577	Arga / Puentelarreina	15	82	4.10	20	0.52	0.77	0.67	Мо	В	Мо
											140

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0582	Canaleta / Bot	9									
0583	Grío / La Almunia de Doña Godina	9	166	4.61	36	1.13	0.82	1.45	MB	В	MB
0586	Jalón / Saviñán	16									
0590	Ebro / Escatrón	17									
0592	Ebro / Pina de Ebro	17	110	4.23	26				MB		
0593	Jalón / Terrer	9	73	4.29	17	0.50	0.77	0.69	В	В	MB
0594	Najerilla / Baños de Río Tobia	26	156	4.88	32	1.06	0.85	1.10	MB	В	MB
0595	Ebro / San Vicente de la Sonsierra	15	76	5.43	14	0.48	1.02	0.47	Мо	MB	D
0605	Ebro / Amposta	0									
0608	Noguera Pallaresa / Tremp	26	209	5.23	40	1.42	0.92	1.38	MB	MB	MB
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	12	173	5.09	34	1.37	1.04	1.34	MB	MB	MB
0612	Huerva / Villanueva de Huerva	9	148	4.77	31	1.00	0.85	1.25	MB	В	MB
0618	Gállego / Embalse del Gállego	27	118	6.21	19	0.83	1.09	0.87	В	MB	MB
0619	Negro / Viella	27	131	5.70	23	0.92	1.00	1.06	MB	MB	MB
0621	Segre / Derivación Canal Urgell	26	218	4.84	45	1.48	0.85	1.55	MB	В	MB
0623	Algas / Mas de Bañetes	12	154	5.13	30	1.22	1.05	1.19	MB	MB	MB
0625	Noguera Ribagorzana / Alfarrás	15	133	4.93	27	0.84	0.93	0.90	В	В	В
0627	Noguera Ribagorzana / Derivación Acequia Corbins	15	75	3.75	20	0.47	0.71	0.67	Мо	Мо	Мо
0628	Barranco Calvó	12									
0638	Son / Esterri de Aneu	27	100	5.26	19	0.70	0.92	0.87	В	В	MB
0643	Padrobaso / Zaya	26	218	6.23	35	1.48	1.09	1.21	MB	MB	MB
0644	Bayas / Aldaroa	26	245	6.13	40	1.67	1.07	1.38	MB	MB	MB
0647	Arga / Peralta	15	88	4.40	20	0.55	0.83	0.67	Мо	В	Мо
0649	Santa Engracia / Villarreal de Álava	26	131	5.46	24	0.89	0.96	0.83	MB	MB	В
0650	Aragón / Derivación Acequia Río Molinar	15	155	5.00	31	0.97	0.94	1.03	MB	В	MB
0657	Ebro / Zaragoza-Almozara	17									
0701	Omecillo / Espejo	12	116	5.04	23	0.92	1.03	0.91	MB	MB	MB
0702	Esca / Sigües	26	176	5.68	31	1.20	0.99	1.07	MB	MB	MB
											141

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR-	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
0703	Arba de Luesia / Malpica de Arba	9	115	4.60	25	0.78	0.82	1.01	MB	В	MB
0705	Garona / Valle de Arán	27	128	5.57	23	0.90	0.98	1.06	MB	MB	MB
0706	Matarraña / Valderrobres	12	175	4.61	38	1.39	0.94	1.50	MB	В	MB
0802	Cinca / Puente de las Pilas	15	148	5.29	28	0.93	1.00	0.93	MB	MB	В
0804	Aragón Subordán / La Peñeta	27	163	5.82	28	1.15	1.02	1.28	MB	MB	MB
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	9	189	5.11	37	1.28	0.91	1.49	MB	В	MB
8080	Gállego / Santa Eulalia	15	174	5.80	30	1.09	1.09	1.00	MB	MB	MB
0810	Segre / Camarasa	26	148	4.93	30	1.01	0.86	1.03	MB	В	MB
0815	Urederra / Central Amescoa Baja (ICA) - Venta de Baríndano (RVA)	26	242	5.76	42	1.65	1.01	1.45	MB	МВ	MB
0816	Esca / Burgui	26	156	6.00	26	1.06	1.05	0.90	MB	MB	MB
1004	Nela / Puentedey	26	317	5.98	53	2.16	1.05	1.83	MB	MB	MB
1006	Trueba / El Vado	26	236	5.62	42	1.61	0.98	1.45	MB	MB	MB
1017	Omecillo / Bergüenda	12	105	5.00	21	0.83	1.02	0.83	В	MB	MB
1024	Zadorra / Salvatierra / Zuazo	12	95	4.32	22	0.75	0.88	0.87	В	В	MB
1025	Zadorra / Durana	26	129	4.45	29	0.88	0.78	1.00	MB	В	MB
1028	Zadorra / La Puebla de Arganzón	15	58	3.87	15	0.36	0.73	0.50	D	Мо	Мо
1032	Ayuda / Carretera Miranda	12									
1034	Inglares / Peñacerrada	12	115	5.00	23	0.91	1.02	0.91	MB	MB	MB
1036	Linares / Espronceda	12	118	4.21	28	0.94	0.86	1.11	MB	В	MB
1037	Linares / Torres del Río	9	91	4.33	21	0.62	0.77	0.85	В	В	MB
1038	Linares / Mendavia	9	71	3.94	18	0.48	0.70	0.73	Mo	Мо	MB
1039	Ega / Lagran	12	111	4.44	25	0.88	0.91	0.99	MB	В	MB
1045	Aragón / Candanchú - Puente de Santa Cristina	27	130	5.20	25	0.92	0.91	1.15	MB	В	MB
1047	Aragón / Puentelarreina de Jaca	26	158	5.85	27	1.07	1.02	0.93	MB	MB	MB
1056	Veral / Biniés	26	175	5.65	31	1.19	0.99	1.07	MB	MB	MB
1062	Irati / Oroz-Betelu	26	180	5.63	32	1.22	0.99	1.10	MB	MB	MB
1064	Irati / Lumbier	12	161	5.37	30	1.28	1.10	1.19	MB	MB	MB

142

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR-	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
1065	Urrobi / Puente carretera Garralda	26	278	5.79	48	1.89	1.01	1.66	MB	MB	MB
1070	Salazar / Aspurz	26	177	5.71	31	1.20	1.00	1.07	MB	MB	MB
1072	Arga / Quinto Real	26	256	6.24	41	1.74	1.09	1.41	MB	MB	MB
1083	Arba de Luesia / Luesia	9									
1087	Gállego / Formigal	27	121	5.76	21	0.85	1.01	0.96	MB	MB	MB
1088	Gállego / Biescas	27	148	5.92	25	1.04	1.04	1.15	MB	MB	MB
1089	Gállego / Sabiñánigo	26	90	4.29	21	0.61	0.75	0.72	В	В	В
1090	Gállego / Hostal de Ipiés	26	206	5.28	39	1.40	0.93	1.34	MB	MB	MB
1092	Gállego / Murillo de Gállego	12	162	5.23	31	1.29	1.07	1.23	MB	MB	MB
1096	Segre / Llivia	26	153	5.28	29	1.04	0.92	1.00	MB	MB	MB
1101	Segre / Puente de Alentorn	26	177	5.06	35	1.20	0.89	1.21	MB	В	MB
1105	Noguera Pallaresa / Isil	27	146	6.08	24	1.03	1.07	1.10	MB	MB	MB
1106	Noguera Pallaresa / Llavorsí	26	201	7.44	27	1.37	1.30	0.93	MB	MB	MB
1108	Noguera Pallaresa / Guerri de la Sal	26									
1110	Flamisell / Pobleta de Bellvehi	26	197	5.79	34	1.34	1.01	1.17	MB	MB	MB
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	27	149	5.73	26	1.05	1.01	1.19	MB	MB	MB
1114	Noguera Ribagorzana / Puente de Montañana	12	191	5.46	35	1.52	1.12	1.38	MB	MB	MB
1119	Corp / Vilanova de la Barca	15	22	3.14	7	0.14	0.59	0.23	Ma	Мо	Ma
1120	Cinca / Salinas	27	151	5.81	26	1.06	1.02	1.19	MB	MB	MB
1121	Cinca / Laspuña	27	166	5.35	31	1.17	0.94	1.42	MB	В	MB
1122	Cinca / Ainsa	26	132	6.00	22	0.90	1.05	0.76	MB	MB	В
1123	Cinca / El Grado	26	118	5.36	22	0.80	0.94	0.76	MB	MB	В
1127	Cinqueta / Salinas	27	141	6.13	23	0.99	1.08	1.06	MB	MB	MB
1128	Vellós / Aguas Abajo del Nacimiento	27									
1130	Ara / Torla E.A. 196	27	159	6.36	25	1.12	1.12	1.15	MB	MB	MB
1132	Ara / Ainsa	26	155	5.74	27	1.05	1.01	0.93	MB	MB	MB
1133	Ésera / Castejón de Sos	27	140	5.38	26	0.99	0.95	1.19	MB	В	MB
1134	Ésera / Carretera Ainsa - Campo	26									

143

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
1135	Ésera / Perarrua	26	120	5.71	21	0.82	1.00	0.72	MB	MB	В
1137	Isábena / Laspaúles	26	125	5.95	21	0.85	1.04	0.72	MB	MB	В
1139	Isábena / Capella E.A.	12	136	5.91	23	1.08	1.21	0.91	MB	MB	MB
1140	Alcanadre / Laguarta - Carretera Boltaña	26	151	5.39	28	1.03	0.94	0.97	MB	MB	MB
1141	Alcanadre / Puente a las Cellas	12									
1149	Ebro / Reinosa	26	133	4.75	28	0.90	0.83	0.97	MB	В	MB
1150	Ebro / Aldea de Ebro	26	119	5.67	21	0.81	0.99	0.72	MB	MB	В
1154	Ebro / Aguas arriba Haro	15									
1156	Ebro / Puente de El Ciego	15									
1157	Ebro / Mendavia	15	97	5.39	18	0.61	1.02	0.60	Мо	MB	Мо
1164	Ebro / Alagón	17	105	4.38	24				MB		
1167	Ebro / Mora de Ebro	17	67	3.53	19				MB		
1169	Oca / Villalmondar	12	158	5.10	31	1.25	1.04	1.23	MB	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	26	177	6.10	29	1.20	1.07	1.00	MB	MB	MB
1174	Tirón / Belorado	26	183	5.08	36	1.24	0.89	1.24	MB	MB	MB
1175	Tirón / Cerezo del Río Tirón	12	156	4.88	32	1.24	1.00	1.26	MB	MB	MB
1177	Tirón / Haro	12	111	5.29	21	0.88	1.08	0.83	MB	MB	MB
1178	Najerilla / Villavelayo (aguas arriba)	11	202	5.61	36	1.13	0.96	1.25	MB	MB	MB
1183	Iregua / Pte. Villoslada de Cameros	11	235	5.73	41	1.31	0.98	1.42	MB	MB	MB
1184	Iregua / Puente De Almarza	26	169	5.83	29	1.15	1.02	1.00	MB	MB	MB
1191	Linares / San Pedro Manrique	26	194	4.85	40	1.32	0.85	1.38	MB	В	MB
1193	Alhama / Magada o Magaña?	12	224	5.21	43	1.78	1.07	1.70	MB	MB	MB
1203	Jiloca / Morata de Jiloca	12	63	7.00	9	0.50	1.43	0.36	Мо	MB	D
1207	Jalón / Santa María de Huerta	12	65	4.64	14	0.52	0.95	0.55	Мо	В	Mo
1208	Jalón / Ateca	9	60	4.00	15	0.41	0.71	0.60	Мо	Мо	В
1210	Jalón / Épila	16									
1216	Piedra / Castejón de las Armas	12									
1219	Huerva / Cerveruela	12	154	5.50	28	1.22	1.12	1.11	MB	MB	MB
											144

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
1225	Aguas Vivas / Blesa	9									
1227	Aguas Vivas / Azaila	9									
1228	Martín / Martín del Río Martín	12	155	4.70	33	1.23	0.96	1.30	MB	В	MB
1234	Guadalope / Aliaga	12	209	5.10	41	1.66	1.04	1.62	MB	MB	MB
1235	Guadalope / Mas de las Matas	9	196	5.03	39	1.33	0.90	1.57	MB	В	MB
1238	Guadalope / Alcañiz (aguas abajo)	9	68	4.00	17	0.46	0.71	0.69	Мо	Мо	MB
1239	Guadalope / Caspe E.A.	9	106	4.61	23	0.72	0.82	0.93	MB	В	MB
1240	Matarraña / Beceite, Parrizal	12	192	4.92	39	1.52	1.01	1.54	MB	MB	MB
1251	Queiles / Los Fayos	12	157	5.61	28	1.25	1.15	1.11	MB	MB	MB
1252	Queiles / Novallas	12	60	4.00	15	0.48	0.82	0.59	Mo	В	В
1253	Guadalope / Ladruñán	12	148	4.93	30	1.17	1.01	1.19	MB	MB	MB
1255	Martín / Vivel del Río Martín	12	128	4.57	28	1.02	0.93	1.11	MB	В	MB
1260	Jalón / Bubierca	12	87	4.83	18	0.69	0.99	0.71	В	MB	В
1263	Piedra / Cimballa	12	101	3.88	26	0.80	0.79	1.03	В	В	MB
1264	Mesa / Calmarza	12	189	5.11	37	1.50	1.04	1.46	MB	MB	MB
1270	Ésera / Plan de l'Hospital de Benasque	27	177	6.81	26	1.25	1.20	1.19	MB	MB	MB
1277	Arba de Riguel / Sádaba	9	139	4.34	32	0.94	0.78	1.29	MB	В	MB
1280	Arba de Biel / Erla	9	139	4.48	31	0.94	0.80	1.25	MB	В	MB
1285	Guatizalema / Sietamo	9	85	5.00	17	0.58	0.89	0.69	В	В	MB
1294	Noguera Cardós / Lladorre	27	153	5.88	26	1.08	1.03	1.19	MB	MB	MB
1295	Ebro / El Burgo de Ebro	17	70	4.67	15				MB		
1296	Ebro / Azud de Rueda	17	74	4.11	18				MB		
1297	Ebro / Flix (aguas abajo de la presa)	17	62	3.88	16				В		
1298	Garona / Arties	27	135	5.87	23	0.95	1.03	1.06	MB	MB	MB
1299	Garona / Bossots	27	99	5.50	18	0.70	0.97	0.83	В	MB	MB
1304	Sio / Balaguer E.A. 182	9	71	4.18	17	0.48	0.75	0.69	Mo	В	MB
1306	Ebro / Ircio	15	115	5.00	23	0.72	0.94	0.77	В	В	В
1307	Zidacos / Barasoain	12	185	4.74	39	1.47	0.97	1.54	MB	В	MB
											145

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
1308	Zidacos / Olite	9	74	4.35	17	0.50	0.78	0.69	В	В	MB
1309	Onsella / Sangüesa	12	122	5.30	23	0.97	1.08	0.91	MB	MB	MB
1311	Arga / Landaben -Pamplona	12	85	4.25	20	0.67	0.87	0.79	В	В	MB
1314	Salado / Mendigorria	9	128	4.92	26	0.87	0.88	1.05	MB	В	MB
1315	Ulzama / Olave	26	156	5.38	29	1.06	0.94	1.00	MB	MB	MB
1317	Larraun / Urritza	26	71	4.73	15	0.48	0.83	0.52	Мо	В	Мо
1332	Oroncillo / Pancorvo	12	111	4.63	24	0.88	0.95	0.95	MB	В	MB
1338	Oja / Casalarreina	12	167	4.77	35	1.33	0.98	1.38	MB	В	MB
1341	Rudrón / Valdelateja	12	265	5.41	49	2.10	1.11	1.94	MB	MB	MB
1342	Oroncillo / Bugedo	12	93	5.17	18	0.74	1.06	0.71	В	MB	В
1347	Leza / Agoncillo	9	99	4.30	23	0.67	0.77	0.93	MB	В	MB
1350	Huecha / Mallén	9									
1351	Val / Agreda	12	49	3.50	14	0.39	0.72	0.55	D	Мо	Мо
1354	Najima / Monreal de Ariza	12	129	4.30	30	1.02	0.88	1.19	MB	В	MB
1358	Jiloca / Calamocha	12	92	4.60	20	0.73	0.94	0.79	В	В	MB
1365	Martín / Montalban	12	163	4.53	36	1.29	0.93	1.42	MB	В	MB
1368	Escuriza / Ariño	9	101	4.21	24	0.69	0.75	0.97	MB	В	MB
1375	Pena / Aguas Abajo embalse Pena	12	119	5.17	23	0.94	1.06	0.91	MB	MB	MB
1376	Guadalope / Palanca-Caspe	9									
1380	Bergantes / Mare Deu de la Balma	12	183	4.69	39	1.45	0.96	1.54	MB	В	MB
1382	Huerva / Aguas abajo de Villanueva	9	80	3.64	22	0.54	0.65	0.89	В	Мо	MB
1387	Urbión / Soto del Valle	11	145	6.04	24	0.81	1.04	0.83	MB	MB	В
1393	Erro / Sorogain	26	241	6.18	39	1.64	1.08	1.34	MB	MB	MB
1396	Trema / Torme	26	200	5.71	35	1.36	1.00	1.21	MB	MB	MB
1398	Guatizalema / Nocito	26	155	5.00	31	1.05	0.88	1.07	MB	В	MB
1399	Guatizalema / Molinos de Sipán	12	160	5.33	30	1.27	1.09	1.19	MB	MB	MB
1400	Isuela / Cálcena	12									
1403	Aranda / Aranda del Moncayo	12	133	4.16	32	1.06	0.85	1.26	MB	В	MB
											146

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
1404	Aranda / Brea	12	112	3.61	31	0.89	0.74	1.23	MB	В	MB
1411	Peregiles / Puente Antigua N-II	12	68	3.78	18	0.54	0.77	0.71	Мо	В	В
1417	Barrosa / Parzán	27	156	6.00	26	1.10	1.05	1.19	MB	MB	MB
1419	Vallferrera / Alins	27	202	6.31	32	1.42	1.11	1.47	MB	MB	MB
1421	Noguera de Tor / Llesp	27	145	5.37	27	1.02	0.94	1.24	MB	В	MB
1422	Salado / Estenoz	26	23	2.88	8	0.16	0.50	0.28	Ma	Мо	D
1423	Ubagua / Muez	26	144	5.14	28	0.98	0.90	0.97	MB	MB	MB
1429	Cárdenas / San Millán de la Cogolla	26	223	5.72	39	1.52	1.00	1.34	MB	MB	MB
1430	Cárdenas / Cárdenas	12	126	4.50	28	1.00	0.92	1.11	MB	В	MB
1435	Areta / Rípodas	26	164	5.13	32	1.12	0.90	1.10	MB	MB	MB
1440	Trueba / Villacomparada	26	215	5.12	42	1.46	0.90	1.45	MB	MB	MB
1446	Irati / Cola Embalse de Irabia	26	236	6.38	37	1.61	1.12	1.28	MB	MB	MB
1448	Veral / Zuriza	27	149	5.32	28	1.05	0.94	1.28	MB	В	MB
1453	Segre / Organyá	26	132	5.50	24	0.90	0.96	0.83	MB	MB	В
1454	Ebro / Trespaderne	12	65	4.33	15	0.52	0.89	0.59	Mo	В	В
1455	Cidacos / Yanguas E.A. 44.	11	182	5.06	36	1.02	0.87	1.25	MB	В	MB
1457	Iregua / Alberite	12	105	5.25	20	0.83	1.07	0.79	В	MB	MB
1464	Algas / Maella - Batea	9	48	4.00	12	0.33	0.71	0.48	Mo	Мо	Mo
1465	Flumen / Sariñena	9									
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	12	203	4.72	43	1.61	0.97	1.70	MB	В	MB
1476	Ésera/Desembocadura	0	161	5.37	30				MB		
1492	Gállego / Central de Marracos	15									
1519	Carol / La Tour De Carol. Francia. Entrada A La Toma de abastecimiento de Pu	26	155	5.74	27	1.05	1.01	0.93	МВ	МВ	МВ
1520	Arakil / Irañeta	26	131	4.85	27	0.89	0.85	0.93	MB	В	MB
2001	Urbión / Viniegra de Abajo	11	223	5.44	41	1.25	0.93	1.42	MB	В	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	11	204	5.23	39	1.14	0.90	1.35	MB	В	MB
2003	Rudrón / Tablada de Rudrón	12	243	6.39	38	1.93	1.31	1.50	MB	MB	MB

147

CEMAS	TOPONIMIA	tipo	IBMWP	IASPT	NFAM	EQR- IBMWP	EQR- IASPT	EQR- NFAM	E_IBMWP	E_IASPT	E_NFAM
2005	Isuala / Alberuela de la Liena	12	147	5.65	26	1.17	1.16	1.03	MB	MB	MB
2006	Isuala / Las Bellostas	12	154	5.50	28	1.22	1.12	1.11	MB	MB	MB
2007	Alcanadre / Casbas	12									
2008	Ribera Salada / Altés	12	214	5.22	41	1.70	1.07	1.62	MB	MB	MB
2009	Matarraña / Beceite, aguas arriba	12	244	4.98	49	1.94	1.02	1.94	MB	MB	MB
2011	Omecillo / Corro	26	198	5.35	37	1.35	0.94	1.28	MB	MB	MB
2012	Estarrón / Aisa	26	191	5.97	32	1.30	1.05	1.10	MB	MB	MB
2013	Osia / Jasa	26	189	5.73	33	1.29	1.00	1.14	MB	MB	MB
2014	Guarga / Ordovés	26	155	5.54	28	1.05	0.97	0.97	MB	MB	MB
2015	Susía / Castejón Sobrarbe	26	150	5.56	27	1.02	0.97	0.93	MB	MB	MB
2017	Cámaras / Herrera de los Navarros	9									
2027	Arazas / Torla (pradera Ordesa)	27									
2029	Aragón Subordán / Hecho (Selva de Oza)	27	163	5.43	30	1.15	0.95	1.38	MB	MB	MB
2055	Arba de Luesia / Ejea	9									
2060	Barranco de la Violada / Zuera (aguas arriba)	9	87	4.35	20	0.59	0.78	0.81	В	В	MB
2073	Sosa / Aguas arriba de Monzón	9	159	4.54	35	1.08	0.81	1.41	MB	В	MB
2079	Ciurana / Bellmunt del Priorat	9									
2086	Homino / Terminón	12	133	4.93	27	1.06	1.01	1.07	MB	MB	MB
2142	Aragón / Aguas arriba de Puente La Reina	26	177	5.53	32	1.20	0.97	1.10	MB	MB	MB
2174	Noguera Ribagorzana / Senet	27	121	5.26	23	0.85	0.92	1.06	MB	В	MB
2193	Noguera Pallaresa / Cola de E. De Camarasa	26									
2204	Regallo / Puigmoreno	9	122	4.36	28	0.83	0.78	1.13	MB	В	MB
3000	Queiles / Aguas arriba de Tudela	9	51	3.40	15	0.35	0.61	0.60	Mo	Мо	В
3001	Elorz / Pamplona	12	58	3.87	15	0.46	0.79	0.59	Мо	В	В

Un número significativo de estaciones de muestreo prospectadas durante las campañas de 2007 presentan buena calidad, según los indicadores biológicos de macroinvertebrados utilizados y las condiciones de referencia establecidas. La clase *muy bueno* (MB) es la mayoritaria para las tres métricas, representando del 50 al 73 % de las estaciones según la métrica utilizada (**Figura 57**). Las siguientes clases en frecuencia son las de *bueno* (B) y *moderado* (Mo) aunque su frecuencia depende también de la métrica utilizada (**Figura 57**)

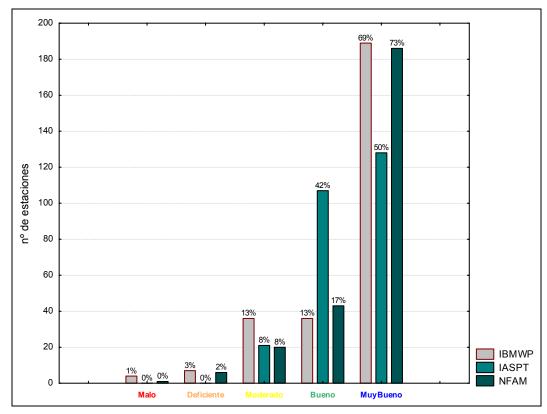
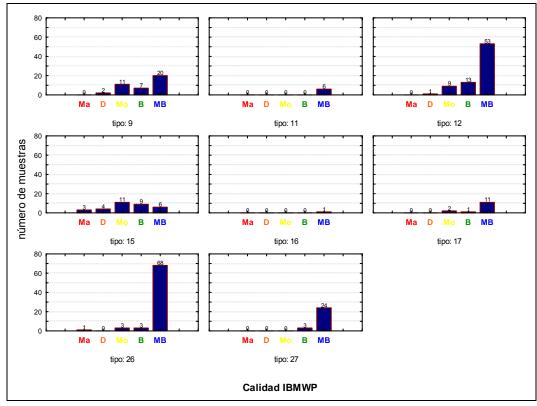
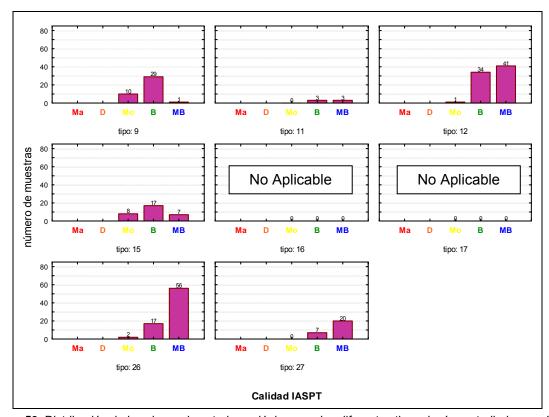



Figura 57. Clases de estado ecológico para las métricas de macroinvertebrados.


Se observa, para los datos de esta campaña, cómo las tres métricas se comportan de manera similar a la hora de estimar la proporción de estaciones que no alcanzarían el *buen estado*, con valores del 17, 8 y 10% para el IBMWP, IASPT y NFAM respectivamente. Los contrastes más acentuados entre las métricas aparecen en las clases *muy bueno* y *bueno*. Por un lado, el número de familias (NFAM) y el IBMWP se comportan de forma muy similar, situando ambos en la clase *muy bueno* alrededor del 70% de estaciones, frente al 13 y 17% en la clase *bueno*. En contraste, el IASPT sitúa muchas más estaciones en la clase *bueno* (42%) frente a la clase *muy bueno*, con solo el 50% de estaciones. Respecto a las clases de peor calidad, *deficiente* o *malo*,

señalar que el IASPT no sitúa en estas clases a ninguna estación, mientras que si lo hacen el IBMWP y el NFAM, aunque en porcentajes muy bajos (**Figura 57**).

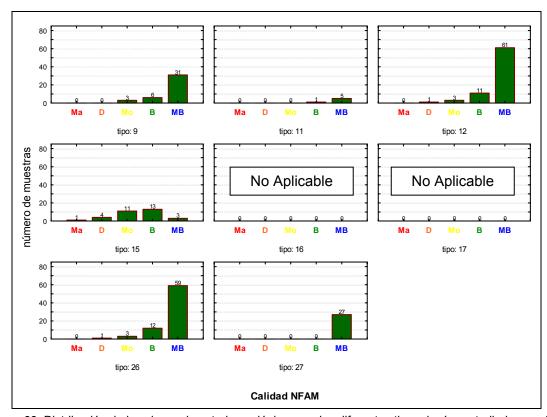

Si se observan estos resultados por tipologías, atendiendo a la variable IBMWP, los tipos 11,12, 26 y 27 presentan una gran mayoría de estaciones en la clase *muy bueno* (**Figura 58**). Estos tipos se caracterizan por situarse en regiones montañosas, a elevadas altitudes y por presentar cursos fluviales bien preservados. En contraste, las estaciones que presentan un estado ecológico inferior al *bueno* se encuentran mayoritariamente en masas de agua de los tipos 9 y 15. Tendencias parecidas ocurren para las otras dos variables, IASPT y NFAM (**Figuras 59** y **60**).

Figura 58. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el índice de macroinvertebrados IBMWP. Ma=*malo*; D=*deficiente*:Mo=*moderado*:B=*bueno*:MB=*muy bueno*.

Figura 59. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el indicador biológico IASPT. No fue posible evaluar los tipos 16 y 17 por carecer de condiciones de referencia.

Figura 60. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según el indicador biológico NFAM (número de familias). No fue posible evaluar los tipos 16 y 17 por carecer de condiciones de referencia.

4.3.2. Determinación del estado ecológico con macrófitos (IVAM)

Para la determinación o evaluación del estado ecológico mediante el uso de macrófitos (vegetación acuática macroscópica) se utilizó el índice *IVAM-G* (en adelante, IVAM) recientemente propuesto y testado por Moreno et al. (2005; 2006) en ríos de la comunidad de Castilla-La Mancha. Para el establecimiento de los límites de clases de calidad se optó por utilizar los límites propuestos por Moreno (Tabla 5 en Moreno et al. 2006, Pág. 830) para el conjunto de ríos de Castilla-La Mancha. De esta forma, los límites del IVAM quedaron como se expone en la **Tabla 25**. Para los cálculos del EQR, se definió el valor de referencia como la mediana de los datos iguales o superiores al límite entre bueno-muy bueno, esto es, 5.7. El valor de referencia resultó igual a 6.09.

TABLA 25
LIMITES DE CLASES DE CALIDAD PARA EL IVAM Y EQR

Clases de estado ecológico	IVAM	Cortes EQR-IVAM
muy bueno	>5,7	0.94
bueno	4,5 – 5,6	0.74
moderado	3,2 – 4,4	0.53
deficiente	2,1 - 3,1	0.34
malo	0 - 2	0.00

El indicador IVAM se aplicó a un total de 241 estaciones de muestreo. Los resultados (valor del IVAM y estado biológico resultante), se muestran en el **Cuadro 8**.

CUADRO 13

ESTADO ECOLÓGICO SEGÚN MACRÓFITOS (EE-IVAM)

MB=muy bueno; B=bueno; Mo=moderado; D=deficiente; Ma=malo

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
0001	Ebro / Miranda de Ebro			
0002	Ebro / Castejón	2.00	0.33	Ma
0003	Ega / Andosilla	4.00	0.66	Мо
0004	Arga / Funes	2.00	0.33	Ma
0005	Aragón / Caparroso		0.53	
0009	Jalón / Huérmeda			
0013	Ésera / Graus	5.26	0.86	В
0014	Martín / Hijar	2.86	0.47	D
0015	Guadalope / Der. Acequia vieja de Alcañiz			
0017	Cinca / Fraga	5.33	0.88	В
0018	Aragón / Jaca	5.57	0.91	В
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	3.60	0.59	Мо
0023	Segre / Seo de Urgel	6.00	0.99	MB
0024	Segre / Lleida			
0025	Segre / Serós	2.00	0.33	Ma
0027	Ebro / Tortosa	2.72	0.45	D
0032	Guatizalema / Peralta de Alcofea			
0036	Iregua / Islallana	4.92	0.81	В
0038	Najerilla / Torremontalbo	4.84	0.79	В
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)	4.38	0.72	Mo
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	4.29	0.70	Мо
0060	Arba de Luesia / Tauste			
0065	Irati / Liédena	5.23	0.86	В
0068	Arakil / Asiain	5.54	0.91	В
0069	Arga / Etxauri			
0071	Ega / Estella (aguas arriba)			
0074	Zadorra / Arce - Miranda de Ebro			
0087	Jalón / Grisén	3.78	0.62	Мо
0089	Gállego / Zaragoza	0.00	0.00	Ma
0090	Queiles / Azud alimentación Emb. del Val	4.70	0.77	В
0092	Nela / Trespaderne			
0093	Oca / Oña			
0095	Vero / Barbastro	3.29	0.54	Mo
0096	Segre / Balaguer	4.15	0.68	Mo
0097	Noguera Ribagorzana / Derivación canal de Piñana	5.28	0.87	В
0101	Aragón / Yesa	5.28	0.87	В
0106	Guadalope / Santolea - Derivación Ac. Mayor	4.57	0.75	В
0114	Segre / Puente de Gualter	4.00	0.66	Mo
0118	Martín / Oliete	3.29	0.54	Mo
0120	Ebro / Mendavia (Der. Canal Lodosa)	3.60	0.59	Mo
0123	Gállego / Anzánigo			
0126	Jalón / Ateca (aguas arriba)			

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
0146	Noguera Pallaresa / Pobla de Segur	4.55	0.75	В
0159	Arga / Huarte	5.93	0.97	MB
0161	Ebro / Cereceda			
0162	Ebro / Pignatelli	3.83	0.63	Мо
0163	Ebro / Ascó	2.75	0.45	D
0165	Bayas / Miranda de Ebro			
0166	Jerea / Palazuelos de Cuesta Urria	5.56	0.91	В
0176	Matarraña / Nonaspe			
0179	Zadorra / Vitoria -Trespuentes	3.86	0.63	Mo
0180	Zadorra / Entre Mendivil y Durana	4.44	0.73	В
0184	Manubles / Ateca	5.51	0.90	В
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	2.67	0.44	D
0203	Híjar / Espinilla	4.00	0.66	Мо
0205	Aragón / Cáseda	4.62	0.76	В
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)	3.27	0.54	Мо
0207	Segre / Vilanova de la Barca	3.20	0.53	Мо
0208	Ebro / Conchas de Haro			
0211	Ebro / Presa Pina			
0214	Alhama / Alfaro	3.65	0.60	Мо
0216	Huerva / Zaragoza	2.00	0.33	Ma
0217	Arga / Ororbia	2.95	0.48	D
0218	Isuela / Pompenillo	2.00	0.33	Ma
0219	Segre / Torres de Segre	3.50	0.57	Мо
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	5.71	0.94	MB
0225	Clamor Amarga / Aguas abajo de Zaidín			
0226	Alcanadre / Ontiñena	4.00	0.66	Mo
0227	Flumen / Sariñena			
0228	Cinca / Monzón (aguas arriba)			
0241	Najerilla / Anguiano	5.33	0.88	В
0242	Cidacos / Autol	3.65	0.60	Мо
0243	Alhama / Venta de Baños de Fitero	3.75	0.62	Мо
0244	Jiloca / Luco de Jiloca	3.69	0.61	Мо
0247	Gállego / Villanueva			
0504	Ebro / Rincón de Soto	2.67	0.44	D
0505	Ebro / Alfaro	4.00	0.66	Mo
0506	Ebro / Tudela	3.60	0.59	Mo
0508	Ebro / Gallur (abto.	3.60	0.59	Mo
0511	Ebro / Benifallet	4.00	0.66	Mo
0512	Ebro / Xerta			
0516	Oropesa / Pradoluengo	6.00	0.99	MB
0517	Oja / Ezcaray	5.19	0.85	В
0523	Najerilla / Nájera	5.22	0.86	В
0528	Jubera / Murillo de Río Leza			
0529	Aragón / Castiello de Jaca	5.92	0.97	MB
0530	Aragón / Milagro	4.25	0.70	Mo
0534	Alzania / Embalse de Urdalur	5.71	0.94	MB
0537	Arba de Biel / Luna			

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
0538	Aguas Limpias / E. Sarra			
0539	Aurin / Isín			
0540	Fontobal / Ayerbe	5.14	0.84	В
0541	Huecha / Bulbuente			
0549	Cinca / Ballobar			
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	5.38	0.88	В
0561	Gállego / Jabarrella	5.54	0.91	В
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	2.00	0.33	Ma
0564	Zadorra / Salvatierra	4.00	0.66	Mo
0565	Huerva / Fuente de la Junquera			
0569	Arakil / Alsasua	2.95	0.48	D
0570	Huerva / Muel	2.00	0.33	Ma
0571	Ebro / Logroño - Varea			
0572	Ega / Arinzano			
0574	Najerilla / Nájera, Aguas abajo	4.29	0.70	Mo
0577	Arga / Puentelarreina			
0582	Canaleta / Bot			
0583	Grío / La Almunia de Doña Godina			
0586	Jalón / Saviñán			
0590	Ebro / Escatrón			
0592	Ebro / Pina de Ebro	3.16	0.52	Mo
0593	Jalón / Terrer	4.86	0.80	В
0594	Najerilla / Baños de Río Tobia	6.29	1.03	MB
0595	Ebro / San Vicente de la Sonsierra	5.23	0.86	В
0605	Ebro / Amposta	3.20	0.53	Mo
0608	Noguera Pallaresa / Tremp	4.67	0.77	В
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	4.00	0.66	Mo
0612	Huerva / Villanueva de Huerva	3.16	0.52	Mo
0618	Gállego / Embalse del Gállego	5.33	0.88	В
0619	Negro / Viella	6.38	1.05	MB
0621	Segre / Derivación Canal Urgell	5.50	0.90	В
0623	Algas / Mas de Bañetes	5.13	0.84	В
0625	Noguera Ribagorzana / Alfarrás	4.92	0.81	В
0627	Noguera Ribagorzana / Derivación Acequia Corbins	4.07	0.67	Mo
0628	Barranco Calvó		0.55	
0638	Son / Esterri de Aneu	6.00	0.99	MB
0643	Padrobaso / Zaya	6.06	1.00	MB
0644	Bayas / Aldaroa	6.00	0.99	MB
0647	Arga / Peralta	4.71	0.77	В
0649	Santa Engracia / Villarreal de Álava	5.78	0.95	MB
0650	Aragón / Derivación Acequia Río Molinar	5.04	0.83	В
0657	Ebro / Zaragoza-Almozara	F 0.4	0.00	145
0701	Omecillo / Espejo	5.94	0.98	MB
0702	Esca / Sigües	5.26	0.86	В
0703	Arba de Luesia / Malpica de Arba	4.97	0.82	В
0705	Garona / Valle de Arán	7.33	1.20	MB
0706	Matarraña / Valderrobres	5.88	0.97	MB

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
0802	Cinca / Puente de las Pilas	5.82	0.96	MB
0804	Aragón Subordán / La Peñeta	5.93	0.97	MB
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	4.32	0.71	Мо
8080	Gállego / Santa Eulalia	4.57	0.75	В
0810	Segre / Camarasa	3.00	0.49	D
0815	Urederra / Central Amescoa Baja (ICA) - Venta de Baríndano (RVA)	5.25	0.86	В
0816	Esca / Burgui	2.00	0.33	Ma
1004	Nela / Puentedey	4.67	0.77	В
1006	Trueba / El Vado	5.79	0.95	MB
1017	Omecillo / Bergüenda	4.29	0.70	Mo
1024	Zadorra / Salvatierra / Zuazo	4.52	0.74	В
1025	Zadorra / Durana	4.23	0.69	Mo
1028	Zadorra / La Puebla de Arganzón			
1032	Ayuda / Carretera Miranda			
1034	Inglares / Peñacerrada	5.18	0.85	В
1036	Linares / Espronceda	2.86	0.47	D
1037	Linares / Torres del Río	2.55	0.42	D
1038	Linares / Mendavia	3.33	0.55	Мо
1039	Ega / Lagran	4.22	0.69	Mo
1045	Aragón / Candanchú - Puente de Santa Cristina			
1047	Aragón / Puentelarreina de Jaca			
1056	Veral / Biniés	4.83	0.79	В
1062	Irati / Oroz-Betelu	5.79	0.95	MB
1064	Irati / Lumbier			
1065	Urrobi / Puente carretera Garralda	5.57	0.91	В
1070	Salazar / Aspurz	4.00	0.66	Mo
1072	Arga / Quinto Real	5.29	0.87	В
1083	Arba de Luesia / Luesia			
1087	Gállego / Formigal	5.80	0.95	MB
1088	Gállego / Biescas	2.00	0.33	Ma
1089	Gállego / Sabiñánigo	6.22	1.02	MB
1090	Gállego / Hostal de Ipiés	4.00	0.66	Mo
1092	Gállego / Murillo de Gállego	5.06	0.83	В
1096	Segre / Llivia	5.20	0.85	В
1101	Segre / Puente de Alentorn	4.00	0.66	Mo
1105	Noguera Pallaresa / Isil	5.20	0.85	В
1106	Noguera Pallaresa / Llavorsí	4.42	0.73	В
1108	Noguera Pallaresa / Guerri de la Sal	0 ==	1 1 1	1/2
1110	Flamisell / Pobleta de Bellvehi	6.77	1.11	MB
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	6.35	1.04	MB
1114	Noguera Ribagorzana / Puente de Montañana	3.83	0.63	Mo
1119	Corp / Vilanova de la Barca	4.00	0.66	Mo
1120	Cinca / Salinas	5.17	0.85	В
1121	Cinca / Laspuña	5.68	0.93	В
1122	Cinca / Ainsa	3.60	0.59	Mo
1123	Cinca / El Grado	6.51	1.07	MB
1127	Cinqueta / Salinas	5.66	0.93	В

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
1128	Vellós / Aguas Abajo del Nacimiento			
1130	Ara / Torla E.A. 196	6.52	1.07	MB
1132	Ara / Ainsa	4.92	0.81	В
1133	Ésera / Castejón de Sos	6.23	1.02	MB
1134	Ésera / Carretera Ainsa - Campo			
1135	Ésera / Perarrua	5.26	0.86	В
1137	Isábena / Laspaúles	6.88	1.13	MB
1139	Isábena / Capella E.A.	3.33	0.55	Мо
1140	Alcanadre / Laguarta - Carretera Boltaña	5.40	0.89	В
1141	Alcanadre / Puente a las Cellas			
1149	Ebro / Reinosa	3.78	0.62	Мо
1150	Ebro / Aldea de Ebro			
1154	Ebro / Aguas arriba Haro			
1156	Ebro / Puente de El Ciego			
1157	Ebro / Mendavia	4.00	0.66	Мо
1164	Ebro / Alagón	4.00	0.66	Мо
1167	Ebro / Mora de Ebro			
1169	Oca / Villalmondar	4.53	0.74	В
1173	Tirón / Aguas arriba Fresneda de la Sierra	6.00	0.99	MB
1174	Tirón / Belorado	5.33	0.88	В
1175	Tirón / Cerezo del Río Tirón	5.18	0.85	В
1177	Tirón / Haro	5.56	0.91	В
1178	Najerilla / Villavelayo (aguas arriba)	5.82	0.96	MB
1183	Iregua / Pte. Villoslada de Cameros			
1184	Iregua / Puente De Almarza			
1191	Linares / San Pedro Manrique	4.49	0.74	В
1193	Alhama / Magada o Magaña?	4.19	0.69	Мо
1203	Jiloca / Morata de Jiloca	3.62	0.59	Мо
1207	Jalón / Santa María de Huerta	2.00	0.33	Ма
1208	Jalón / Ateca	4.00	0.66	Мо
1210	Jalón / Épila			
1216	Piedra / Castejón de las Armas			
1219	Huerva / Cerveruela	4.88	0.80	В
1225	Aguas Vivas / Blesa			
1227	Aguas Vivas / Azaila			
1228	Martín / Martín del Río Martín	5.96	0.98	MB
1234	Guadalope / Aliaga	4.41	0.72	В
1235	Guadalope / Mas de las Matas	4.44	0.73	В
1238	Guadalope / Alcañiz (aguas abajo)	3.33	0.55	Мо
1239	Guadalope / Caspe E.A.	3.29	0.54	Мо
1240	Matarraña / Beceite, Parrizal	6.46	1.06	MB
1251	Queiles / Los Fayos	4.57	0.75	В
1252	Queiles / Novallas	3.20	0.53	Мо
1253	Guadalope / Ladruñán	5.62	0.92	В
1255	Martín / Vivel del Río Martín	3.20	0.53	Мо
1260	Jalón / Bubierca	2.00	0.33	Ma
1263	Piedra / Cimballa	4.80	0.79	В

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
1264	Mesa / Calmarza	4.75	0.78	В
1270	Ésera / Plan de l'Hospital de Benasque	6.75	1.11	MB
1277	Arba de Riguel / Sádaba	3.33	0.55	Мо
1280	Arba de Biel / Erla	4.52	0.74	В
1285	Guatizalema / Sietamo	5.88	0.97	MB
1294	Noguera Cardós / Lladorre	5.05	0.83	В
1295	Ebro / El Burgo de Ebro	3.33	0.55	Мо
1296	Ebro / Azud de Rueda	3.14	0.52	Mo
1297	Ebro / Flix (aguas abajo de la presa)	2.86	0.47	D
1298	Garona / Arties	6.60	1.08	MB
1299	Garona / Bossots	7.20	1.18	MB
1304	Sio / Balaguer E.A. 182			
1306	Ebro / Ircio			
1307	Zidacos / Barasoain	3.20	0.53	Mo
1308	Zidacos / Olite	2.67	0.44	D
1309	Onsella / Sangüesa			
1311	Arga / Landaben -Pamplona			
1314	Salado / Mendigorria			
1315	Ulzama / Olave	4.90	0.80	В
1317	Larraun / Urritza	5.33	0.88	В
1332	Oroncillo / Pancorvo	3.00	0.49	D
1338	Oja / Casalarreina	3.81	0.63	Mo
1341	Rudrón / Valdelateja	5.04	0.83	В
1342	Oroncillo / Bugedo	3.79	0.62	Mo
1347	Leza / Agoncillo	4.62	0.76	В
1350	Huecha / Mallén			
1351	Val / Agreda	4.16	0.68	Mo
1354	Najima / Monreal de Ariza	3.06	0.50	D
1358	Jiloca / Calamocha	4.38	0.72	Mo
1365	Martín / Montalban	4.17	0.68	Mo
1368	Escuriza / Ariño	4.67	0.77	В
1375	Pena / Aguas Abajo embalse Pena	6.67	1.10	MB
1376	Guadalope / Palanca-Caspe	F 04	0.05	MD
1380 1382	Bergantes / Mare Deu de la Balma	5.81	0.95 0.33	MB Ma
	Huerva / Aguas abajo de Villanueva	2.00	1.03	
1387 1393	Urbión / Soto del Valle Erro / Sorogain	6.29 6.33	1.03	MB MB
1393	Trema / Torme	5.00	0.82	В
1398	Guatizalema / Nocito	5.45	0.82	В
1399	Guatizalema / Molinos de Sipán	5.54	0.09	В
1400	Isuela / Cálcena	5.54	0.91	_ ن
1403	Aranda / Aranda del Moncayo	3.87	0.64	Мо
1404	Aranda / Brea	3.16	0.52	Mo
1411	Peregiles / Puente Antigua N-II	3.79	0.62	Mo
1417	Barrosa / Parzán	5.57	0.91	В
1419	Vallferrera / Alins	5.33	0.88	В
1421	Noguera de Tor / Llesp	4.00	0.66	Mo

CEMAS	TOPONIMIA	IVAM	EQR	E_IVAM
1422	Salado / Estenoz	6.00	0.99	MB
1423	Ubagua / Muez	5.57	0.91	В
1429	Cárdenas / San Millán de la Cogolla	6.11	1.00	MB
1430	Cárdenas / Cárdenas	4.24	0.70	Мо
1435	Areta / Rípodas	4.43	0.73	В
1440	Trueba / Villacomparada	4.29	0.70	Мо
1446	Irati / Cola Embalse de Irabia	6.07	1.00	MB
1448	Veral / Zuriza	6.31	1.04	MB
1453	Segre / Organyá	5.68	0.93	В
1454	Ebro / Trespaderne			
1455	Cidacos / Yanguas E.A. 44.	5.56	0.91	В
1457	Iregua / Alberite	5.20	0.85	В
1464	Algas / Maella - Batea			
1465	Flumen / Sariñena			
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	4.55	0.75	В
1476	Ésera/Desembocadura	5.29	0.87	В
1492	Gállego / Central de Marracos			
	Carol / La Tour De Carol. Francia. Entrada A La Toma de	4 40	0.74	В
1519	abastecimiento de Pu	4.48		В
1520	Arakil / Irañeta			
2001	Urbión / Viniegra de Abajo	5.33	0.88	В
2002	Mayor / Aguas Abajo Villoslada de Cameros	4.67	0.77	В
2003	Rudrón / Tablada de Rudrón	4.67	0.77	В
2005	Isuala / Alberuela de la Liena	4.75	0.78	В
2006	Isuala / Las Bellostas	6.50	1.07	MB
2007	Alcanadre / Casbas			
2008	Ribera Salada / Altés	7.04	1.16	MB
2009	Matarraña / Beceite, aguas arriba	5.17	0.85	В
2011	Omecillo / Corro	6.50	1.07	MB
2012	Estarrón / Aisa	7.05	1.16	MB
2013	Osia / Jasa	3.69	0.61	Mo
2014	Guarga / Ordovés	6.33	1.04	MB
2015	Susía / Castejón Sobrarbe			
2017	Cámaras / Herrera de los Navarros			
2027	Arazas / Torla (pradera Ordesa)			
2029	Aragón Subordán / Hecho (Selva de Oza)	5.63	0.92	В
2055	Arba de Luesia / Ejea			
2060	Barranco de la Violada / Zuera (aguas arriba)	3.79	0.62	Mo
2073	Sosa / Aguas arriba de Monzón	4.22	0.69	Mo
2079	Ciurana / Bellmunt del Priorat			
2086	Homino / Terminón	6.00	0.99	MB
2142	Aragón / Aguas arriba de Puente La Reina			
2174	Noguera Ribagorzana / Senet	6.51	1.07	MB
2193	Noguera Pallaresa / Cola de E. De Camarasa			
2204	Regallo / Puigmoreno	5.18	0.85	В
3000	Queiles / Aguas arriba de Tudela			
3001	Elorz / Pamplona	3.33	0.55	Мо

El análisis global de los resultados de la evaluación del estado ecológico mediante el índice IVAM ofrece los siguientes resultados, ilustrados en la **Figura 61**. Un 42% de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *bueno*, con un 37% de las muestras, y *moderado*, con un 31%. La clase *muy bueno*, con un 21%, presentó una frecuencia intermedia. Las clases *deficiente* y *malo*, con el 6% y el 5% de las muestras, respectivamente, fueron minoritarias.

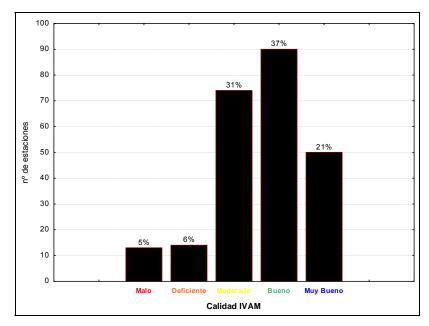
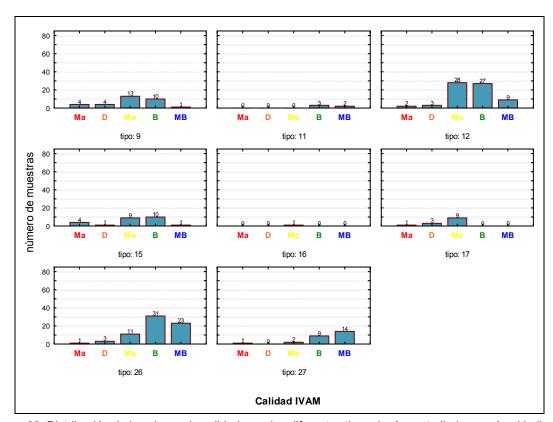



Figura 61. Distribución de las clases de calidad para el indicador de macrófitos IVAM.

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 62**), el IVAM arroja los siguientes resultados:

- En los tipos 11, 26 y 27 (*ríos de montaña*) las clases *bueno* y *muy bueno*, son las clases mayoritarias.
- Las clases bueno y moderado predominan en los tipos 9, 12, 15.
- La clase moderado predomina en los tipos 16 y 17 y está ausente en el tipo 11.
- Las clases deficiente y malo son minoritarias.

Figura 62. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de macrófitos (índice IVAM).

4.3.3. Determinación del estado ecológico con fitobentos (IPS)

Para la determinación o evaluación del estado ecológico mediante el uso de las algas bentónicas o fitobentos (organismos autótrofos asociados a los fondos de los ecosistemas acuáticos, más concretamente, microalgas bentónicas), se utilizó el índice de diatomeas *IPS* (índice de poluosensibilidad específica, CEMAGREF 1982). Los límites de clases de calidad de este índice se muestran en la **Tabla 26**. Para los cálculos del EQR, se definió el valor de referencia como la mediana de los datos iguales o superiores al límite entre bueno-muy bueno, esto es, 17. El valor de referencia resultó igual a 18,7.

TABLA 26LIMITES DE CLASES DE CALIDAD PARA EL IPS

Clases de estado ecológico	IPS	cortes EQR
muy bueno	17 - 20	0.91
bueno	13 - < 17	0.70
moderado	9 - < 13	0.48
deficiente	5 - < 9	0.27
malo	0 - < 5	0

El indicador IPS se aplicó a un total de 206 estaciones de muestreo. Los resultados (valor del IPS, su EQR y clase de calidad resultante), se muestran en el **Cuadro 14**.

CUADRO 14

ESTADO ECOLÓGICO SEGÚN DIATOMEAS (E-IPS)

MB=muy bueno; B=bueno; Mo=moderado; D=deficiente; Ma=malo

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
0001	Ebro / Miranda de Ebro			
0002	Ebro / Castejón	11.5	0.61	Мо
0003	Ega / Andosilla	11.1	0.59	Мо
0004	Arga / Funes	10.7	0.57	Мо
0005	Aragón / Caparroso			
0009	Jalón / Huérmeda			
0013	Ésera / Graus	18.6	0.99	MB
0014	Martín / Hijar	16.7	0.89	В
0015	Guadalope / Der. Acequia vieja de Alcañiz			
0017	Cinca / Fraga			
0018	Aragón / Jaca	19.7	1.05	MB
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	17.1	0.91	MB
0023	Segre / Seo de Urgel	14	0.75	В
0024	Segre / Lleida			
0025	Segre / Serós			
0027	Ebro / Tortosa	16.4	0.88	В
0032	Guatizalema / Peralta de Alcofea			
0036	Iregua / Islallana	19.8	1.06	MB
0038	Najerilla / Torremontalbo	15.3	0.82	В
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)			
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	15.3	0.82	В
0060	Arba de Luesia / Tauste			
0065	Irati / Liédena	17.7	0.95	MB
0068	Arakil / Asiain	14.1	0.75	В
0069	Arga / Etxauri			
0071	Ega / Estella (aguas arriba)	15.9	0.85	В
0074	Zadorra / Arce - Miranda de Ebro			
0087	Jalón / Grisén	18	0.96	MB
0089	Gállego / Zaragoza			
0090	Queiles / Azud alimentación Emb. del Val	11.9	0.64	Мо
0092	Nela / Trespaderne			
0093	Oca / Oña			
0095	Vero / Barbastro	6.5	0.35	D
0096	Segre / Balaguer	17.2	0.92	MB
0097	Noguera Ribagorzana / Derivación canal de Piñana	15.2	0.81	В
0101	Aragón / Yesa			
0106	Guadalope / Santolea - Derivación Ac. Mayor	17.7	0.95	MB
0114	Segre / Puente de Gualter	13	0.70	Мо
0118	Martín / Oliete	7.8	0.42	D
0120	Ebro / Mendavia (Der. Canal Lodosa)	9.8	0.52	Мо
0123	Gállego / Anzánigo	18.6	0.99	MB
0126	Jalón / Ateca (aguas arriba)			

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
0146	Noguera Pallaresa / Pobla de Segur	17.7	0.95	MB
0159	Arga / Huarte	17.6	0.94	MB
0161	Ebro / Cereceda			
0162	Ebro / Pignatelli	10.9	0.58	Мо
0163	Ebro / Ascó			
0165	Bayas / Miranda de Ebro			
0166	Jerea / Palazuelos de Cuesta Urria	16.6	0.89	В
0176	Matarraña / Nonaspe			
0179	Zadorra / Vitoria -Trespuentes			
0180	Zadorra / Entre Mendivil y Durana	14.7	0.79	В
0184	Manubles / Ateca	16.3	0.87	В
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	19.2	1.03	MB
0203	Híjar / Espinilla	19.3	1.03	MB
0205	Aragón / Cáseda			
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)	12.3	0.66	Мо
0207	Segre / Vilanova de la Barca	13.7	0.73	В
0208	Ebro / Conchas de Haro			
0211	Ebro / Presa Pina			
0214	Alhama / Alfaro			
0216	Huerva / Zaragoza	11.5	0.61	Мо
0217	Arga / Ororbia	13.3	0.71	В
0218	Isuela / Pompenillo			
0219	Segre / Torres de Segre	12.3	0.66	Mo
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)			
0225	Clamor Amarga / Aguas abajo de Zaidín			
0226	Alcanadre / Ontiñena	14.9	0.80	В
0227	Flumen / Sariñena			
0228	Cinca / Monzón (aguas arriba)			
0241	Najerilla / Anguiano	19.2	1.03	MB
0242	Cidacos / Autol	18.8	1.01	MB
0243	Alhama / Venta de Baños de Fitero	18.2	0.97	MB
0244	Jiloca / Luco de Jiloca	13.7	0.73	В
0247	Gállego / Villanueva	12.1	0.65	Мо
0504	Ebro / Rincón de Soto	10.6	0.57	Mo
0505	Ebro / Alfaro	14.3	0.76	В
0506	Ebro / Tudela		0.55	1.75
0508	Ebro / Gallur (abto.	17.2	0.92	MB
0511	Ebro / Benifallet			
0512	Ebro / Xerta		0.00	
0516	Oropesa / Pradoluengo	17.4	0.93	MB
0517	Oja / Ezcaray	16.9	0.90	В
0523	Najerilla / Nájera	19.4	1.04	MB
0528	Jubera / Murillo de Río Leza			
0529	Aragón / Castiello de Jaca	10-	0 = :	
0530	Aragón / Milagro	13.9	0.74	В
0534	Alzania / Embalse de Urdalur	13.2	0.71	В

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
0537	Arba de Biel / Luna			
0538	Aguas Limpias / E. Sarra			
0539	Aurin / Isín			
0540	Fontobal / Ayerbe	16.9	0.90	В
0541	Huecha / Bulbuente			
0549	Cinca / Ballobar			
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	12.8	0.68	Мо
0561	Gállego / Jabarrella	18	0.96	MB
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	17.5	0.94	MB
0564	Zadorra / Salvatierra			
0565	Huerva / Fuente de la Junquera			
0569	Arakil / Alsasua			
0570	Huerva / Muel	16.3	0.87	В
0571	Ebro / Logroño - Varea	14.9	0.80	В
0572	Ega / Arinzano	15.8	0.84	В
0574	Najerilla / Nájera, Aguas abajo	15.2	0.81	В
0577	Arga / Puentelarreina	11	0.59	Мо
0582	Canaleta / Bot			
0583	Grío / La Almunia de Doña Godina	18.1	0.97	MB
0586	Jalón / Saviñán			
0590	Ebro / Escatrón			
0592	Ebro / Pina de Ebro	12	0.64	Мо
0593	Jalón / Terrer			
0594	Najerilla / Baños de Río Tobia	19	1.02	MB
0595	Ebro / San Vicente de la Sonsierra	15.9	0.85	В
0605	Ebro / Amposta			
0608	Noguera Pallaresa / Tremp	16	0.86	В
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)			
0612	Huerva / Villanueva de Huerva	16.3	0.87	В
0618	Gállego / Embalse del Gállego	12.1	0.65	Мо
0619	Negro / Viella	19.3	1.03	MB
0621	Segre / Derivación Canal Urgell	14.1	0.75	В
0623	Algas / Mas de Bañetes	17.7	0.95	MB
0625	Noguera Ribagorzana / Alfarrás	16.1	0.86	В
0627	Noguera Ribagorzana / Derivación Acequia Corbins	15.6	0.83	В
0628	Barranco Calvó			
0638	Son / Esterri de Aneu	17.4	0.93	MB
0643	Padrobaso / Zaya	19.5	1.04	MB
0644	Bayas / Aldaroa	17.7	0.95	MB
0647	Arga / Peralta	11.8	0.63	Mo
0649	Santa Engracia / Villarreal de Álava	18.8	1.01	MB
0650	Aragón / Derivación Acequia Río Molinar	15.6	0.83	В
0657	Ebro / Zaragoza-Almozara			
0701	Omecillo / Espejo			
0702	Esca / Sigües	16.7	0.89	В
0703	Arba de Luesia / Malpica de Arba	19.5	1.04	MB

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
0705	Garona / Valle de Arán	17.9	0.96	MB
0706	Matarraña / Valderrobres	17.5	0.94	MB
0802	Cinca / Puente de las Pilas	13.5	0.72	В
0804	Aragón Subordán / La Peñeta	19.3	1.03	MB
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	16.5	0.88	В
8080	Gállego / Santa Eulalia	17.5	0.94	MB
0810	Segre / Camarasa	14.9	0.80	В
0815	Urederra / Central Amescoa Baja (ICA) - Venta de Baríndano (RVA)	19.4	1.04	MB
0816	Esca / Burgui	19.2	1.03	MB
1004	Nela / Puentedey	18.6	0.99	MB
1006	Trueba / El Vado	19.5	1.04	MB
1017	Omecillo / Bergüenda			
1024	Zadorra / Salvatierra / Zuazo			
1025	Zadorra / Durana			
1028	Zadorra / La Puebla de Arganzón			
1032	Ayuda / Carretera Miranda			
1034	Inglares / Peñacerrada			
1036	Linares / Espronceda			
1037	Linares / Torres del Río			
1038	Linares / Mendavia	9.2	0.49	Мо
1039	Ega / Lagran	19.6	1.05	MB
1045	Aragón / Candanchú - Puente de Santa Cristina	19.6	1.05	MB
1047	Aragón / Puentelarreina de Jaca			
1056	Veral / Biniés	16.5	0.88	В
1062	Irati / Oroz-Betelu	18.5	0.99	MB
1064	Irati / Lumbier			
1065	Urrobi / Puente carretera Garralda	20	1.07	MB
1070	Salazar / Aspurz			
1072	Arga / Quinto Real	19.8	1.06	MB
1083	Arba de Luesia / Luesia			
1087	Gállego / Formigal	19.3	1.03	MB
1088	Gállego / Biescas	19.3	1.03	MB
1089	Gállego / Sabiñánigo	19.7	1.05	MB
1090	Gállego / Hostal de Ipiés	17.8	0.95	MB
1092	Gállego / Murillo de Gállego	16.7	0.89	В
1096	Segre / Llivia	19.5	1.04	MB
1101	Segre / Puente de Alentorn	15.8	0.84	В
1105	Noguera Pallaresa / Isil	19	1.02	MB
1106	Noguera Pallaresa / Llavorsí	19	1.02	MB
1108	Noguera Pallaresa / Guerri de la Sal			
1110	Flamisell / Pobleta de Bellvehi	16.9	0.90	В
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	19.2	1.03	MB
1114	Noguera Ribagorzana / Puente de Montañana	15.6	0.83	В
1119	Corp / Vilanova de la Barca	14.5	0.78	В
1120	Cinca / Salinas	18.6	0.99	MB
1121	Cinca / Laspuña	18.8	1.01	MB

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
1122	Cinca / Ainsa			
1123	Cinca / El Grado			
1127	Cinqueta / Salinas	17.2	0.92	MB
1128	Vellós / Aguas Abajo del Nacimiento			
1130	Ara / Torla E.A. 196	19.1	1.02	MB
1132	Ara / Ainsa	19.65	1.05	MB
1133	Ésera / Castejón de Sos	18.8	1.01	MB
1134	Ésera / Carretera Ainsa - Campo			
1135	Ésera / Perarrua	18.2	0.97	MB
1137	Isábena / Laspaúles	17.5	0.94	MB
1139	Isábena / Capella E.A.	14.3	0.76	В
1140	Alcanadre / Laguarta - Carretera Boltaña	14	0.75	В
1141	Alcanadre / Puente a las Cellas			
1149	Ebro / Reinosa	19.9	1.06	MB
1150	Ebro / Aldea de Ebro			
1154	Ebro / Aguas arriba Haro			
1156	Ebro / Puente de El Ciego			
1157	Ebro / Mendavia	12.8	0.68	Мо
1164	Ebro / Alagón	14.6	0.78	В
1167	Ebro / Mora de Ebro			
1169	Oca / Villalmondar	17.5	0.94	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	18.4	0.98	MB
1174	Tirón / Belorado	18.4	0.98	MB
1175	Tirón / Cerezo del Río Tirón	19.3	1.03	MB
1177	Tirón / Haro	15	0.80	В
1178	Najerilla / Villavelayo (aguas arriba)	13	0.70	Mo
1183	Iregua / Pte. Villoslada de Cameros			
1184	Iregua / Puente De Almarza			
1191	Linares / San Pedro Manrique	16.9	0.90	В
1193	Alhama / Magada o Magaña?	16.4	0.88	В
1203	Jiloca / Morata de Jiloca	15.4	0.82	В
1207	Jalón / Santa María de Huerta			
1208	Jalón / Ateca	10.4	0.56	Mo
1210	Jalón / Épila			
1216	Piedra / Castejón de las Armas	<u> </u>		
1219	Huerva / Cerveruela	14	0.75	В
1225	Aguas Vivas / Blesa			
1227	Aguas Vivas / Azaila	45.5		
1228	Martín / Martín del Río Martín	16.9	0.90	В
1234	Guadalope / Aliaga		0.00	
1235	Guadalope / Mas de las Matas	15	0.80	В
1238	Guadalope / Alcañiz (aguas abajo)	1.5 =		
1239	Guadalope / Caspe E.A.	16.7	0.89	В
1240	Matarraña / Beceite, Parrizal	16.8	0.90	В
1251	Queiles / Los Fayos	15.6	0.83	В
1252	Queiles / Novallas	15.2	0.81	В

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
1253	Guadalope / Ladruñán	15.5	0.83	В
1255	Martín / Vivel del Río Martín	18.5	0.99	MB
1260	Jalón / Bubierca			
1263	Piedra / Cimballa	16.9	0.90	В
1264	Mesa / Calmarza			
1270	Ésera / Plan de l'Hospital de Benasque	17.5	0.94	MB
1277	Arba de Riguel / Sádaba			
1280	Arba de Biel / Erla	18.2	0.97	MB
1285	Guatizalema / Sietamo	17.2	0.92	MB
1294	Noguera Cardós / Lladorre	18.5	0.99	MB
1295	Ebro / El Burgo de Ebro	13	0.70	Мо
1296	Ebro / Azud de Rueda			
1297	Ebro / Flix (aguas abajo de la presa)	14.3	0.76	В
1298	Garona / Arties	17.7	0.95	MB
1299	Garona / Bossots	19.6	1.05	MB
1304	Sio / Balaguer E.A. 182			
1306	Ebro / Ircio	18.7	1.00	MB
1307	Zidacos / Barasoain			
1308	Zidacos / Olite			
1309	Onsella / Sangüesa			
1311	Arga / Landaben -Pamplona	14.4	0.77	В
1314	Salado / Mendigorria			
1315	Ulzama / Olave			
1317	Larraun / Urritza	15.9	0.85	В
1332	Oroncillo / Pancorvo			
1338	Oja / Casalarreina	17.2	0.92	MB
1341	Rudrón / Valdelateja	19.6	1.05	MB
1342	Oroncillo / Bugedo	16.6	0.89	В
1347	Leza / Agoncillo	18.9	1.01	MB
1350	Huecha / Mallén			
1351	Val / Agreda	6.9	0.37	D
1354	Najima / Monreal de Ariza			
1358	Jiloca / Calamocha			
1365	Martín / Montalban	12.7	0.68	Mo
1368	Escuriza / Ariño	18.7	1.00	MB
1375	Pena / Aguas Abajo embalse Pena	17.1	0.91	MB
1376	Guadalope / Palanca-Caspe			
1380	Bergantes / Mare Deu de la Balma	18.2	0.97	MB
1382	Huerva / Aguas abajo de Villanueva	16.5	0.88	В
1387	Urbión / Soto del Valle	18.2	0.97	MB
1393	Erro / Sorogain			
1396	Trema / Torme	19	1.02	MB
1398	Guatizalema / Nocito			
1399	Guatizalema / Molinos de Sipán	17.2	0.92	MB
1400	Isuela / Cálcena			
1403	Aranda / Aranda del Moncayo	16.1	0.86	В

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
1404	Aranda / Brea	18.7	1.00	MB
1411	Peregiles / Puente Antigua N-II	17.6	0.94	MB
1417	Barrosa / Parzán	17.1	0.91	MB
1419	Vallferrera / Alins	19.3	1.03	MB
1421	Noguera de Tor / Llesp	18.5	0.99	MB
1422	Salado / Estenoz	19.5	1.04	MB
1423	Ubagua / Muez	19.5	1.04	MB
1429	Cárdenas / San Millán de la Cogolla	19.4	1.04	MB
1430	Cárdenas / Cárdenas	19.6	1.05	MB
1435	Areta / Rípodas			
1440	Trueba / Villacomparada	13.8	0.74	В
1446	Irati / Cola Embalse de Irabia	19.9	1.06	MB
1448	Veral / Zuriza	18.6	0.99	MB
1453	Segre / Organyá			
1454	Ebro / Trespaderne			
1455	Cidacos / Yanguas E.A. 44.	19.4	1.04	MB
1457	Iregua / Alberite	19.6	1.05	MB
1464	Algas / Maella - Batea			
1465	Flumen / Sariñena			
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	13.9	0.74	В
1476	Ésera/Desembocadura	18.7	1.00	MB
1492	Gállego / Central de Marracos			
1519	Carol / La Tour De Carol. Francia. Entrada A La Toma de abastecimiento de Pu	19.6	1.05	МВ
1520	Arakil / Irañeta	16.4	0.88	В
2001	Urbión / Viniegra de Abajo	19.3	1.03	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	14.6	0.78	В
2003	Rudrón / Tablada de Rudrón	17.9	0.96	MB
2005	Isuala / Alberuela de la Liena	17.8	0.95	MB
2006	Isuala / Las Bellostas			
2007	Alcanadre / Casbas			
2008	Ribera Salada / Altés	18.4	0.98	MB
2009	Matarraña / Beceite, aguas arriba	18.3	0.98	MB
2011	Omecillo / Corro	19.5	1.04	MB
2012	Estarrón / Aisa	17.9	0.96	MB
2013	Osia / Jasa	16.6	0.89	В
2014	Guarga / Ordovés	19.9	1.06	MB
2015	Susía / Castejón Sobrarbe			
2017	Cámaras / Herrera de los Navarros			
2027	Arazas / Torla (pradera Ordesa)			
2029	Aragón Subordán / Hecho (Selva de Oza)	19.8	1.06	MB
2055	Arba de Luesia / Ejea			
2060	Barranco de la Violada / Zuera (aguas arriba)	9.6	0.51	Мо
2073	Sosa / Aguas arriba de Monzón	13	0.70	Мо
2079	Ciurana / Bellmunt del Priorat			
2086	Homino / Terminón	16.3	0.87	В
2142	Aragón / Aguas arriba de Puente La Reina			170

Cod. CEMAS	ESTACIÓN	IPS	EQR	E-IPS
2174	Noguera Ribagorzana / Senet	16.2	0.87	В
2193	Noguera Pallaresa / Cola de E. De Camarasa			
2204	Regallo / Puigmoreno	16.7	0.89	В
3000	Queiles / Aguas arriba de Tudela	14.9	0.80	В
3001	Elorz / Pamplona	7.7	0.41	D

El análisis de los resultados de la evaluación del estado ecológico mediante el índice IPS ofrece los siguientes resultados, ilustrados en la **Figura 63**. Un 14% de las muestras mostraron un estado por debajo de *bueno*. Las clases mayoritarias fueron *muy bueno*, con un 51% de las muestras, y *bueno*, con un 35%. La clase *moderado*, con un 12%, presentó una frecuencia intermedia. La clase *deficiente*, con sólo el 2%, y la clase *malo*, sin representación, fueron muy minoritarias.

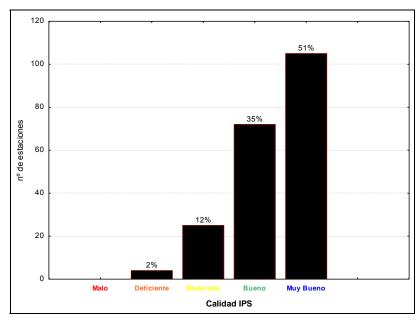
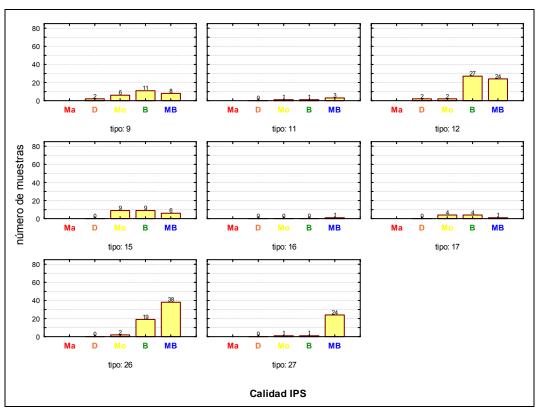
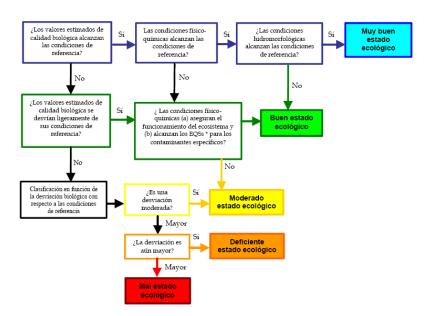



Figura 63. Distribución de las clases de calidad para el indicador de fitobentos IPS.

En cuanto a la distribución de las clases de calidad por tipologías de ríos (**Figura 64**), el IPS arroja los siguientes resultados:

- En los tipos 9, 11, 12, 26 y 27 las clases bueno y muy bueno, son mayoritarias.
- Las clases bueno y moderado predominan en los tipos 15 y 17.

- La clase *deficiente* es muy ocasional, y aparece sólo en los tipos 9 y 12 (dos estaciones en cada tipo).
- La clase malo no está representada en ningún tipo.


Figura 64. Distribución de las clases de calidad para los diferentes tipos de ríos estudiados según el indicador biológico de fitobentos (índice IPS).

4.4. Estado Ecológico de las masas de agua muestreadas en el año 2007

En el presente apartado se proponen dos métodos de clasificación para determinar el estado ecológico de las masas de aguas (ríos) muestreadas en el año 2007.

En ambos métodos, el esquema de toma de decisiones se basó en la metodología propuesta por el *Grupo de Trabajo 2A* de la Comisión Europea en el documento guía número 13 *Sobre la clasificación del Estado Ecológico y el Potencial Ecológico* (European Comission, 2003). Esta metodología (**Figura 65**) parte en principio de la clasificación del estado ecológico en base a los indicadores biológicos, apoyándose después tanto en las condiciones físico-químicas como en las hidromorfológicas.

En este esquema, cuando los indicadores biológicos ofrecen un estado por debajo de *bueno*, la clasificación del estado ecológico final vendría dada por estos mismos indicadores biológicos. En estos casos, se completó el EE final para todos aquellos puntos con datos de macroinvertebrados, macrófitos y/o diatomeas. Sin embargo, cuando el estado ecológico se estima (mediante indicadores biológicos) como *bueno* o *muy bueno*, las condiciones físico-químicas e hidromorfológicas entran en juego, pudiendo bajar la clasificación del estado ecológico a los niveles inferiores de *bueno* o *moderado*, según se explica más adelante.

Figura 65. Metodología propuesta por el Grupo de Trabajo 2A de la Unión Europea en el Documento Guía número 13 sobre la *Clasificación del estado ecológico y el Potencial Ecológico* (European Comission, 2003)

a) Método restrictivo (indicadores biológicos)

Por un lado y siguiendo la metodología más restrictiva, se ha escogido como indicador, de entre todos los indicadores biológicos, aquel cuyo resultado fuera la estima menos favorable en cada ocasión, tal y como en principio establecen las directrices de la DMA, según el principio "uno fuera, todos fuera": Se ha denominado a este estado ecológico "restrictivo" como EErest, de tal manera que:

$$EE_{rest} = Minimo (EE_{biol})$$

b) Método ponderado (indicadores biológicos)

Como segunda aproximación, más ponderada, se ha asignado un valor numérico a cada clase de calidad (desde 1 –malo- hasta 5 –muy bueno-), y se calculó: por un lado, la media de las tres métricas biológicas de macroinvertebrados (a la que llamaremos EBMacro); por otro, el valor del IVAM (EBIVAM); y por último, el valor del índice de diatomeas IPS (EBIPS). Con estas tres medidas, se procedió al cálculo final del estado biológico (EBpond) según la media aritmética:

$$EB_{pond} = (EB_{Macro} + EB_{IPS} + EB_{IVAM}) / 3$$

El resultado se redondeó al entero más próximo y se volvió a aplicar la conversión: 1=malo; 2=deficiente; 3=moderado; 4=bueno y 5=muy bueno.

Una vez calculado el estado biológico, y según el esquema conceptual de toma de decisiones (**Figura 65**) se procedió a evaluar las condiciones fisicoquímicas de acuerdo a los indicadores y los umbrales de calidad descritos anteriormente. Las condiciones fisicoquímicas propias del *muy buen estado* o condiciones físicoquímicas *de referencia* se definieron como aquellas condiciones en las que se cumplían 6 o 7 de los 7 criterios de calidad propuestos. Aquellas otras condiciones físico-químicas que "aseguran el funcionamiento del ecosistema" se definieron como aquellas condiciones en las que se cumplían 5 de los 7 criterios. Así, si se cumplían 6 o 7, entonces se pasaba a evaluar la calidad hidromorfológica del sistema (ver más adelante), si se cumplían 5 criterios, la estación bajaba de *muy bueno* a *bueno*, y.si se cumplían 4 criterios o menos, la estación bajaba de *muy bueno* a *moderado*.

En aquellos casos en que la calidad biológica alcanzaba el estado *muy bueno*, y las condiciones fisicoquímicas eran también las propias del *muy buen estado*, entonces se procedió a la evaluación de las condiciones hidromorfológicas. Esto se hizo de la siguiente manera. Tanto el QBR como el IHF fueron divididos en tres rangos: no *bueno* (NB), *bueno* (B) y *muy bueno* (MB). Con la siguiente categorización: 0: NB; 1=B y 2=MB. Así, si la suma de ambos indicadores era 3 o 4, se alcanzaban las condiciones de referencia o el *muy buen estado* para las condiciones hidromorfológicas, y la estación se clasificaba como de estado *muy bueno*. Si por el contrario la suma era 0, 1 o 2, el estado hidromorfológico se estimaba inferior al *muy buen estado* y la estación bajaba al estado ecológico *bueno*.

Tras estas modificaciones, se obtuvieron finalmente los valores de estado ecológico final, a los que llamaremos EE_{pond} y EE_{rest} , según el método de cálculo utilizado para el cálculo del estado biológico. En el **Cuadro 14** se incluyen finalmente los resultados obtenidos mediante ambas metodologías.

CUADRO 14

ESTADO ECOLÓGICO DE LAS ESTACIONES DE MUESTREO EN EL AÑO 2007

OBTENIDO MEDIANTE LAS DOS METODOLOGÍAS PROPUESTAS (*EE_{rest}* y *EE_{pond}*)

(MB=muy bueno; B=bueno; Mo=moderado; D=deficiente)

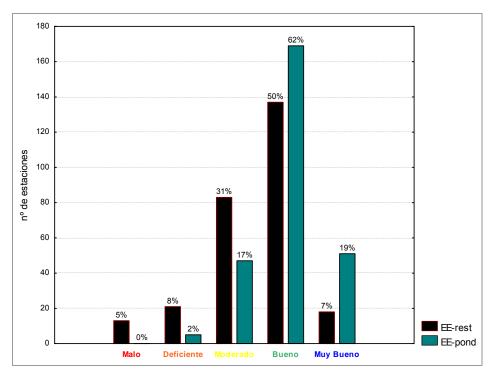
CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
0001	Ebro / Miranda de Ebro	15		
0009	Jalón / Huérmeda	16		
0015	Guadalope / Der. Acequia vieja de Alcañiz	9		
0024	Segre / Lleida	15		
0032	Guatizalema / Peralta de Alcofea	9		
0092	Nela / Trespaderne	12		
0093	Oca / Oña	12		
0161	Ebro / Cereceda	12		
0165	Bayas / Miranda de Ebro	12		
0208	Ebro / Conchas de Haro	15		
0211	Ebro / Presa Pina	17		
0225	Clamor Amarga / Aguas abajo de Zaidín	9		
0227	Flumen / Sariñena	9		
0228	Cinca / Monzón (aguas arriba)	15		
0512	Ebro / Xerta	17		
0528	Jubera / Murillo de Río Leza	12		
0537	Arba de Biel / Luna	9		
0538	Aguas Limpias / E. Sarra	27		
0539	Aurin / Isín	26		
0541	Huecha / Bulbuente	12		
0549	Cinca / Ballobar	15		
0565	Huerva / Fuente de la Junquera	9		

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
0582	Canaleta / Bot	9		
0586	Jalón / Saviñán	16		
0590	Ebro / Escatrón	17		
0605	Ebro / Amposta			
0628	Barranco Calvó	12		
0657	Ebro / Zaragoza-Almozara	17		
1032	Ayuda / Carretera Miranda	12		
1083	Arba de Luesia / Luesia	9		
1108	Noguera Pallaresa / Guerri de la Sal	26		
1128	Vellós / Aguas Abajo del Nacimiento	27		
1134	Ésera / Carretera Ainsa - Campo	26		
1141	Alcanadre / Puente a las Cellas	12		
1154	Ebro / Aguas arriba Haro	15		
1156	Ebro / Puente de El Ciego	15		
1210	Jalón / Épila	16		
1216	Piedra / Castejón de las Armas	12		
1225	Aguas Vivas / Blesa	9		
1227	Aguas Vivas / Azaila	9		
1350	Huecha / Mallén	9		
1376	Guadalope / Palanca-Caspe	9		
1400	Isuela / Cálcena	12		
1465	Flumen / Sariñena	9		
1492	Gállego / Central de Marracos	15		
2007	Alcanadre / Casbas	12		
2017	Cámaras / Herrera de los Navarros	9		
2027	Arazas / Torla (pradera Ordesa)	27		
2055	Arba de Luesia / Ejea	9		
2079	Ciurana / Bellmunt del Priorat	9		
2193	Noguera Pallaresa / Cola de E. De Camarasa	26		
0013	Ésera / Graus	12	В	В
0017	Cinca / Fraga	15	В	В
0018	Aragón / Jaca	26	В	MB
0023	Segre / Seo de Urgel	26	В	MB
0036	Iregua / Islallana	26	В	В
0038	Najerilla / Torremontalbo	12	В	В
0060	Arba de Luesia / Tauste	9	В	В
0065	Irati / Liédena	15	В	В
0068	Arakil / Asiain	26	В	В
0069	Arga / Etxauri	15	В	В
0071	Ega / Estella (aguas arriba)	12	В	В
0097	Noguera Ribagorzana / Derivación canal de Piñana	12	В	В
0101	Aragón / Yesa	15	В	В
0106	Guadalope / Santolea - Derivación Ac. Mayor	9	В	В
0126	Jalón / Ateca (aguas arriba)	9	В	В
0146	Noguera Pallaresa / Pobla de Segur	26	В	MB
0159	Arga / Huarte	26	В	В
0166	Jerea / Palazuelos de Cuesta Urria	12	В	В
0176	Matarraña / Nonaspe	9	В	В

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
0180	Zadorra / Entre Mendivil y Durana	26	В	В
0184	Manubles / Ateca	12	В	В
0205	Aragón / Cáseda	15	В	В
0241	Najerilla / Anguiano	26	В	MB
0517	Oja / Ezcaray	26	В	В
0523	Najerilla / Nájera	12	В	В
0529	Aragón / Castiello de Jaca	27	В	В
0534	Alzania / Embalse de Urdalur	26	В	MB
0540	Fontobal / Ayerbe	9	В	В
0561	Gállego / Jabarrella	26	В	MB
0571	Ebro / Logroño - Varea	15	В	В
0572	Ega / Arinzano	12	В	В
0593	Jalón / Terrer	9	В	В
0594	Najerilla / Baños de Río Tobia	26	В	В
0608	Noguera Pallaresa / Tremp	26	В	В
0621	Segre / Derivación Canal Urgell	26	В	В
0623	Algas / Mas de Bañetes	12	В	В
0625	Noguera Ribagorzana / Alfarrás	15	В	В
0638	Son / Esterri de Aneu	27	В	В
0643	Padrobaso / Zaya	26	В	В
0649	Santa Engracia / Villarreal de Álava	26	В	В
0650	Aragón / Derivación Acequia Río Molinar	15	В	В
0701	Omecillo / Espejo	12	В	В
0702	Esca / Sigües	26	В	В
0703	Arba de Luesia / Malpica de Arba	9	В	В
0706	Matarraña / Valderrobres	12	В	В
0802	Cinca / Puente de las Pilas	15	В	MB
0804	Aragón Subordán / La Peñeta	27	В	В
0808	Gállego / Santa Eulalia	15	В	MB
0815	Urederra / Central Amescoa Baja (ICA) - Venta de Baríndano (RVA)	26	В	МВ
1004	Nela / Puentedey	26	В	MB
1024	Zadorra / Salvatierra / Zuazo	12	В	В
1034	Inglares / Peñacerrada	12	В	MB
1045	Aragón / Candanchú - Puente de Santa Cristina	27	В	В
1047	Aragón / Puentelarreina de Jaca	26	В	В
1056	Veral / Biniés	26	В	В
1064	Irati / Lumbier	12	В	В
1065	Urrobi / Puente carretera Garralda	26	В	MB
1072	Arga / Quinto Real	26	В	MB
1087	Gállego / Formigal	27	В	В
1089	Gállego / Sabiñánigo	26	В	В
1092	Gállego / Murillo de Gállego	12	В	В
1096	Segre / Llivia	26	В	MB
1105	Noguera Pallaresa / Isil	27	В	В
1106	Noguera Pallaresa / Llavorsí	26	В	MB
1110	Flamisell / Pobleta de Bellvehi	26	В	MB
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	27	В	В
1120	Cinca / Salinas	27	В	В

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
1121	Cinca / Laspuña	27	В	В
1123	Cinca / El Grado	26	В	В
1127	Cinqueta / Salinas	27	В	MB
1132	Ara / Ainsa	26	В	MB
1133	Ésera / Castejón de Sos	27	В	В
1135	Ésera / Perarrua	26	В	В
1150	Ebro / Aldea de Ebro	26	В	В
1167	Ebro / Mora de Ebro	17	В	В
1169	Oca / Villalmondar	12	В	MB
1174	Tirón / Belorado	26	В	MB
1175	Tirón / Cerezo del Río Tirón	12	В	В
1177	Tirón / Haro	12	В	В
1183	Iregua / Pte. Villoslada de Cameros	11	В	В
1184	Iregua / Puente De Almarza	26	В	В
1191	Linares / San Pedro Manrique	26	В	В
1219	Huerva / Cerveruela	12	В	В
1228	Martín / Martín del Río Martín	12	В	В
1234	Guadalope / Aliaga	12	В	В
1235	Guadalope / Mas de las Matas	9	В	В
1240	Matarraña / Beceite, Parrizal	12	В	MB
1251	Queiles / Los Fayos	12	В	В
1253	Guadalope / Ladruñán	12	В	В
1263	Piedra / Cimballa	12	В	В
1264	Mesa / Calmarza	12	В	MB
1270	Ésera / Plan de l'Hospital de Benasque	27	В	В
1280	Arba de Biel / Erla	9	В	В
1285	Guatizalema / Sietamo	9	В	MB
1294	Noguera Cardós / Lladorre	27	В	В
1298	Garona / Arties	27	В	В
1299	Garona / Bossots	27	В	В
1304	Sio / Balaguer E.A. 182	9	В	В
1306	Ebro / Ircio	15	В	В
1309	Onsella / Sangüesa	12	В	В
1311	Arga / Landaben -Pamplona	12	В	В
1315	Ulzama / Olave	26	В	В
1341	Rudrón / Valdelateja	12	В	В
1347	Leza / Agoncillo	9	В	В
1368	Escuriza / Ariño	9	В	В
1375	Pena / Aguas Abajo embalse Pena	12	В	В
1380	Bergantes / Mare Deu de la Balma	12	В	В
1396	Trema / Torme	26	В	В
1399 1417	Guatizalema / Molinos de Sipán Barrosa / Parzán	12 27	В	MB MB
1417	Vallferrera / Alins	27	В	MB
1419	Ubagua / Muez	26	В	MB
1423	Cárdenas / San Millán de la Cogolla	26	B	В
1429	Areta / Rípodas	26	B B	
	·			В
1448	Veral / Zuriza	27	В	В

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
1453	Segre / Organyá	26	В	В
1454	Ebro / Trespaderne	12	В	В
1455	Cidacos / Yanguas E.A. 44.	11	В	MB
1457	Iregua / Alberite	12	В	В
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	12	В	В
1476	Ésera/Desembocadura	15	В	В
1519	Carol / La Tour De Carol. Francia. Entrada A La Toma de abastecimiento de Pu	26	В	В
1520	Arakil / Irañeta	26	В	В
2001	Urbión / Viniegra de Abajo	11	В	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	11	В	В
2003	Rudrón / Tablada de Rudrón	12	В	MB
2005	Isuala / Alberuela de la Liena	12	В	MB
2006	Isuala / Las Bellostas	12	В	В
2008	Ribera Salada / Altés	12	В	В
2009	Matarraña / Beceite, aguas arriba	12	В	В
2014	Guarga / Ordovés	26	В	В
2015	Susía / Castejón Sobrarbe	26	В	В
2029	Aragón Subordán / Hecho (Selva de Oza)	27	В	MB
2086	Homino / Terminón	12	В	В
2142	Aragón / Aguas arriba de Puente La Reina	26	В	В
2174	Noguera Ribagorzana / Senet	27	В	MB
2204	Regallo / Puigmoreno	9	В	В
0014	Martín / Hijar	9	D	Мо
0027	Ebro / Tortosa	17	D	Mo
0095	Vero / Barbastro	9	D	Mo
0118	Martín / Oliete	9	D	Мо
0163	Ebro / Ascó	17	D	Mo
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	9	D	В
0217	Arga / Ororbia	26	D	Mo
0219	Segre / Torres de Segre	15	D	Mo
0504	Ebro / Rincón de Soto	15	D	Mo
0569	Arakil / Alsasua	26	D	Mo
0810	Segre / Camarasa	26	D	В
1036	Linares / Espronceda Linares / Torres del Río	12	D	Mo
1037		15	D	Mo
1119 1297	Corp / Vilanova de la Barca Ebro / Flix (aguas abajo de la presa)	15 17	D	Mo Mo
1308	Zidacos / Olite	9	D D	Mo
1332	Oroncillo / Pancorvo	12	D	Mo
1352	Val / Agreda	12	D	Mo
1354	Najima / Monreal de Ariza	12	D	Mo
1422	Salado / Estenoz	26	D	В
3001	Elorz / Pamplona	12	D	Mo
0002	Ebro / Castejón	17	Ma	Mo
0002	Arga / Funes	15	Ma	D
0025	Segre / Serós	15	Ma	D
0089	Gállego / Zaragoza	15	Ma	D
5505	- Canago / Laragoza		1110	


CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
0216	Huerva / Zaragoza	9	Ma	Мо
0218	Isuela / Pompenillo	9	Ma	D
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	15	Ma	Мо
0570	Huerva / Muel	9	Ma	Мо
0816	Esca / Burgui	26	Ma	В
1088	Gállego / Biescas	27	Ma	В
1207	Jalón / Santa María de Huerta	12	Ma	D
1260	Jalón / Bubierca	12	Ma	Мо
1382	Huerva / Aguas abajo de Villanueva	9	Ma	Mo
0123	Gállego / Anzánigo	12	MB	MB
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	26	MB	MB
0516	Oropesa / Pradoluengo	26	MB	MB
0583	Grío / La Almunia de Doña Godina	9	MB	MB
0619	Negro / Viella	27	MB	MB
0644	Bayas / Aldaroa	26	MB	MB
0705	Garona / Valle de Arán	27	MB	MB
1006	Trueba / El Vado	26	MB	MB
1062	Irati / Oroz-Betelu	26	MB	MB
1130	Ara / Torla E.A. 196	27	MB	MB
1137	Isábena / Laspaúles	26	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	26	MB	MB
1314	Salado / Mendigorria	9	MB	MB
1387	Urbión / Soto del Valle	11	MB	MB
1393	Erro / Sorogain	26	MB	MB
1446	Irati / Cola Embalse de Irabia	26	MB	MB
2011	Omecillo / Corro	26	MB	MB
2012	Estarrón / Aisa	26	MB	MB
0003	Ega / Andosilla	15	Мо	Мо
0005	Aragón / Caparroso	15	Мо	Mo
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	26	Мо	В
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)	12	Мо	Mo
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	12	Мо	В
0074	Zadorra / Arce - Miranda de Ebro	15	Mo	Mo
0087	Jalón / Grisén	16	Mo	В
0090	Queiles / Azud alimentación Emb. del Val	12	Mo	В
0096	Segre / Balaguer	15	Mo	В
0114	Segre / Puente de Gualter	26	Mo	В
0120	Ebro / Mendavia (Der. Canal Lodosa)	15	Mo	Mo
0162	Ebro / Pignatelli	17	Mo	B
0179 0203	Zadorra / Vitoria -Trespuentes	12 27	Mo Mo	Mo B
0203	Híjar / Espinilla	26	Mo	Mo
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Segre / Vilanova de la Barca	15	Mo	Mo
0207	Alhama / Alfaro	9	Mo	В
0214	Alcanadre / Ontiñena	9	Mo	В
0242	Cidacos / Autol	12	Mo	В
0242	Alhama / Venta de Baños de Fitero	12	Mo	В
0243	Jiloca / Luco de Jiloca	12		В
U 2 44	JIIOGA / LUCO DE JIIOGA	12	Mo	D

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
0247	Gállego / Villanueva	15	Мо	Мо
0505	Ebro / Alfaro	17	Мо	В
0506	Ebro / Tudela	17	Мо	В
0508	Ebro / Gallur (abto.	17	Мо	В
0511	Ebro / Benifallet	17	Мо	В
0530	Aragón / Milagro	15	Мо	Мо
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	9	Мо	В
0564	Zadorra / Salvatierra	12	Мо	В
0574	Najerilla / Nájera, Aguas abajo	12	Мо	В
0577	Arga / Puentelarreina	15	Mo	Мо
0592	Ebro / Pina de Ebro	17	Мо	В
0595	Ebro / San Vicente de la Sonsierra	15	Мо	В
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	12	Мо	В
0612	Huerva / Villanueva de Huerva	9	Мо	В
0618	Gállego / Embalse del Gállego	27	Мо	В
0627	Noguera Ribagorzana / Derivación Acequia Corbins	15	Мо	Мо
0647	Arga / Peralta	15	Мо	Мо
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	9	Мо	В
1017	Omecillo / Bergüenda	12	Мо	В
1025	Zadorra / Durana	26	Мо	В
1028	Zadorra / La Puebla de Arganzón	15	Мо	Мо
1038	Linares / Mendavia	9	Мо	Мо
1039	Ega / Lagran	12	Мо	В
1070	Salazar / Aspurz	26	Мо	В
1090	Gállego / Hostal de Ipiés	26	Мо	В
1101	Segre / Puente de Alentorn	26	Мо	В
1114	Noguera Ribagorzana / Puente de Montañana	12	Мо	В
1122	Cinca / Ainsa	26	Мо	В
1139	Isábena / Capella E.A.	12	Мо	В
1140	Alcanadre / Laguarta - Carretera Boltaña	26	Мо	Мо
1149	Ebro / Reinosa	26	Мо	В
1157	Ebro / Mendavia	15	Мо	Mo
1164	Ebro / Alagón	17	Mo	В
1178	Najerilla / Villavelayo (aguas arriba)	11	Мо	В
1193	Alhama / Magada o Magaña?	12	Мо	В
1203	Jiloca / Morata de Jiloca	12	Mo	Mo
1208	Jalón / Ateca	9	Mo	Mo
1238	Guadalope / Alcañiz (aguas abajo)	9	Mo	Mo
1239	Guadalope / Caspe E.A.	9	Mo	В
1252	Queiles / Novallas	12	Mo	В
1255	Martín / Vivel del Río Martín	12	Mo	В
1277	Arba de Riguel / Sádaba	9	Mo	В
1295	Ebro / El Burgo de Ebro	17	Mo	В
1296	Ebro / Azud de Rueda	17	Mo	В
1307	Zidacos / Barasoain	12	Mo	В
1317	Larraun / Urritza	26	Mo	В
1338	Oja / Casalarreina	12	Mo	В

CEMAS	ESTACIÓN	TIPO	EE-rest	EE-pond
1342	Oroncillo / Bugedo	12	Мо	В
1358	Jiloca / Calamocha	12	Mo	В
1365	Martín / Montalban	12	Мо	В
1398	Guatizalema / Nocito	26	Мо	Мо
1403	Aranda / Aranda del Moncayo	12	Mo	В
1404	Aranda / Brea	12	Мо	В
1411	Peregiles / Puente Antigua N-II	12	Mo	В
1421	Noguera de Tor / Llesp	27	Мо	В
1430	Cárdenas / Cárdenas	12	Mo	В
1440	Trueba / Villacomparada	26	Мо	В
1464	Algas / Maella - Batea	9	Мо	Мо
2013	Osia / Jasa	26	Mo	В
2060	Barranco de la Violada / Zuera (aguas arriba)	9	Mo	Мо
2073	Sosa / Aguas arriba de Monzón	9	Мо	В
3000	Queiles / Aguas arriba de Tudela	9	Мо	В

La Figura 66 resume los resultados generales obtenidos mediante ambas metodologías.

Como se puede observar, los resultados de aplicar las dos metodologías propuestas para el cálculo del estado ecológico final son sensiblemente diferentes. En el caso de la metodología restrictiva (EE_{rest}) las clases malo (Ma), deficiente (D) y moderado (Mo), es decir, aquellas que no alcanzarían el estado ecológico bueno, se dan en un 44% de localidades. Este porcentaje sería de tan solo un 19% en el caso de la metodología ponderada. Por su parte, la clase muy bueno (MB) se da en un 7% de casos al utilizar el método restrictivo, frente a un 19% en el caso del método ponderado. La diferencia entre el porcentaje de estaciones clasificadas como en $Buen\ estado$ (B) es menor, de un 50% frente a un 62% mediante el cálculo de $EE_{rest}\ y\ EE_{pond}$ respectivamente.

Figura 66. Distribución de frecuencias de las clases de estado ecológico según las metodologías ponderada (EE-pond) y restrictiva (EE-rest) (D=*deficiente*; Mo=*moderado*; B=*bueno*; MB=*muy bueno*)

El análisis por tipologías de los resultados obtenidos se muestra en las **Figuras 67 y 68**. La interpretación de estos resultados y las conclusiones expuestas más adelante, podrían estar influenciados por las diferencias en el número de estaciones prospectadas en cada tipo de río (**Figura 66b**). Por lo tanto, los resultados aquí expuestos deben analizarse con cautela.

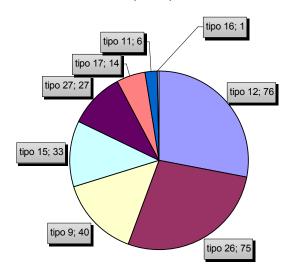
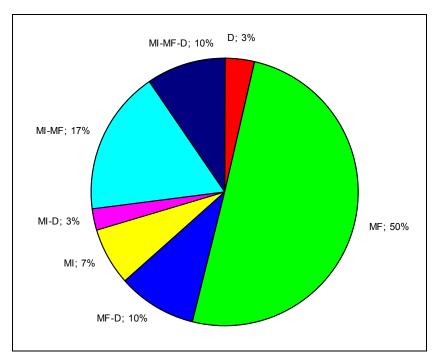



Figura 66b. Distribución por tipos de las estaciones para las que se pudo calcular el estado ecológico.

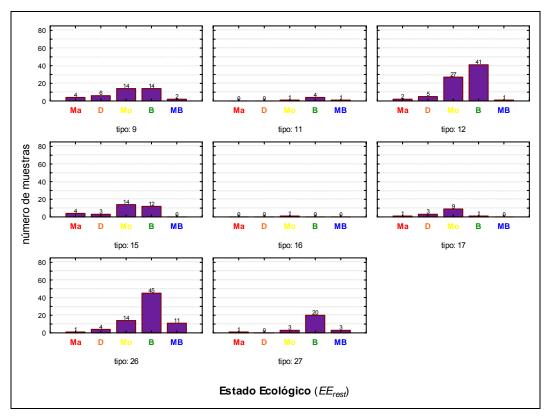
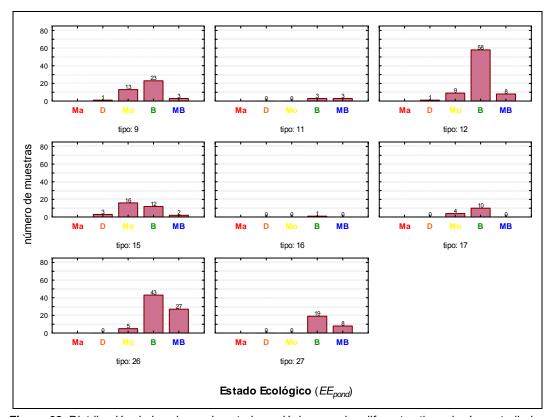


Figura 66c. Indicadores limitantes del estado ecológico y su porcentaje de influencia en las estimas realizadas. Se han contabilizado aquellas estaciones con estado ecológico moderado, deficiente y malo (115 estaciones).


D: diatomeas; MF: macrófitos; MI: macroinvertebrados

La **Figura 66c** muestra el análisis de los indicadores biológicos que en cada caso actuaron como limitantes para que la estación no alcanzara el buen estado ecológico. Se contabilizaron asi los casos en que cada uno de los indicadores resultaba moderado, deficiente o malo.

Se observa cómo el indicador de macrófitos (o su métrica asociada, el índice IVAM) fue el más restrictivo en las estimas, con un 87% de estaciones evaludas por debajo del buen estado, y un 50% de casos en los que fue el único indicador responsable de estas estimas. A los macroinvertebrados correspondió un 37% de estimas por debajo del buen estado, y al fitobentos o diatomeas, un 26%.

Figura 67. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según la metodología restrictiva (EE_{rest}). Se muestra el número de estaciones por clase y tipología.

Figura 68. Distribución de las clases de estado ecológico para los diferentes tipos de ríos estudiados según la metodología ponderada (EE_{pond}). Se muestra el número de estaciones por clase y tipología.

En cuanto al método de estimación restrictivo (EE_{rest}) podemos observar que:

- ➤ La clase *muy bueno* está representada en los tipos 9, 11, 12, 26 y 27, aunque en general con pocas estaciones, a excepción del tipo 26, con 11 estaciones. El estado *muy bueno* está ausente en los tipos 15, 16 y 17.
- La clase bueno predominan de forma especial en los tipos 11, 26 y 27.
- La clase *moderado* predomina en los tipos 15, 16 y 17, y comparte protagonismo con la clase *bueno* en el tipo 9.
- La clase *deficiente* es minoritaria y aparece en los tipos 9, 12, 15, 17 y 26. Esta clase está ausente de los tipos 11, 16 y 27.
- La clase de estado ecológico malo no está representada por ninguna estación.

En lo tocante al método de estimación ponderado (EE_{pond}) observamos las siguientes tendencias:

- ➤ La proporción de estaciones de clase *muy bueno* está especialmente representada en los tipos 11, 12, 26 y 27 (todos ellos cabeceras montañosas). Los tipos 9, y 15 presentan una baja proporción de esta clase de calidad, y está ausente en los tipos 16, 17.
- La clase bueno predomina en todos los tipos menos en el 15, donde es superada po la clase moderado.
- La clase *moderado* no está representada en los tipos 11 y 27 (tampoco en el 16, pero éste solo cuenta con una estación). Esta clase predomina en el tipo 15, es minoritaria en los tipos 12 y 17 y muestra una mayor proporción en el tipo 9
- La clase deficiente sólo se ha estimado en 5 estaciones de los tipos 9, 12 y 15.
- La clase de estado ecológico *malo* no está representada en las estaciones muestreadas.

En las siguientes figuras (**Figura 69**y **Figura 70**) se muestran las cartografías (obtenidas mediante SIG) del estado ecológico en las estaciones prospectadas durante 2007, obtenidas mediante ambas propuestas (ponderada y restrictiva).

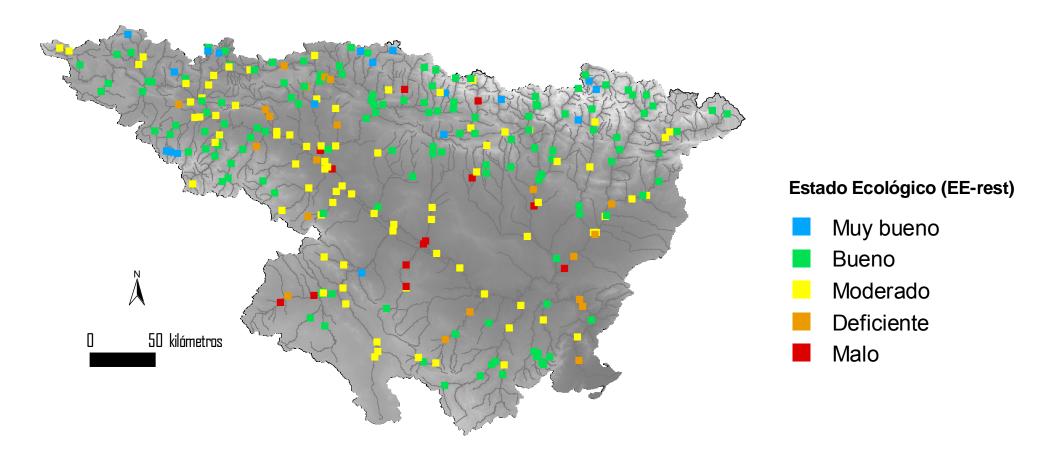


Figura 69. Estado ecológico de las masas de agua (ríos) en el año 2007. Método restrictivo.

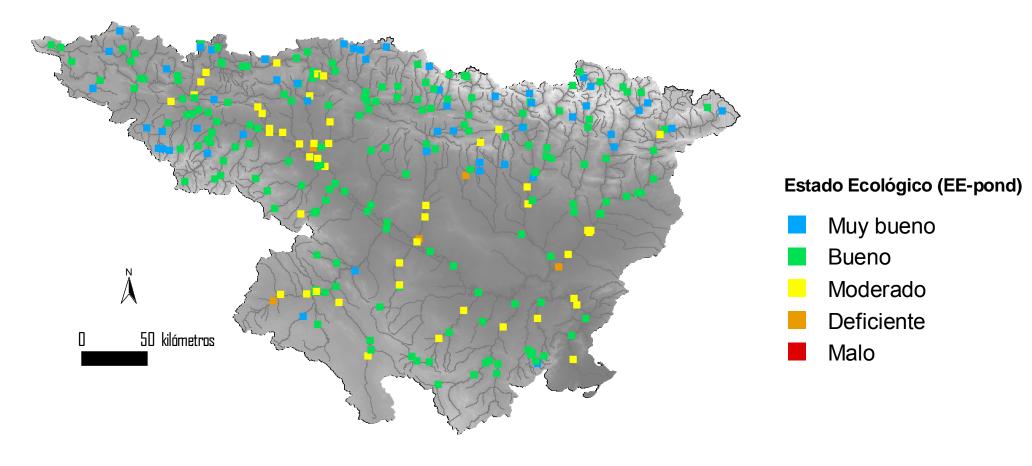


Figura 70. Estado ecológico de las masas de agua (ríos) en el año 2007. Método ponderado.

5. CONCLUSIONES GENERALES

A la vista de los resultados obtenidos, podemos extraer las siguientes conclusiones generales:

- Temperatura. Las temperaturas fueron significativamente diferentes entre tipos de ríos, como era de esperar dadas las características climáticas y altitudinales de los diferentes tipos. La temperatura del agua no superó los límites definidos como umbral para el buen estado (28 ° C) en ninguna estación.
- 2. **pH**. Las aguas estudiadas son aguas con una cierta basicidad, propia de sistemas con predominancia de geologías calizas. El pH resultó diferente entre tipos. Sólo cuatro estaciones presentaron un pH superior al umbral de basicidad admitido (pH>9). Ninguna presentó un pH inferior a 6.
- 3. **Conductividad**. Con valores inferiores a 1032 μS·cm⁻¹ en más del 75 % de los casos, la conductividad se encuentra, en general, dentro de los límites normales para aguas no contaminadas. Se observaron diferencias entre tipos, con los tipos 17 (media 1546.36 μS·cm⁻¹) y 11 (289,42 μS·cm⁻¹) presentando los contrastes más marcados. La variabilidad observada fue muy acentuada en algunos grupos. Por la influencia de la geología, no se consideró esta variable como indicador fisicoquímico.
- 4. Oxígeno. El 75% de las observaciones presentó valores superiores a 7.7 mg/l de O₂ disuelto, por lo que podemos concluir que, en general, la oxigenación de las aguas es óptima en la gran mayoría de estaciones prospectadas. Éste parámetro fue inferior a los límites definidos como umbral para el buen estado (5 mg/l) en cinco estaciones (un 2%)
- 5. **Nitratos.** Un 70% de las observaciones presentó concentraciones *muy bajas*, y alrededor de un 24% de las mediciones mostraron valores de *bajos* a *moderados*. Sólo el 1% de las estaciones prospectadas presentaron niveles *muy altos*. Por tanto, podemos concluir que, en general, la concentración de nitratos de las estaciones prospectadas no es alta en la mayoría de los casos. Los tipos correspondientes a cabeceras en áreas montañosas presentaron los valores más bajos de nitratos. El contenido en nitratos (mg/l NO₃) fue superior al límite definido como umbral para el *buen estado* (20 mg/l) en un 6% de estaciones
- 6. Nitritos. Aproximadamente el 68.3% de las observaciones presentó valores inferiores a 0,03 mg/l de NO₂. Se encontraron diferencias entre tipos de ríos, con los tipos 11 y 27 con los valores más bajos y los tipos 9 y 12, con los más altos. Éste parámetro fue superior al límite definido como umbral para el buen estado (0.15 mg/l) en un 11% de estaciones.
- 7. **Amonio**. Aproximadamente el 98% de las observaciones presentó valores inferiores a 0,2 mg/l NH₄. Éste parámetro resultó superior al límite establecido como umbral para el *buen estado* (0.40 mg/l) en un 2% de estaciones. Por tanto, un 98% de estaciones alcanzó el *buen estado* relativo a este parámetro.

- 8. **Fosfatos**. Un 82% de las observaciones presentó concentraciones de *moderadas* a *bajas* o *muy bajas* y alrededor de un 17% de las mediciones mostraron concentraciones de *moderada*s a *muy altas*. Se encontraron diferencias entre tipos de ríos, con los tipos 15 y 26 presentando los valores más elevados, frente al tipo 11, con los menores. Éste parámetro resultó superior al límite establecido como umbral para el *buen estado* (0.4 mg/l) en un 21% de estaciones. Se trata por tanto, del parámetro más restrictivo en la determinación del estado o condiciones físico-químicas
- IHF. En más del 95% de ocasiones, las estaciones alcanzaron un buen o muy buen estado hidromorfológico según este índice. Las diferencias entre tipos de masas de agua no fueron significativas
- 10. QBR. La calidad de las riberas, evaluada mediante el índice QBR fue bastante variable. los tipos 11, 26 y 27 (ríos de montaña) presentando riberas de mayor calidad y el tipo 17 (grandes ejes en ambiente mediterráneo) las de peor calidad. Con calidad moderada aparecieron el 18% de las estaciones y con calidad deficiente o mala, un 37%.
- 11. Variabilidad físico-química entre tipos. Las estaciones del tipo 9, caracterizadas por conductividades elevadas, mayor contenido de nutrientes, alta alcalinidad, carácter más térmico, y con peor calidad del hábitat fluvial y la ribera, ocuparon posiciones positivas en el ACP, seguidas por los tipos 12, 15 y 16, en posiciones más intermedias. La parte negativa correspondió al tipo 11, seguido de los tipos 27 y 26, de aguas más dulces y frías, de menor contenido en nutrientes y con riberas y hábitat mejor conservados
- 12. Variabilidad físico-química estacional. La variabilidad ambiental entre tipos de ríos quedó reflejada, principalmente, a lo largo del gradiente ambiental representado por el eje 1 del análisis de componentes principales (ACP). Las estaciones de los tipos 17, 16 y 9, caracterizadas por conductividades elevadas, carácter más térmico, mayor contenido de nitratos, y con peor calidad del hábitat fluvial y la ribera, ocuparon posiciones negativas, seguidas por los tipos 12 y 15, en posiciones más intermedias. La parte positiva correspondió a los tipos 27, 11 y 26, con estaciones a mayor altitud, de aguas más dulces, frías y oxigenadas, con menor contenido en nitratos y con riberas y hábitat fluvial de mejor calidad.
- 13. **Estado Físico-Químico**. Sólo el 3% de las estaciones presentaron un estado químico tal que no *permitía el buen funcionamiento del ecosistema*, según condiciones definidas en el presente.
- 14. **IBMWP**. Un 73% de las muestras presentaron valores por encima de 100. (Figura 31), y un 37% de muestras superaron los 150 puntos. Un 27% de estaciones presentó valores por debajo de 100. Los tipos 11, 26, y 27 (ríos de montaña) destacaron por encima de los demás. Los tipos 16 y 17 presentaron los valores más bajos.
- 15. **IASPT**. La calidad evaluada mediante el índice IASPT, fue en general bastante buena. Un 56% de las muestras presentaron valores por encima del valor 5. Los tipos 11, 27y 26 (ríos de montaña) destacaron por encima de los demás. Los tipos 16 y 17

presentaron, otra vez, los valores más bajos.

- 16. NFAM. Las diferencias entre tipos también resultaron significativas, con los tipos 11, 12 y 26 (ríos de montaña) destacando por encima de los demás. Los tipos 16 y 17 presentaron otra vez los valores más bajos.
- 17. **IVAM.** La calidad del ecosistema fluvial, evaluada mediante el índice IVAM, fue variable. Un 58% de las muestras presentaron valores correspondientes a las clases buena y muy buena. Las diferencias entre tipos de ríos también fueron significativas, con los tipos 11, 27 y 26 (ríos de montaña) destacando por encima de los demás tipos. Las estaciones del tipo 17 presentaron los valores más bajos de IVAM.

18. Estado Ecológico - Macroinvertebrados.

- Las tres métricas se comportan de manera similar a la hora de estimar la proporción de estaciones que no alcanzarían el *buen estado*, con valores del 17, 8 y 10% para el IBMWP, IASPT y NFAM respectivamente.
- Los contrastes más acentuados entre las métricas aparecen en las clases *muy bueno* y *bueno*. Por un lado, el número de familias (NFAM) y el IBMWP se comportan de forma muy similar, situando ambos en la clase *muy bueno* alrededor del 70% de estaciones, frente al 13 y 17% en la clase *bueno*. En contraste, el IASPT sitúa muchas más estaciones en la clase *bueno* (42%) frente a la clase *muy bueno*, con solo el 50% de estaciones.
- Los tipos 11,12, 26 y 27 presentan una gran mayoría de estaciones en la clase *muy bueno*. En contraste, las estaciones que presentan un estado ecológico inferior al *bueno* se encuentran mayoritariamente en los tipos 9 y 15. Tendencias parecidas ocurren para las otras dos variables, IASPT y NFAM.

19. Estado Ecológico – Macrófitos.

- Un 42% de las muestras mostraron un estado por debajo de bueno. Las clases mayoritarias fueron bueno, con un 37% de las muestras, y moderado, con un 31%. La clase muy bueno, con un 21%, presentó una frecuencia intermedia. Las clases deficiente y malo, con el 6% y el 5% de las muestras, respectivamente, fueron minoritarias.
- ➤ En los tipos 11, 26 y 27 (ríos de montaña) las clases <u>bueno</u> y <u>muy bueno</u>, son las clases mayoritarias. Las clases <u>bueno</u> y <u>moderado</u> predominan en los tipos 9, 12, 15. La clase moderado predomina en los tipos 16 y 17 y está ausente en el tipo 1. Las clases <u>deficiente</u> y <u>malo</u> son minoritarias.

20. Estado Ecológico - Fitobentos (Diatomeas)

- Un 14% de las muestras mostraron un estado por debajo de bueno. Las clases mayoritarias fueron muy bueno, con un 51% de las muestras, y bueno, con un 35%. La clase moderado, con un 12%, presentó una frecuencia intermedia. La clase deficiente, con sólo el 2%, y la clase malo, sin representación, fueron muy minoritarias.
- En los tipos 9, 11, 12, 26 y 27 las clases *bueno* y *muy bueno*, son mayoritarias. Las clases *bueno* y *moderado* predominan en los tipos 15 y 17. La clase *deficiente* es muy ocasional, y aparece sólo en los tipos 9 y 12 (dos estaciones en cada tipo). La clase *malo* no está representada en ningún tipo.

21. Estado Ecológico general

- ➤ En el caso de la metodología restrictiva (EErest) las clases malo (Ma), deficiente (D) y moderado (Mo), se dan en un 44% de localidades. Este porcentaje sería de tan solo un 19% en el caso de la metodología ponderada.
- La clase muy bueno (MB) se da en un 7% de casos al utilizar el método restrictivo, frente a un 19% en el caso del método ponderado.
- La diferencia entre el porcentaje de estaciones clasificadas como en Buen estado (B) es menor, de un 50% frente a un 62%, mediante el cálculo de EErest y EEpond, respectivamente.
- ➤ Dentro de las estaciones evaluadas por debajo del buen estado según el EErest, el indicador de macrófitos fue responsable del resultado de la evaluación negativa en un 87% de estaciones. Además, en un 50% de casos fue el único indicador responsable de estas estimas. A los macroinvertebrados correspondió un 37% y al fitobentos o diatomeas. un 26%.

Por tipologías, en cuanto al método de estimación **restrictivo** (**EE**_{rest}) podemos observar que:

- La clase *muy bueno* está representada en los tipos 9, 11, 12, 26 y 27, aunque en general con pocas estaciones. El estado *muy bueno* está ausente en los tipos 15, 16 y 17.
- La clase bueno predominan de forma especial en los tipos 11, 26 y 27.
- La clase *moderado* predomina en los tipos 15, 16 y 17, y comparte protagonismo con la clase *bueno* en el tipo 9.
- La clase *deficiente* es minoritaria y aparece en los tipos 9, 12, 15, 17 y 26. Esta clase está ausente de los tipos 11, 16 y 27.
- La clase de estado ecológico *malo* no está representada por ninguna estación.

En lo tocante al método de estimación ponderado (EEpond) observamos las siguientes tendencias:

- ➤ La proporción de estaciones de clase *muy bueno* está especialmente representada en los tipos 11, 12, 26 y 27 (todos ellos cabeceras montañosas). Los tipos 9, y 15 presentan una baja proporción de esta clase de calidad, y está ausente en los tipos 16, 17.
- La clase *bueno* predomina en todos los tipos menos en el 15, donde es superada po la clase moderado.
- ➤ La clase *moderado* no está representada en los tipos 11 y 27 (tampoco en el 16, pero éste solo cuenta con una estación). Esta clase predomina en el tipo 15, es minoritaria en los tipos 12 y 17 y muestra una mayor proporción en el tipo 9
- La clase deficiente sólo se ha estimado en 5 estaciones de los tipos 9, 12 y 15.
- ➤ La clase de estado ecológico *malo* no está representada en las estaciones muestreadas.

6. REFERENCIAS

ALBA-TERCEDOR J., PARDO I., PRAT N. Y PUJANTE A. (2005) Metodología para el establecimiento del estado ecológico según la Directiva Marco del Agua: protocolos de muestreo y análisis para invertebrados bentónicos". CHE, 2006. Disponible en http://oph.chebro.es/DOCUMENTACION/Calidad/dma/indicadoresbiologicos/protocolos.htm

BONADA, N. et al. (2004). Criterios para la selección de condiciones de referencia en los ríos mediterráneos. Resultados del proyecto GUADALMED. Limnetica 21(3-4) (2002): 99-114

CEMAGREF (1982). Etude des methods biologiques d'appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon, Agence de l'Eau Rhône-Méditerranée-Corse-Cemagref, Lyon, 218 pp.

CHE (2005). Metodología para el establecimiento del estado ecológico según la Directiva Marco del Agua: Invertebrados bentónicos, fitobentos, macrófitos, fitoplancton e ictiofauna.

CHE (2006) Establecimiento de condiciones de referencia y redefinición de redes en la cuenca del Ebro, según la Directiva 2000/60/CE (Expediente nº 27/04-A).

EUROPEAN COMISSION (2003) WFD CIS Guidance Document No. 13. Overall Approach to the Classification of Ecological Status and Ecological Potential

GOLTERMAN, H.L., CLYMO, R.S. y OHNSTAD, M.A.M. (1978) *Methods for physical and chemical analyses of freshwaters*. IBP Handbook 8. Blackwell Scientific Publications, London.

JÁIMEZ CUELLAR, P., PALOMINO MORALES, J.A., LUZÓN ORTEGA, J.M. Y ALBA TERCEDOR, J. (2005) Comparación de metodologías empleadas para la evaluación del estado ecológico de los cursos de agua. *Tecnología del agua* 26, 278: 42-57

MORENO, J.L., NAVARRO, C. y DE LAS HERAS, J. (2005) Índice Genérico de Vegetación Acuática (IVAM): propuesta de evaluación rápida del estado ecológico en los ríos ibéricos en aplicación de la Directiva Marco del Agua. *Tecnología del Agua*, 26: 48-53.

MORENO, J.L., NAVARRO, C. y DE LAS HERAS, J. (2006) Propuesta de un ndice de vegetacion acuatica (IVAM) para la evaluacion del estado trofico de los rios de Castilla-La Mancha: Comparacion con otros ndices bioticos. *Limnetica*, 25 (3): 821-838

MUNNÉ, A, C. SOLÁ & N. PRAT. (1998) Un índice rápido para la evaluación de la calidad de los ecosistemas de ribera. Tecnología del Agua, 175: 20-37.

ORTIZ, J. L. (2004) La directiva marco del agua (2000/60/CE): aspectos relevantes para el proyecto Guadalmed. Limnetica 21(3-4)(2002): 5-12.

PARDO I. et al. (2004) El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21(3-4): 115-133 (2002)

RODIER, J. (1984) L'analyse de l'eau. 7ème édition. Dunot (ed). 1365pp.

ROS, J. (1979) Prácticas de Ecología. Ed. Omega, 181 pp

SUÁREZ M.L. et al. (2004) Las riberas de los ríos mediterráneos y su calidad: el uso del índice QBR. Limnetica 21(3-4) (2002)

TER BRAAK, CJF y PRENTICE, I.C. (1988). A theory of gradient analysis. Advances in Ecological Research 18:271-313.

TER BRAAK, C.J.F., y SMILAUER, P. (1998). CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power (Ithaca, NY USA) 352 pp.

Anexo 1

Resultados Físico-Químicos e Hidromorfológicos

CEMAS	Tipo	Altitud	QBR	IHF	IVAM	Ta (°C)	рН	Cond (µS/cm)	O ₂ (mg/l)	N0 ₂ (mg/l)	N0 ₃ (mg/l)	NH ₄ (mg/l)	PO ₄ (mg/l)	SiO ₂ (mg/l)
0001	115	456												
0002	117	258	20	67	2.0	21.16	8.12	1124.0	11.34	0.040	13.06	0.10	0.050	0.370
0003	115	297	35	66	4.0	18.35	8.16	2532.0	8.90	0.090	19.30	0.10	0.398	0.660
0004	115	280	50	41	2.0	17.34	7.59	1708.0	7.17	0.020	17.52	0.10	0.306	0.540
0005	115	298	40	62		22.69	8.25	819.0	10.21	0.020	11.64	0.14	0.050	0.030
0009	116	528	30			19.70	7.41	1038.0	8.68	0.030	2.30	0.20	0.090	4.600
0013	112	458	60	57	5.3	17.83	8.20	242.0	10.31	0.015	1.00	0.10	0.050	0.260
0014	109	275	15	54	2.9	19.30	7.43	2166.0	6.91	0.030	13.80	0.40	0.180	7.300
0015 0017	109 115	370 97	55		F 2	24.23	8.03	4400.0	7.04	0.150	9.74	0.30	0.215	2.260
		775		G.E.	5.3	16.50		1180.0 346.0	9.79	0.020	1.00		0.215	1.590
0018 0022	126 126	682	75 40	65 65	5.6 3.6	20.60	8.38 8.57	263.9	6.85	0.020	7.52	0.12 0.10	0.050	6.200
0022	126	708	80	74	6.0	17.20	7.84	308.2	8.96	0.015	2.90	0.10	0.750	7.800
0023	115	126	00	74	0.0	17.20	7.04	300.2	0.30	0.013	2.90	0.10	0.030	7.000
0025	115	89	30		2.0	24.50	8.05	683.0	8.86	0.020	11.70	0.10	0.220	5.600
0027	117	-11	0	48	2.7	25.50	7.80	1087.0	7.81	0.015	1.00	0.10	0.170	5.800
0032	109	315												
0036	126	575	45	65	4.9	16.80	7.27	202.1	10.35	0.020	2.50	0.10	0.050	4.400
0038	112	434	90	68	4.8	15.80	7.74	469.2	8.36	0.015	1.70	0.10	0.110	4.700
0042	112	898	80	64	4.4	20.80	7.41	1182.0	7.44	0.060	3.18	0.10	0.200	8.400
0050	112	517	0	70	4.3	22.50	8.48	1443.0	7.66	0.030	3.33	0.10	0.050	6.030
0060	109	250	60	64		22.30	7.94	3077.0	8.10	0.700	32.84	0.13	0.215	7.290
0065	115	399	80	64	5.2	14.48	8.34	289.0	8.78	0.020	1.27	0.10	0.050	0.200
0068	126	392	70	67	5.5	17.78	8.49	503.0	10.61	0.020	2.78	0.10	0.050	0.030
0069	115	379	85	69		17.73	7.96	1066.0	7.88	0.260	4.68	0.14	0.215	0.810
0071	112	430	80	63		15.36	8.17	711.0	8.66	0.070	14.85	0.10	0.050	1.630
0074	115	449	45			18.02	7.84	532.0	6.67	0.140	15.94	0.20	0.705	0.550
0087	116	239	30	71	3.8	21.04	7.63	2309.0	9.60	0.200	17.39	0.11	0.215	2.810
0089	115	195	40	45	0.0	23.11	7.51	2236.0	3.61	0.200	9.58	0.27	1.042	0.740
0090	112	629	100	64	4.7	14.44	8.36	460.0	8.43	0.540	10.57	0.14	0.050	0.910
0092	112	547	60			22.50	8.05	593.0	7.18	0.060	3.95	0.10	1.730	3.880
0093	112	571	100			10.05	7.70	1110.0	7.00	0.400	4.00	4.07	4.500	4.540
0095	109	293	70	69	3.3	19.25	7.79	1419.0	7.80	0.490	1.00	1.07	1.502	1.540
0096	115	216	35	59	4.2	21.80	7.97	884.0	8.44	0.015	10.72	0.10	0.060	5.800
0097	112	323 434	100	76	5.3	18.70	7.80	246.6	7.93	0.015	2.19	0.10	0.050	2.400
0101 0106	115 109	534	65 50	58 56	5.3 4.6	19.83 21.40	8.88 7.98	327.0 449.0	10.53 8.38	0.040 0.015	2.28 1.00	0.10 0.10	0.050 0.050	2.370 3.300
0114	126	353	65	74	4.0	22.10	8.03	273.6	5.53	0.015	12.79	0.10	0.050	0.800
0114	109	478	10	75	3.3	21.30	7.67	872.0	8.91	0.030	4.39	0.10	0.030	4.500
0120	115	313	45	64	3.6	19.71	8.10	965.0	7.46	0.140	10.01	0.10	0.705	0.040
0123	112	557	100	62	3.0	16.46	8.11	307.0	9.12	0.020	1.00	0.15	0.050	0.350
0126	109	590	65	02		21.00	7.75	813.0	8.66	0.060	1.27	0.10	0.050	3.300
0146	126	483	100	71	4.6	18.50	7.79	307.5	8.28	0.015	1.85	0.10	0.050	4.600
0159	126	445	65	69	5.9	17.85	8.39	272.0	8.98	0.020	1.67	0.10	0.050	0.070
0161	112	563	100											
0162	117	240	55	71	3.8	23.49	8.06	1390.0	10.65	0.070	1.82	0.10	0.215	0.760
0163	117	36	60		2.8	24.30	7.83	1135.0	5.74	0.060	13.50	0.10	0.190	6.200
0165	112	453												
0166	112	590	75	71	5.6	22.80	8.21	463.5	8.44	0.015	7.31	0.10	0.120	7.620
0176	109	125	10											
0179	112	477	85	66		17.85		630.0	8.03	1.550	29.21	0.27	1.685	1.720
0180	126	516	75	68	4.4	12.29	7.92	344.0	7.61	0.020	6.05	0.10	0.050	0.610
0184	112	585	25	62	5.5	18.50	7.75	841.0	7.39	0.020	2.30	0.10	0.050	7.100
0197	109	493	25	71	2.7	16.70	7.76	923.0	10.11	0.015	3.90	0.10	0.140	5.000
0203	127	928	85	71	4.0	14.30	7.69	171.3	9.61	0.015	1.00	0.10	1.510	3.530
0205 0206	115 126	376 636	75 95	64 62	4.6	16.04 19.20	9.01 8.24	325.0 362.1	10.56 9.30	0.040 0.015	1.00 8.41	0.10 0.30	0.050 0.230	1.170 7.900
0206	115	106	85	70	3.3	20.70	8.06	659.0	9.08	0.015	11.71	0.30	0.230	4.800
0207	115	456	50	70	J.Z	21.80	7.82	669.0	5.71	0.015	1.52	0.10	1.580	4.800
0208	117	176	30			21.00	1.02	003.0	5.71	0.010	1.02	0.10	1.300	7.100
0214	109	282	10	62	3.7	24.90	8.51	1532.0	17.94	0.090	16.10	0.10	0.050	2.630
0214	109	190	55	15	2.0	22.33	8.44	1533.0	9.05	0.250	15.56	0.10	1.410	0.810
0217	126	395	30	71	3.0	19.91	7.97	950.0	8.70	1.450	11.85	0.36	0.306	0.040
0218	109	424	50	72	2.0	24.13	7.81	882.0	6.48	0.040	3.87	0.26	0.184	4.050
0219	115	98	15	39	3.5	25.60	7.97	787.0	9.11	0.020	14.80	0.10	0.740	6.000
0221	126	627	100	54	5.7	12.71	8.02	188.0	8.40	0.070	1.76	0.10	0.050	0.260
0225	109	116						-	-	-				
0226	109	158	85	71	4.0	24.38	8.13	1180.0	8.65	0.080	9.73	0.10	0.050	2.310
0227	109	248												
0228	115	277												
0241	126	618	100	75	5.3	12.20	7.32	203.8	10.39	0.015	1.00	0.10	0.050	5.750
0242	112	435	95	77	3.7	17.50	7.85	1665.0	10.61	0.030	4.10	0.10	0.050	7.300
0243	112	443	25	58	3.8	21.00	7.61	1272.0	7.29	0.030	2.70	0.10	0.050	9.900
0244	112	842	45	79	3.7	16.80	7.33	1359.0	7.93	0.040	2.68	0.10	0.400	8.500
0247	115	259	75	59		21.77	7.70	2393.0	6.70	0.070	7.01	0.10	0.050	0.150
0504	115	279	85	66	2.7	20.78	8.04	1159.0	7.17	0.020	16.53	0.10	0.306	0.090
0505	117	265	60	62	4.0	20.89	8.08	1089.0	9.27	0.080	12.70	0.10	0.215	2.760
0506	117	250	30	56	3.6	20.57	7.86	1313.0	6.83	0.060	14.13	0.10	0.215	1.390
0508	117	239	35	62	3.6	23.86	7.88	1833.0	7.04	0.160	17.56	0.12	0.050	1.850
0511	117	-11	35		4.0	25.13	7.70	1113.0	7.29	0.015	1.00	0.10	0.230	5.300

CEMAS	Tino	Altitud	OBR	IHE	IVAM	Ta (°C)	рН	Cond (µS/cm)	O ₂ (mg/l)	N0 ₂ (mg/l)	N0 ₃ (mg/l)	NH ₄ (mg/l)	PO ₄ (mg/l)	SiO ₂ (mg/l)
0512	117	5	40		I V AIVI	25.50	7.75	1104.0	7.13	0.015	1.00	0.10	0.210	4.300
0516	126	995	100	66	6.0	14.10	7.26	85.0	9.41	0.015	1.00	0.10	0.050	8.130
0517	126	847	60	60	5.2	14.80	7.32	60.5	9.11	0.015	1.00	0.10	0.560	6.620
0523	112	475	0	63	5.2	16.30	7.41	382.5	8.09	0.020	2.70	0.10	0.210	5.800
0528	112 127	488	75 75		5.0	11.70	0.07	315.0	10.35	0.050	1.00	0.45	0.050	2.040
0529 0530	115	857 278	45	55 62	5.9 4.3	14.78 21.34	8.27	946.0	7.88	0.050 0.030	9.81	0.15 0.10	0.050 0.050	2.940 0.850
0534	126	597	100	59	5.7	22.34	8.24	154.0	7.70	0.020	1.00	0.10	0.050	1.110
0537	109	499												
0538	127	1438												
0539	126	998	00	00	- A	40.50	7.07	000.0	40.04	0.000	4 44	0.40	0.050	0.000
0540 0541	109 112	583 515	80	69	5.1	16.58	7.87	836.0	10.04	0.020	1.44	0.10	0.050	3.980
0549	115	138												
0551	109	458	100	75	5.4	20.46	7.83	507.0	7.48	0.550	1.00	0.10	0.827	0.810
0561	126	655	100	72	5.5	17.46	8.28	335.0	9.48	0.020	1.15	0.39	0.050	0.030
0562	115	240	90	57	2.0	21.30	8.80	1064.0	8.76	0.110	2.44	0.10	0.050	0.650
0564 0565	112 109	561 239	35	64	4.0	16.53	8.05	586.0	6.82	0.500	15.22	0.17	0.306	1.570
0569	126	499	40	60	3.0	17.54	8.22	387.0	8.33	0.180	15.42	0.14	0.398	0.810
0570	109	356	10	68	2.0	20.03	8.10	916.0	10.64	0.040	16.96	0.10	0.153	1.520
0571	115	357	35	69		19.55	8.06	719.0	8.52	0.080	1.00	0.12	1.011	0.030
0572	112	399	70	71		15.77	8.18	835.0	8.28	0.110	14.49	0.10	0.215	1.390
0574 0577	112 115	489 337	85 80	70 66	4.3	14.40 20.13	7.64 8.15	367.7 882.0	8.20 7.40	0.015 0.140	1.80 6.71	0.10 0.10	0.120 0.215	5.400 0.940
0577	109	233	15	00		20.13	0.10	UOZ.U	7.40	U. 14U	0.71	0.10	U.Z 15	0.940
0583	109	418	90	88		21.30	7.96	723.0	10.01	0.030	1.50	0.10	0.050	6.700
0586	116	443	60			21.40	7.96	1047.0	8.10	0.020	2.40	0.10	0.050	3.700
0590	117	138												
0592 0593	117 109	157 561	35 95	55	3.2 4.9	23.52 18.70	7.74 7.88	2410.0 852.0	6.53 6.58	0.030 0.015	27.34 2.50	0.26 0.10	0.337 0.050	1.440 3.700
0593	126	531	65	57	6.3	13.60	7.30	244.7	10.04	0.030	1.00	0.10	0.030	5.950
0595	115	434	30	70	5.2	22.20	7.59	676.0	7.80	0.015	1.68	0.10	7.260	4.320
0605	0	15	0		3.2	25.00	7.76	1118.0	7.61	0.015	1.00	1.00	0.110	5.800
0608	126	404	70	74	4.7	16.90	7.58	240.9	8.19	0.015	1.78	0.10	0.050	2.900
0609 0612	112 109	599 533	95 80	55 64	4.0 3.2	14.00 18.97	7.40	2114.0 592.0	7.26 10.26	0.015 0.020	4.06 1.18	0.10 0.10	0.870 0.050	5.950 0.850
0612	127	1496	25	58	5.3	15.90	8.25 8.04	495.0	6.94	0.020	1.00	0.10	0.050	1.790
0619	127	1009	100	70	6.4	9.50	7.27	126.5	11.53	0.015	1.39	0.10	0.050	6.500
0621	126	338	100	82	5.5	23.50	8.35	238.5	5.80	0.015	3.68	0.10	0.050	1.300
0623	112	552	70	37	5.1	21.40	7.88	431.0	11.25	0.015	1.00	0.10	0.050	3.500
0625	115	270	80	62	4.9	19.30	7.73	339.7	6.59	0.015	1.82	0.10	0.050	3.500
0627 0628	115 112	145 854	75	71	4.1	17.60	7.80	596.0	8.64	0.015	8.17	0.10	0.050	4.300
0638	127	986	60	58	6.0	14.70	7.79	188.5	8.44	0.015	3.15	0.10	0.150	12.300
0643	126	735	20	49	6.1	12.78	8.17	151.0	7.61	0.020	1.25	0.10	0.050	0.090
0644	126	673	90	68	6.0	16.08	7.68	70.0	7.38	0.020	1.00	0.15	0.050	0.240
0647	115	297	30	67	4.7	17.34	7.80	2039.0	7.26	0.020	8.01	0.10	0.398	0.240
0649 0650	126 115	552 291	80 70	58 67	5.8 5.0	13.35	7.58 8.07	214.0 798.0	8.64 8.35	0.040	1.75 13.93	0.15 0.10	0.050 0.215	0.110 0.500
0657	117	192	70	07	0.0	20.00	0.01	7 50.0	0.00	0.000	10.50	0.10	0.210	0.500
0701	112	497	65	69	5.9	14.10	8.19	500.0	8.75	0.030	7.55	0.10	0.050	0.160
0702	126	505	100	71	5.3	19.65	9.25	332.0	10.08	0.040	1.00	0.10	0.050	0.440
0703	109	552	80	54	5.0	19.66	7.96	466.0	7.58	0.015	5.81	0.10	0.050	1.350
0705 0706	127 112	817 482	75 25	68 59	7.3 5.9	13.50 15.40	7.67 7.61	151.8 358.0	8.99 10.60	0.015 0.015	2.85 1.00	0.10 0.10	0.050 0.050	4.700 3.000
0802	115	337	80	76	5.8	22.04	8.00	443.0	8.84	0.020	1.00	0.17	0.050	0.410
0804	127	813	60	71	5.9	17.78	8.95	316.0	8.98	0.020	1.00	0.10	0.050	2.630
0806	109	506	30	60	4.3	21.00	7.73	732.0	8.30	0.015	1.00	0.10	0.070	4.200
0808	115	436	100	62	4.6	18.17	8.38	314.0	9.88	0.310	1.00	0.10	0.050	0.060
0810 0815	126 126	256 512	95 100	68	3.0 5.3	19.60 12.59	7.90 8.28	254.5 398.0	7.51 9.45	0.015 0.020	3.79 2.48	0.10 0.10	0.050 0.050	4.300 0.560
0816	126	615	65	67	2.0	18.22	8.59	291.0	7.67	0.020	1.00	0.10	0.050	0.740
1004	126	658	100	75	4.7	16.20	7.82	280.0	7.85	0.015	1.00	0.10	0.630	4.560
1006	126	812	100	68	5.8	18.40	8.18	292.3	9.45	0.015	1.00	0.10	0.190	2.260
1017 1024	112 112	479 568	25 75	53 70	4.3 4.5	14.35 16.46	8.16 8.10	1199.0 566.0	8.99 7.41	0.040 0.420	10.16 14.81	0.10 0.18	0.050 0.398	0.390 1.150
1024	126	516	75	73	4.5	14.47	8.06	381.0	8.20	0.420	6.60	0.18	0.050	0.810
1028	115	479	15	. 5		18.40	7.80	477.0	7.03	0.080	14.96	0.10	0.889	1.160
1032	112	461												
1034	112	712	75	71	5.2	12.35	7.39	521.0	6.33	0.020	5.69	0.10	0.050	0.180
1036	112 109	529	20	61	2.9	16.62	8.42	1738.0	11.64	0.240	23.59	0.15	0.215	0.130
1037 1038	109	456 350	45 0	66 64	2.6 3.3	16.87 16.73	8.32	2160.0 2908.0	10.41 8.70	0.100 0.120	25.16 27.83	0.10 0.21	0.306 0.398	0.090 0.180
1039	112	751	10	63	4.2	11.07	8.30	470.0	8.08	0.020	6.08	0.10	0.050	1.150
1045	127	1500		60		11.70	8.24	223.0	9.22	0.130	2.91	0.14	0.050	1.260
1047	126	600	80			18.49	8.82	387.0	8.38	0.140	1.00	0.10	0.050	1.130
1056	126	616	95 100	57 56	4.8 5.8	20.61	8.78	455.0	8.78	0.020	1.00	0.10	0.050	2.830
1062 1064	126 112	654 413	65	56 61	ე.გ	16.03 12.52	8.42 8.21	208.0 270.0	9.61 8.01	0.020 0.020	1.14 1.32	0.10 0.10	0.050 0.050	0.090 0.240
1007			, 55	U.	·	12.02	U.Z.1	£1 0.0	0.01	0.020	1.02	0.10	0.000	J.270

1966 128 882 90 88 56 1351 827 177.0 8.82 0.020 2.81 0.10 0.050 0.020 1070 128 742 100 77 8.31 1.74 8.15 3.42 0.896 0.020 1.44 0.10 0.050 0.020 1072 128 742 100 77 8.31 1.74 8.15 1.85 0.020 0.020 1.44 0.10 0.050 0.020 1.00 1072 128 742 100 77 8.31 1.74 8.15 1.85 1.85 0.020 0.020 1.44 0.10 0.050 0.020 1.00 1.00 0.020 1.00 0.020 1.00 0.020 1.00 0.020 0.020 1.00 0.020 0.020 1.00 0.020 0	CEMAS	Tipo	Altitud	QBR	IHF	IVAM	Ta (°C)	рН	Cond (µS/cm)	O ₂ (mg/l)	N0 ₂ (mg/l)	N0 ₃ (mg/l)	NH ₄ (mg/l)	PO ₄ (mg/l)	SiO ₂ (mg/l)
1987 168 742 100 73 63 11,47 826 1500 9.43 9.020 1.44 9.10 9.000 0.000 0.000 1.000							13.51	8.27		8.82			0.10		
1087 1097 1007															
1987 1971 1951 195 59 58 1588 839 2770 9.25 0.039 1.00 0.12 0.0590 1.510 1.008 127 127 158 50 1.02 1.02 1.02 1.0090 1.00 1.00 0.10 0.0501 1.007 1.008 128 1.008 128 1.008				100	73	5.3	11.47	8.25	155.0	9.43	0.020	1.44	0.10	0.050	0.090
1988 127 871 6 88 20 16.08 825 257.0 8.70 0.190 1.00 1.00 0.000 1.070 1989 128 771 170 78 40 1910 8.43 339.0 1.057 0.052 1.00 0.12 0.050 0.050 1982 113 428 85 72 5.1 1.750 8.31 339.0 1.051 1.002 1.00 0.12 0.050 0.050 1982 113 428 85 72 5.1 1.750 8.31 339.0 1.051 1.002 1.00 0.10 0.050 0.050 1991 156 314 85 70 4.0 21.0 8.05 344.2 6.89 0.015 4.88 0.10 0.050 3.000 1901 156 314 85 70 4.0 21.0 8.05 344.2 6.89 0.015 4.88 0.10 0.050 3.000 1908 127					59	5.8	15.86	8.30	277.0	9.25	0.030	1.00	0.12	0.050	1.810
1986 1711 100 76 40 1910 843 319 0 10.51 1.00.00 1.00 0.12 0.050 0.500 1096 1036 1190 1036 1.700 1918 8 8.00 0.015 3.11 0.10 0.10 0.300 0.300 1096 1038 1190 80 5.2 1.400 7.40 1918 8 8.00 0.015 3.11 0.10 0.10 0.300 0.300 1190 1038 1190 80 5.2 1.400 7.40 1918 8 8.00 0.015 3.11 0.10 0.400 1.3000 1190 1038 1390 8 1.400 1.400 1.3000 1.400				5	58										
1986 126 172 482 85 72 5.1 17.60 831 309.0 9.04 0.020 1.00 0.10 0.006 0.700 1906 126 170 80 80 5.2 1.460 7.40 19.88 8.00 0.015 1.01 0.101 0.005 0.700 1917 126 344 95 70 4.0 21.00 805 3442 2.680 0.016 4.88 0.10 0.005 3.000 1918 126 177 107 8.4 4.1 10.74 10.1 10.1 0.16 2.39 0.10 0.005 3.000 1918 180 177 10 10 8.0 8.1 10.00 10.005 3.000 1.00 1.00 1.00 1.00 1.00 1919 1979 100 8.0 8.0 13.10 7.58 17.97 10.35 0.015 2.20 0.10 0.050 2.800 1911 197 1837 75 80 8.4 10.00 7.42 2244 9.83 0.015 2.02 0.10 0.050 2.800 1911 197 1837 75 80 8.4 10.00 7.42 2244 9.83 0.015 2.02 0.10 0.050 2.800 1912 197 197 197 197 10.50 0.015 2.00 0.10 0.050 2.800 1913 197 197 197 197 197 10.55 0.015 2.00 0.10 0.050 2.800 1913 197 1															
1996 126 1190 20 80 52 1490 7-40 1988 8.00 0.015 3.11 0.10 0.140 13.900 1101 126 134 45 70 40 2.120 8.05 3.442 6.88 0.015 0.015 2.39 0.10 0.050 3.900 1105 127 1087 65 79 52 1500 7.65 1251 1101 0.015 2.39 0.10 0.050 4.500 1106 128 80 100 78 4.1150 7.49 91.1 9.20 0.015 2.39 0.10 0.050 4.500 1106 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 10.10 128 177 128 1															
1105 127 138 314 95 70 4.0 2130 305 3442 9.89 0.015 4.88 0.10 0.050 3.000 1105 127 138 3807 687 69 78 64 50 67 67 67 67 67 67 67 6															
196 126 850 100 76 44 1190 749 911 920 0.015 2.93 0.10 0.050 7.200 1191 126 778 100 88 68 13.0 7.53 179.7 10.35 0.015 1.31 0.10 0.050 4.900 1191 178 778 100 88 68 13.0 7.53 179.7 10.35 0.015 1.31 0.10 0.050 4.900 1191 178					70										
1100 126 877 10 8 6.8 13.10 7.5 7.9 7.0 10.35 0.015 1.31 0.10 0.050 4.900 4.900 1111 127 837 78 81 6.4 10.30 7.42 224.1 0.63 0.015 2.20 0.10 0.050 2.900 1114 112 6.33 45 70 3.8 18.30 7.71 244.1 0.80 0.015 2.58 0.10 0.050 2.900 1119 115 162 80 82 40 21.50 7.75 1064.0 7.89 0.015 2.58 0.10 0.250 9.200 1119 115 162 80 85 24 0.7 14.14 20 2.88 0.10 0.050 2.58 0.10 0.250 9.200 1119 115 162 80 85 24 0.7 14.14 2.0 2.88 0.10 0.050 0.050 0.050 0.050 1120 1220 1															
1113 127 878 100 88 68 13.10 753 1797 10.35 0.015 13.1 0.10 0.050 4.990 1111 127 333 45 70 38 18.30 7.71 24.41 0.19 0.015 1.85 0.10 0.055 2.700 1111 112 6.33 46 70 3.8 18.30 7.71 24.41 0.19 0.015 1.85 0.10 0.055 2.700 1120 127 736 45 59 6.2 14.16 8.27 2.855 10.18 0.040 1.00 0.10 0.056 0.040 1.10 1.25 1					76	4.4	11.90	7.49	91.1	9.20	0.015	2.93	0.10	0.050	7.200
1114 112 837 75 61 64 10.30 7.42 224.1 9.63 0.015 2.02 0.10 0.050 2.200 1114 112 833 45 70 38 13.30 7.71 244.1 9.18 0.015 1.85 0.10 0.050 2.700 1119 115 162 80 52 40 21.50 7.75 1064.0 7.89 0.015 2.580 0.10 0.259 9.200 1110 127 90 45 95 52 14.16 82.7 285.0 10.18 0.040 1.00 0.10 0.050 0.0410 1120 127 127 128					58	6.8	13.10	7.53	179.7	10.35	0.015	1.31	0.10	0.050	4.900
1119 115 162 80 52 4.0 21.50 7.75 1044.0 7.89 0.015 22.80 0.10 0.290 9.200 1120 127 780 45 59 52 14.18 82.72 285.0 0.108 0.040 1.00 0.010 0.050 0.040 1121 127 620 80 81 5.7 21.14 81.9 270.0 8.20 0.020 1.00 0.28 0.050 0.220 0.030 1123 126 338 50 50 6.5 22.98 8.01 439.0 9.05 0.020 1.10 0.23 0.050 0.230 1123 126 338 50 50 6.5 22.98 8.01 439.0 9.05 0.020 1.11 0.23 0.050 0.050 0.111 1126 127 916 0.12 0.050			837	75	61		10.30					2.02			
1121 127 780 45 59 52 14.16 827 285.0 10.18 0.040 1.00 0.10 0.050 0.040 1.121 127 620 80 81 57 21.14 81 270.0 820 0.020 1.00 0.12 0.050 0.220 1.122 126 528 58 57 3.6 1521 8.09 280.0 9.04 0.020 1.59 0.10 0.12 0.050 0.230 1.123 128 338 50 50 65 22.98 80.1 439.0 9.05 0.020 1.59 0.12 0.050 0.370 1.127 127 820 85 71 6.7 1288 8.19 331.0 9.65 0.020 1.59 0.12 0.050 0.370 1.128 127 954 100 67 6.5 1382 835 246.0 10.77 0.020 1.00 0.14 0.050 0.040 1.132 128 228 100 64 40 17.11 8.34 300.0 9.85 0.040 1.00 0.21 0.050 0.420 1.133 127 894 40 67 6.2 16.15 7.94 300.0 9.85 0.040 1.00 0.21 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 9.85 0.040 1.00 0.10 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 9.85 0.040 1.00 0.10 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 9.11 0.015 1.00 0.10 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 9.11 0.015 1.00 0.10 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 8.11 0.015 1.00 0.10 0.050 0.420 1.133 127 894 40 57 6.2 16.15 7.94 300.0 8.11 1.00 1.00 1.00 0.050 0.760 1.135															
1121 127 620 80 61 57 21.14 819 270 0 8.20 0.020 1.00 0.28 0.050 0.220 0.330 1123 126 338 50 50 6.6 1298 801 439 0 906 0.020 1.01 0.023 0.050 0.370 1127 127 228 80 1.05															
1123 126 528 55 57 36 1521 8.09 290.0 9.04 0.020 1.00 0.12 0.050 0.330 1127 127 820 85 71 5.7 1288 8.19 331.0 9.85 0.020 1.59 0.12 0.050 0.370 1128 127 916 1.20 1.															
1128 127 916						3.6						1.00	0.12		
1128 127 916															
1132 126 528 1006 47 6.5 13.82 8.35 246.0 10.77 0.020 1.00 0.14 0.050 0.070 1132 126 528 1006 44 91 71.11 8.34 300.0 9.95 0.040 1.00 0.21 0.050 0.420 1133 127 894 40 67 6.2 16.61 7.94 308.0 9.11 0.015 1.00 0.10 0.050 0.420 1135 126 494 60 65 5.3 16.51 8.17 246.0 8.70 0.020 1.00 0.10 0.050 0.760 1137 126 1410 85 76 6.9 10.92 8.27 259.0 9.18 0.020 1.00 0.10 0.050 0.760 1139 112 489 65 61 3.3 24.18 8.24 487.0 8.42 0.020 1.00 0.10 0.13 0.050 0.590 1141 112 412 1.05 6.4 13.65 7.38 442.0 4.84 0.340 1.00 0.10 1.1216 2.890 1141 112 412 1.05 6.84 1.05 7.72 308.1 11.79 0.020 1.00 0.10 0.11 1.216 2.890 1150 126 686 100 2.030 7.82 227.0 7.98 0.015 1.00 0.10 1.790 3.610 1150 115 416 80 2.00 2.00 7.82 227.0 7.98 0.015 1.00 0.10 1.590 1.150 1161 117 212 55 69 4.0 24.00 7.82 227.0 7.98 0.015 1.00 0.10 0.705 0.040 1161 117 212 55 69 4.0 24.00 7.82 2246.0 1.035 0.250 2.354 0.10 0.705 0.040 1177 1178				85	71	5.7	12.88	8.19	331.0	9.65	0.020	1.11	0.23	0.050	0.110
1133 127 894 40 67 62 1681 894 894 70 62 1681 794 3080 9.15 0.040 1.00 0.010 0.050 0.640 1134 128 842 842 8 8 8 8 8 8 8 8 8				100	67	6.5	13.82	8.35	246.0	10.77	0.020	1.00	0.14	0.050	0.070
1134 126 642 645 645 646 700 760	1132	126	528	100	64	4.9	17.11	8.34	300.0	9.95	0.040	1.00	0.21	0.050	0.420
1135 126 494 60 55 53 15.51 8.77 246.0 8.70 0.020 1.00 0.10 0.050 0.760 1.150 1.137 126 1410 95 76 6.9 10.92 8.27 2.950 9.18 0.020 1.00 0.10 0.050 0.590 1.150 1.139 112 489 65 61 3.3 24.18 8.24 487.0 8.42 0.020 1.00 0.31 0.050 0.590 0.590 1.141 112 412 1.141 1.141 412 1.141 1.141 413 413 414 4.777 3.06.1 4.141 4.141 4.151 4.161 8.0 4.141 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 8.0 4.151 4.161 4.161 4.171 4.161 4.161 4.171 4.161 4.161 4.171 4.161 4.161 4.161 4.161 4.171 4.161 4.				40	57	6.2	16.61	7.94	308.0	9.11	0.015	1.00	0.10	0.050	0.640
1137 126 1410 95 76 6.9 10.92 8.27 295.0 9.18 0.020 1.00 0.10 0.050 0.590 1140 126 1215 100 56 54 13.56 7.38 442.0 4.84 0.340 1.00 0.10 0.10 11.216 2.890 1141 112 412 12 1141 112 412 1141 112 412 1141 112 412 1141 112 412 1150 126 688 100 20.30 7.82 227.0 7.98 0.015 1.00 0.10 1.730 3.610 1.150 1150 126 688 100 20.30 7.82 227.0 7.98 0.015 1.00 0.10 1.730 3.610 1.150 1154 115 451 85 1.150				60	55	53	16.51	8 17	246.0	8 70	0 020	1 00	0.10	0.050	0.760
1190 112 489 65 61 3.3 24.18 8.24 487.0 8.42 0.020 1.00 0.31 0.050 0.590 0.590 1140 126 1215 100 65 5.4 13.56 7.38 444.0 4.84 0.340 1.00 0.10 11.216 2.890 1141 112 412 0.00 0.00 0.00 0.00 0.00 0.00 1.2730 3.610 1150 126 886 100 0.00 20.30 7.82 227.0 7.98 0.015 1.00 0.10 1.580 1.150 1156 115 416 90 0.00 0.00 0.00 0.00 0.00 0.00 1.580 1.150 1157 115 315 338 55 67 4.0 19.55 8.07 98.30 7.82 0.020 15.76 0.10 0.705 0.040 1167 117 33 35 0.00 25.50 7.87 1.1250 7.69 0.015 1.00 0.10 0.245 0.780 1.167 117 33 35 0.00 2.500 7.82 2.246.0 10.35 0.250 23.54 0.10 0.245 0.780 1.169 1126 334 35 0.00 7.67 1.1250 7.69 0.015 1.00 0.10 0.190 5.800 1.173 1.26 1030 100 7.5 3.1880 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.800 1.177 1126 748 90 70 5.3 18.80 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.800 1.177 112 450 66 5.6 12.00 7.71 15.20 6.843 0.015 3.00 0															
1144 112 812 0	1139	112	489	65	61	3.3	24.18	8.24	487.0	8.42	0.020	1.00	0.31	0.050	0.590
1149 126 844 10 70 3.8 14.40 7.77 308.1 11.79 0.020 1.00 0.10 1.730 3.610 1150 126 866 100 20.30 7.82 227.0 7.98 0.015 1.000 0.10 1.580 1.150				100	56	5.4	13.56	7.38	442.0	4.84	0.340	1.00	0.10	11.216	2.890
1150 126 866 100				10	70	3.8	14.40	7 77	308.1	11 70	0.020	1.00	0.10	1 730	3 610
1154 115 451 85 85 86 87 9830 7.82 0.020 15.76 0.10 0.705 0.040 1164 117 212 25 59 4.0 24.60 7.82 2246.0 10.35 0.250 23.54 0.10 0.245 0.760 1167 117 33 35 25.60 7.97 1125.0 7.69 0.015 1.00 0.10 0.190 5.800 1169 112 834 90 79 4.5 14.10 7.44 1212.0 10.18 0.015 1.62 0.10 0.050 8.090 1173 126 1030 100 75 6.0 12.40 7.29 4.41 10.38 0.015 1.62 0.10 0.050 8.090 1174 126 748 90 70 5.3 18.80 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.860 1175 117 123 35 60 5.2 22.10 8.57 1542.0 8.43 0.015 2.05 0.10 0.560 6.23 1176 117 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 4.870 6.940 1178 111 1054 10.06 85 8.95 7.05 27.23 10.13 0.015 1.00 0.20 0.050 8.53 1183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.300 1184 126 770 100 15.10 7.30 127.5 9.66 0.020 3.30 0.10 0.050 3.300 1193 112 912 90 91 4.2 21.00 8.04 518.0 9.79 0.020 3.00 0.10 0.050 3.300 1203 112 606 70 49 3.6 24.80 8.36 1559.0 2.26 0.030 3.30 0.10 0.050 3.300 1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 5.300 1219 112 800 40 79 4.9 15.06 8.22 632.0 10.16 0.050 19.79 0.10 0.050 5.300 1225 109 783 122 124 125 133 133 143 145					70	5.0									
1157 115 338 55 67 4.0 19.55 8.07 963.0 7.82 0.020 15.76 0.10 0.705 0.040 1164 117 212 55 59 4.0 24.60 7.82 2246.0 10.35 0.250 23.54 0.10 0.245 0.760 1167 117 33 35 25.60 7.97 1125.0 7.69 0.015 1.00 0.10 0.190 5.800 1169 112 8.34 90 79 4.5 14.10 7.44 1212.0 10.18 0.015 1.00 0.10 0.050 8.090 1173 126 1030 100 75 6.0 12.40 7.29 44.11 10.38 0.015 1.00 0.10 0.040 7.100 1174 126 748 90 70 5.3 18.80 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.860 1175 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 0.650 6.230 1176 117 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 0.050 6.860 1178 111 1054 100 88 5.8 59.5 7.05 272.3 10.13 0.015 1.00 0.20 0.050 8.530 1183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.700 1193 112 912 90 91 4.2 21.00 8.04 518.0 9.79 9.020 3.30 0.10 0.050 3.300 1191 126 1072 45 62 4.5 14.80 7.59 7190 8.48 0.030 3.30 0.10 0.050 7.200 1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 7.200 1205 112 606 70 9 2.03 7.67 798.0 7.25 0.000 1.16 0.000 0.050 7.200 1219 112 800 40 9 8.6 4.0 20.00 8.22 6.320 0.10 0.050 7.500 1219 112 800 40 9 8.6 4.0 20.00 8.22 6.320 0.015 1.00 0.050 0.081 1227 109 227 9 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 1.100 0.10 0.050 7.500 1219 112 800 40 9 80 4.4 18.20 7.70 49.50 8.20 9.00 19.79 0.10 0.050 5.000 1228 109 427 5 43 3.3 23.90 7.65 760.0 9.16 0.015 1.00 0.10 0.050 5.000 1228 109 421 5 43 3.3 23.90 7.65 760.0 9.16 0.015 1.00															
1168															
1169 117 33 35															
1169 112 834 90 79 4.5 14.10 7.44 1212.0 10.18 0.015 1.62 0.10 0.050 8.090 1173 126 1030 100 75 6.0 12.40 7.29 44.1 10.38 0.015 1.00 0.10 0.10 0.480 7.100 1174 128 748 90 70 5.3 18.80 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.860 1175 112 633 5 60 5.2 22.10 8.67 1542.0 8.43 0.015 2.05 0.10 0.560 6.230 1177 112 456 0.66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 4.870 6.940 1178 111 1054 100 68 5.8 9.50 7.05 272.3 10.13 0.015 1.00 0.20 0.050 8.530 1183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.700 1184 126 770 100 15.10 7.30 127.5 9.66 0.020 3.30 0.10 0.050 3.300 1191 126 1072 43.6 62.45 14.80 7.59 719.0 8.48 0.030 3.30 0.10 0.050 3.300 1203 112 912 90 91 4.2 21.00 8.04 518.0 9.79 0.020 3.300 0.10 0.050 8.300 1207 117 769 80 65 20.20 8.26 8.36 1595.0 12.66 0.030 3.10 0.10 0.050 9.600 1208 199 574 80 66 4.0 20.00 8.22 821.0 7.46 0.015 1.80 0.10 0.050 7.200 1219 112 800 40 79 4.9 15.06 8.22 632.0 10.16 0.090 19.79 0.10 0.050 7.500 1238 109 63 44 12.60 7.08 980.0 5.90 0.015 2.88 0.10 0.050 7.500 1234 112 1993 65 74 4.4 12.60 7.08 980.0 5.90 0.015 1.80 0.10 0.050 5.300 1233 109 440 9.65 4.60 5.60 5.60 4.00 5.300 1.16 0.050 5.300 1.225 109 480 9.80 4.40 4.20 6.50 6.50 6.64 0.015 1.10 0.050 5.300 1.226 1.228 112 842 5 54 6.0 2.50 7.65 760.0 9.16 0.015 1.10 0.10 0.050 5.300 1.226 1.228 112 842 5 54 6.0 2.50 7.65 760.0 9.16 0.015 1.10 0.10 0.050 5.300 1.226 1.228 112 842 5 54 6.0 2.50 7.65 6.32.0 10.16 0.090 1.979 0.10 0.050 5.300 1.22					33	7.0									
1174 126 748 90 70 5.3 18.80 7.57 585.0 9.30 0.015 1.00 0.10 0.050 6.860 1.175 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 0.560 6.230 1.177 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 0.560 6.930 1.178 111 1054 100 68 5.8 9.50 7.05 272.3 10.13 0.015 1.00 0.20 0.050 8.530 1.183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.700 1184 126 770 100 15.10 7.30 127.5 9.66 0.020 3.30 0.10 0.050 3.300 1.191 126 1072 45 62 4.5 4.80 7.59 719.0 8.48 0.030 3.30 0.10 0.050 3.300 1.193 112 912 90 91 4.2 2.100 8.04 518.0 9.79 0.020 3.00 0.10 0.050 8.300 1.203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 9.600 1.207 112 769 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 2.31 0.30 0.060 7.200 1.218 112 600 70 20.30 7.67 798.0 7.25 0.080 1.16 0.10 0.050 2.200 1.218 112 600 70 20.30 7.67 798.0 7.25 0.080 1.16 0.10 0.050 0.081 1.225 109 763 1.225 109 763 1.226 1.225 109 763 1.226 1.225 109 763 1.226 1.226 1.225 109 763 1.226 1.226 1.225 109 763 1.226 1.226 1.225 109 1.226	1169	112	834	90			14.10	7.44	1212.0	10.18	0.015	1.62	0.10	0.050	8.090
1175 112 633 5 60 5.2 22.10 8.57 1542 0 8.43 0.015 2.05 0.10 0.560 6.230 1177 112 456 0 66 5.6 19.20 7.71 910.0 8.61 0.015 3.50 0.10 0.4870 6.940 1178 111 1054 100 68 5.8 9.50 7.05 272.3 10.13 0.015 1.00 0.20 0.050 8.530 1183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.700 1184 126 1072 45 62 4.5 14.80 7.59 719.0 8.48 0.030 3.30 0.10 0.050 3.300 1191 126 1072 45 62 4.5 14.80 7.59 719.0 8.48 0.030 3.30 0.10 0.050 7.200 1193 112 912 90 91 42 21.00 8.04 518.0 9.79 0.020 3.00 0.10 0.050 7.200 1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 9.600 1207 112 769 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 2.31 0.30 0.060 7.200 1210 116 307 65 0.00 8.21 2821.0 8.04 8.20															
1177 112 456 0 66 5.6 19.20 7.71 910.0 8.81 0.015 3.50 0.10 4.870 6.940 1178 111 1054 100 68 5.8 9.50 7.05 272.3 10.13 0.015 1.00 0.20 0.050 8.530 1183 111 966 100 15.20 7.78 82.8 9.80 0.020 2.50 0.10 0.050 3.700 1184 126 770 100 15.10 7.30 127.5 9.86 0.020 3.30 0.10 0.050 3.300 1191 126 1072 48 62 45 48.80 7.59 719.0 8.48 0.030 3.30 0.10 0.050 7.200 1193 112 912 90 91 4.2 21.00 8.04 518.0 9.79 0.020 3.00 0.10 0.050 8.300 1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 8.300 1207 112 769 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 2.31 0.30 0.060 7.200 1208 109 574 80 66 4.0 20.00 8.22 821.0 7.46 0.015 1.80 0.10 0.050 2.200 1218 112 800 70 20.30 7.67 798.0 7.25 0.080 1.16 0.10 0.050 5.000 1219 112 800 40 79 4.9 15.06 8.22 632.0 10.16 0.090 19.79 0.10 0.050 0.081 1225 109 763 1227 122 842 5 54 6.0 20.50 7.65 760.0 9.16 0.015 2.68 0.10 0.050 5.300 1238 109 261 40 58 3.3 23.90 7.35 1639.0 7.50 0.015 2.68 0.10 0.050 5.300 1238 109 261 40 58 3.3 23.90 7.35 1639.0 7.50 0.015 2.68 0.10 0.050 5.300 1238 109 261 40 58 3.3 3.30 7.65 1639.0 7.50 0.015 1.00 0.10 0.050 3.300 0.050 1.330 1.255 112 894 60 60 64 65 65 65 65 65 65 0.050 7.550 0.015 0.050 0.050 1.330 1.255 112 894 60 60 64 65 65 65 65 65 65 65															
1178															
184 126 770 100					68	5.8						1.00	0.20	0.050	
1919															
1193 112 912 90 91 4.2 21.00 8.04 518.0 9.79 0.020 3.00 0.10 0.050 8.300 1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 9.600 1207 112 769 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 2.31 0.30 0.060 7.200 1208 109 574 80 66 4.0 20.00 8.22 821.0 7.46 0.015 1.80 0.10 0.050 2.200 1210 116 307 65					62	45									
1203 112 606 70 49 3.6 24.80 8.36 1559.0 12.66 0.030 3.10 0.10 0.050 9.600 1207 112 769 80 53 2.0 18.60 7.31 1934.0 6.50 0.015 2.31 0.30 0.060 7.200 1208 109 574 80 66 4.0 20.00 8.22 821.0 7.46 0.015 1.80 0.10 0.050 2.200 1210 116 307 65															
1208 109 574 80 66 4.0 20.00 8.22 821.0 7.46 0.015 1.80 0.10 0.050 2.200 1210 116 307 65			606						1559.0	12.66					
1210															
1216					66	4.0	20.00	8.22	821.0	7.46	0.015	1.80	0.10	0.050	2.200
1219							20.30	7.67	798.0	7.25	0.080	1.16	0.10	0.050	5.000
1227 109 227	1219	112	800		79	4.9									
1228 112 842 5 54 6.0 20.50 7.65 760.0 9.16 0.015 11.00 0.10 0.050 7.500 1234 112 1093 65 74 4.4 12.60 7.08 980.0 5.09 0.015 2.68 0.10 0.050 5.300 1235 109 480 90 80 4.4 18.20 7.70 467.0 7.50 0.015 1.00 0.10 0.050 4.500 1238 109 261 40 58 3.3 18.30 7.65 1639.0 7.80 0.020 1.00 0.10 0.020 6.400 1239 109 121 5 43 3.3 23.90 7.35 1535.0 6.64 0.015 6.95 0.10 0.050 4.800 1240 112 649 75 69 6.5 16.90 7.55 453.0 9.55 0.015 1.00 0.10 0.050 3.100 1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.050 3.500 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.050 5.100 1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1270 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1271 199 432 3.3 4.28 8.07 389.0 7.36 0.020 3.100 0.10 0.050 1.280 1295 117 180 65 68 3.3 42.80 8.07 389.0 7.75 0.020 3.10 0.10 0.050 1.280 1296 117 180 65 68 3.3 42.80 3.38 8.81 0.015 2.05 0.10 0.050 5.800 1296 117 180 65 68 3.3 24.03 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1296 117 180 65 68 3.3 24.03 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1297 117 38 20 2.9 25.30 7.64 1170 5.75 0.130 13.80 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24															
1234 112 1093 65 74 4.4 12.60 7.08 980.0 5.09 0.015 2.68 0.10 0.050 5.300 1235 109 480 90 80 4.4 18.20 7.70 467.0 7.50 0.015 1.00 0.10 0.050 4.500 1238 109 261 40 58 3.3 18.30 7.65 1639.0 7.80 0.020 1.00 0.11 0.220 6.400 1239 109 121 5 43 3.3 23.90 7.35 1535.0 6.64 0.015 6.95 0.10 0.050 4.800 1240 112 649 75 69 6.5 16.90 7.55 453.0 9.55 0.015 1.00 0.10 0.050 3.100 1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.306 1.480 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.050 5.600 1261 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1277 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 1294 127 1032 30 69 5.1 15.10 7.69 35.8 8.81 0.015 2.05 0.10 0.050 5.800 1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800 1298 127 1164 35 69 6.6				5	54	6.0	20.50	7 65	760.0	9 16	0.015	11.00	0.10	0.050	7 500
1235 109 480 90 80 4.4 18.20 7.70 467.0 7.50 0.015 1.00 0.10 0.050 4.500 1238 109 261 40 58 3.3 18.30 7.65 1639.0 7.80 0.020 1.00 0.10 0.220 6.400 1239 109 121 5 43 3.3 23.90 7.35 1535.0 6.64 0.015 6.95 0.10 0.050 4.800 1240 112 649 75 69 6.5 16.90 7.55 453.0 9.55 0.015 1.00 0.10 0.050 3.100 1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.0					74										
1239 109 121 5 43 3.3 23.90 7.35 1535.0 6.64 0.015 6.95 0.10 0.050 4.800 1240 112 649 75 69 6.5 16.90 7.55 453.0 9.55 0.015 1.00 0.10 0.050 3.100 1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.306 1.480 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.05	1235						18.20	7.70		7.50	0.015	1.00			
1240 112 649 75 69 6.5 16.90 7.55 453.0 9.55 0.015 1.00 0.10 0.050 3.100 1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.306 1.480 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.050 8.400 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.															
1251 112 564 85 79 4.6 15.27 8.33 461.0 7.73 0.120 7.15 0.17 0.050 1.330 1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.306 1.480 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.050 8.400 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.050 8.400 1261 112 943 60 60 4.8 20.00 7.22 687.0 8.20 0.015 1.45 0.30 0.															
1252 112 391 15 57 3.2 21.32 7.96 1052.0 7.29 0.130 24.30 0.10 0.306 1.480 1253 112 858 60 46 5.6 18.30 7.94 585.0 8.34 0.015 1.00 0.10 0.050 3.500 1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.050 8.400 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.200 5.600 1263 112 943 60 60 4.8 20.00 7.22 687.0 8.20 0.015 3.27 0.10 0.050 5.100 1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0	1251				79	4.6	15.27	8.33	461.0	7.73	0.120	7.15		0.050	1.330
1255 112 869 10 44 3.2 14.70 7.52 758.0 7.01 0.015 6.40 0.10 0.050 8.400 1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.200 5.600 1263 112 943 60 60 4.8 20.00 7.22 687.0 8.20 0.015 3.27 0.10 0.050 5.100 1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1270 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1277 109 432 3.3 14.28 8.07 389.0 7.36 0.030 1.00 0.10 0.050 1.245 <t< td=""><td>1252</td><td></td><td></td><td></td><td>57</td><td></td><td>21.32</td><td>7.96</td><td></td><td>7.29</td><td>0.130</td><td>24.30</td><td></td><td></td><td></td></t<>	1252				57		21.32	7.96		7.29	0.130	24.30			
1260 112 653 100 76 2.0 27.90 7.73 1392.0 4.51 0.110 1.57 0.10 0.200 5.600 1263 112 943 60 60 4.8 20.00 7.22 687.0 8.20 0.015 3.27 0.10 0.050 5.100 1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1270 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1277 109 432 3.3 14.28 8.07 389.0 7.36 0.030 1.00 0.10 0.050 1.040 1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
1263 112 943 60 60 4.8 20.00 7.22 687.0 8.20 0.015 3.27 0.10 0.050 5.100 1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1270 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1277 109 432 3.3 14.28 8.07 389.0 7.36 0.030 1.00 0.10 0.050 1.040 1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 1285 109 539 95 73 5.9 18.00 8.17 370.0 9.31 0.020 1.00 0.12 1.011 0.370															
1264 112 811 100 70 4.8 19.40 7.73 890.0 6.59 0.015 1.45 0.30 0.300 6.900 1270 127 1731 57 6.8 8.67 8.04 136.0 9.98 0.015 1.00 0.10 0.050 1.280 1277 109 432 3.3 14.28 8.07 389.0 7.36 0.030 1.00 0.10 0.050 1.040 1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 1285 109 539 95 73 5.9 18.00 8.17 370.0 9.31 0.020 1.00 0.12 1.011 0.370 1294 127 1032 30 69 5.1 15.10 7.69 35.8 8.81 0.015 2.05 0.10 0.050 5.800	1263	112	943	60	60	4.8	20.00	7.22	687.0	8.20	0.015	3.27	0.10	0.050	5.100
1277 109 432 3.3 14.28 8.07 389.0 7.36 0.030 1.00 0.10 0.050 1.040 1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 1285 109 539 95 73 5.9 18.00 8.17 370.0 9.31 0.020 1.00 0.12 1.011 0.370 1294 127 1032 30 69 5.1 15.10 7.69 35.8 8.81 0.015 2.05 0.10 0.050 5.800 1295 117 180 65 68 3.3 24.23 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 2.370 <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>890.0</td> <td></td> <td>0.015</td> <td></td> <td></td> <td></td> <td></td>				100					890.0		0.015				
1280 109 419 60 69 4.5 16.79 8.12 369.0 7.75 0.020 3.10 0.10 0.050 2.370 1285 109 539 95 73 5.9 18.00 8.17 370.0 9.31 0.020 1.00 0.12 1.011 0.370 1294 127 1032 30 69 5.1 15.10 7.69 35.8 8.81 0.015 2.05 0.10 0.050 5.800 1295 117 180 65 68 3.3 24.03 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 2.370 1297 117 38 20 2.9 25.30 7.64 1170.0 5.75 0.130 13.80 0.10 0.210 <t< td=""><td></td><td></td><td></td><td></td><td>57</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					57										
1285 109 539 95 73 5.9 18.00 8.17 370.0 9.31 0.020 1.00 0.12 1.011 0.370 1294 127 1032 30 69 5.1 15.10 7.69 35.8 8.81 0.015 2.05 0.10 0.050 5.800 1295 117 180 65 68 3.3 24.03 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 2.370 1297 117 38 20 2.9 25.30 7.64 1170.0 5.75 0.130 13.80 0.10 0.210 5.200 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050				60	69										
1295 117 180 65 68 3.3 24.03 7.78 2275.0 8.29 0.020 24.28 0.10 0.429 4.040 1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 2.370 1297 117 38 20 2.9 25.30 7.64 1170.0 5.75 0.130 13.80 0.10 0.210 5.200 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800	1285		539		73		18.00		370.0	9.31	0.020	1.00	0.12	1.011	0.370
1296 117 121 50 64 3.1 24.50 8.08 2625.0 8.20 0.100 24.35 0.10 0.050 2.370 1297 117 38 20 2.9 25.30 7.64 1170.0 5.75 0.130 13.80 0.10 0.210 5.200 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800															
1297 117 38 20 2.9 25.30 7.64 1170.0 5.75 0.130 13.80 0.10 0.210 5.200 1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800															
1298 127 1164 35 69 6.6 12.00 6.91 161.9 10.24 0.015 1.64 0.10 0.050 5.800					04										
					69										
· · · · · · · · · · · · · · · · · · ·	1299	127	727	70	71	7.2	12.90	7.52	147.2	10.33	0.015	1.89	0.10	0.050	6.400

1906 1906 2004 40 57 21 10 131 75 90 7.88 0.040 12.27 0.10 0.10 4.400 1.000 1.01 1.	CEMAS	Tipo	Altitud	QBR	IHF	IVAM	Ta (°C)	рН	Cond (µS/cm)	O ₂ (mg/l)	N0 ₂ (mg/l)	N0 ₃ (mg/l)	NH ₄ (mg/l)	PO ₄ (mg/l)	SiO ₂ (mg/l)
1302 112 493 39 68 32 17.22 18.15 788 0 10.01 0.020 10.029 0.10 0.050 0.200 1303 109 332 20 54 2.75 18.25 8.06 0.027 0.75 0.75 0.110 58.16 0.10 0.050 0.110 1304 101 332 20 54 2.75 18.25 8.06 0.027 0.75 0.050 0.110 0.050 0.050 0.110 1304 102 332 70 66 18 18.25 8.06 0.050 0.050 0.050 0.050 0.050 1314 103 337 70 66 18 17.16 18.32 350 0.67 0.050 0.050 0.050 0.050 1315 128 471 80 63 49 17.16 832 350 0.67 0.050 0.050 0.050 0.050 0.050 1315 128 471 80 63 49 17.16 832 350 0.67 0.050 0.050 0.050 0.050 0.050 1315 128 471 80 63 49 17.16 832 350 0.67 0.050 0	1304	109	204	40	57		21.10	8.13	719.0		0.015		0.40	0.100	4.400
1906 1907 391 20 64 27 1825 806 10970 976 0.110 0.6614 0.10 0.0690 0.225 0.110 0.0500 112 0.0500 112 0.0500 0.255 0.0500 0.255 0.0500 0.255 0.0500 0.255 0.0500 0.255 0.055 0.	1306	115	452	90			20.86	8.03	655.0	7.26	0.040		0.10	0.184	0.420
1390 112 393 65 71 18.60 8.12 69.10 7.80 0.030 18.23 0.10 0.050 0.220 1314 112 393 75 66 40 19.22 788 2890 6.61 0.030 15.12 0.10 0.050 0.600 0.3131 112 393 78 68 40 19.22 788 2890 6.61 0.030 15.12 0.10 0.050 0.600 0.3131 110 0.050 0.050 0.3131 110 0.050 0.050 0.050 0.3131 110 0.050 0				35		3.2					0.020	103.29	0.10	0.050	0.200
1311 112 397 90 90 1621 803 476 0 8.58 0.260 3.88 0.18 0.215 0.090 1314 109 30 75 80 1922 786 2859 0 6.16 0.030 1.512 0.10 0.050 0.050 1315 128 471 80 83 49 17.6 8.32 380.0 8.73 0.050 3.21 0.10 0.050 0.050 1316 128 471 80 83 49 17.6 8.32 380.0 8.73 0.050 3.21 0.10 0.050 0.050 1317 128 471 80 80 40 17.6 8.32 380.0 8.73 0.050 3.21 0.10 0.050 0.050 1318 112 491 70 60 3.3 18.0 7.60 3.21 9.29 0.050 2.34 0.10 0.050 7.702 1318 112 491 70 60 3.3 18.0 7.60 3.21 9.29 0.050 2.34 0.10 0.050 7.702 1319 112 491 70 60 3.8 17.0 0.27 1045 0 9.59 0.150 3.85 0.10 0.280 7.702 1319 112 491 70 60 3.8 17.0 0.27 1045 0 9.59 0.150 3.85 0.10 0.280 7.702 1319						2.7									
1314 109 338 75 68 1092 788 26390 6.61 0.030 15.12 0.10 0.050 0.030 1317 128 497 180 683 47.16 8.32 8.99 8.77 0.100 3.21 0.10 0.050 0.030 1317 128 497 36 55 13.44 8.11 418.0 9.85 0.020 5.11 0.10 0.215 0.570 1337 172 497 3.010 3.02 0.100 0.250 0.000 0.050 9.770 1337 172 497 3.010 3.02 0.000 0.050 9.770 1337 172 497 3.010 3.02 0.000 0.050 9.770 1334 172 498 50 68 5.0 1500 3.08 4.93 8.83 0.020 6.82 0.10 0.050 0.050 3.980 1334 172 687 3.000 0.050 0.050 3.000 0.050 3.000 0.050 3.000 0.050 0.050 3.000 0.050 0.0															
1315 128 471 80 83 48 1716 832 390.0 873 0.100 3.21 0.10 0.090 0.090 0.091 0.131 126 621 10 70 3.5 7.5 3.44 861 416.0 9.86 0.020 8.20 0.11 0.100 0.255 9.720 0.131 0.101 0.255 9.720 0.131 0.101 0.255 9.720 0.131 0.101 0.255 9.720 0.131 0.101 0.255 9.720 0.131															
1317 126 497 35 67 53 1344 851 418.0 9.85 0.020 5.11 0.10 0.215 0.270 1338 112 494 70 65 38 15.00 7.66 321.2 9.29 0.000 2.34 0.10 0.050 7.020 1338 112 494 70 66 38 15.00 7.66 321.2 9.29 0.000 2.34 0.10 0.050 7.020 1347 112 696 0.68 5.05 15.00 808 42.3 0.88 0.015 2.20 0.10 0.050 7.020 1347 190 367 10 69 46 15.77 8.51 1717.0 11.25 0.020 4.20 0.10 0.050 0.030 1359 190 367 10 69 46 15.77 8.51 1717.0 11.25 0.020 4.20 0.10 0.050 0.030 1351 112 890 5 68 42 15.29 7.79 905.0 5.83 2.750 2.89 11.10 0.050 0.030 1358 112 890 5 68 44 17.20 7.99 1130.0 0.03						4.0									
1338 112 621 10 70 3.0 2150 820 2488.0 10.85 0.020 8.20 0.10 0.050 9.720															
1338 112 494 70 88 38 185 0.756 3212 9.28 0.080 2.34 0.10 0.050 7.020 3.991 3.341 112 695 50 86 50 15.00 2.08 428.3 3.883 0.015 2.02 0.10 0.260 7.620 3.991 3.341 112 491 20 66 3.8 17.8 8.7 17.70 11.25 0.022 4.29 0.10 0.050 7.620 0.030 3.37 10 69 4.6 13.77 8.51 17.70 11.25 0.022 4.29 0.10 0.050 0.030 3.901															
1342 192 491 20 66 38 1780 827 10450 9.99 0.160 3.85 0.10 0.260 7.620 0.331 376 109 287 109 387 109 387 109 387 109 387 109 387 109 387 109 388 381															
1347 109	1341	112	659	50	85	5.0	15.00	8.08	428.3	8.83	0.015	2.02	0.10	2.680	3.690
1350 109 267	1342	112		20	66	3.8	17.80	8.27	1045.0	9.59	0.160	3.85	0.10	0.260	7.620
1356 112 890 6 63 42 15.29 7.79 995.0 5.83 2.790 28.91 0.30 0.101 0.980 0.304 112 27 15 65 13 2.150 7.33 2483.0 6.95 0.015 1.73 0.10 0.000 0.000 0.300 1.308 112 886 10 90 44 17.20 7.59 1130.0 9.03 0.030 3.02 0.10 0.0200 5.100 0.306 113 117 11				10	69	4.6	18.77	8.51	1717.0	11.25	0.020	4.29	0.10	0.050	0.030
1356 112 127 15 55 31 2150 733 2438 0 6.95 0.015 1.73 0.10 0.060 10.900 10.308 112 817 40 89 42 19.80 7.52 1093 0 7.38 0.020 17.50 0.10 0.000 5.100 1395 112 817 40 89 42 19.80 7.52 1093 0 7.38 0.020 17.50 0.10 0.050 6.000 1395 112 818 55 6.77 12.50 7.53 10.50 7.73 0.015 6.64 0.10 0.050 6.000 13975 112 518 55 6.77 12.50 7.63 3250 10.94 0.015 1.00 0.10 0.050 3.300 1395 112 11															
1988 112 889 10 59 44 1720 759 1130 0 903 0.030 3.02 0.10 0.200 5.100 1.308 112 117 40 80 42 1880 7.52 10893 0.738 0.020 17,500 0.10 0.010 0.050 8.000 1375 112 115 55 6.7 1250 7.63 326.0 0.1094 0.015 1.00 0.10 0.050 8.000 1375 112 115 55 6.7 1250 7.61 3.260 0.1094 0.015 1.00 0.10 0.050 8.000 1.376 119 80 112 80 80 80 80 80 80 80 8															
1986 112 817 40 69 42 1980 752 1093.0 7.38 0.020 17.50 0.10 0.610 7.900 8.600 1375 112 518 55 6.7 1250 7.63 326.0 10.94 0.015 1.00 0.10 0.050 8.600 3376 109 80 125															
1988 199 649 15 51 47 2040 727 1665 0 7.73 0.015 6.64 0.10 0.050 8.600 1376 109 80 109 80 109 80 100 80 100 80 100 80 100 80 100 100 100 100 100 100 100 1330 1376 125 155 56 42 107 104 8.23 6.23 0.93 0.920 10621 0.10 0.050 6.000 1382 109 517 25 64 2.0 214 8.23 6.23 0.93 0.920 10621 0.10 0.050 6.500 1393 136 755 80 67 78 83 430 702 71.9 1124 0.080 1.00 0.10 0.050 6.500 1393 126 785 75 78 83 1068 844 253.0 9.60 0.020 1.81 0.10 0.050 0.050 0.030 1393 126 785 75 78 83 1068 844 253.0 9.60 0.020 1.81 0.10 0.050 0.030 0.030 1.00 0.050 0.000 0.030 1.00 0.050 0.000 0.030 0.0000 0.0000 0.0000 0.0000 0.000															
1376 192 80 50 67 1250 763 3260 10.94 0.015 1.00 0.10 0.090 3.300 3.300 3.301 125 890 55 54 5.8 2.000 7.61 5.200 8.60 0.015 1.00 0.10 0.050 6.000 3.301 3381 117 376 80 67 6.3 14.90 7.02 7.19 11.24 0.080 1.00 1.00 0.10 0.080 6.000 3.301 3387 3187 585 75 76 6.3 14.90 7.02 7.19 11.24 0.080 1.00 1.00 0.10 0.080 6.000 3.301 326 326 58 75 76 6.3 14.90 7.02 7.19 11.24 0.080 1.00 0.10 0.090 6.000 3.301 326 326 6.8 5.5 6.8 5.5 16.78 7.60 4.710 3.86 0.210 1.00 1.00 0.10 0.080 0.030 3.996 126 812 65 68 5.5 18.78 7.60 47.10 3.86 0.210 1.00 0.10 1.730 4.990 0.030 3.996 126 812 65 68 5.5 18.78 7.60 47.10 3.86 0.210 1.00 0.10 1.41 9.071 2.830 3.991 126 881 100 78 5.5 13.26 8.27 37.90 10.84 0.040 1.00 0.12 0.888 2.260 1.403 112 810 78 88 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.080 4.900 1.403 112 810 78 88 3.3 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.080 4.900 1.411 127 127 130 10.08 5.3 1.24															
1376 199 80 50 56 58 58 2080 761 529.0 8.60 0.015 1.00 0.10 0.050 6.000 1382 109 517 25 64 2.0 2104 8.23 6.23.0 9.33 0.920 1.0621 0.10 0.050 6.000 1387 111 757 80 67 63 14.99 702 71.9 11.24 0.080 1.00 0.10 0.050 6.000 1393 126 785 75 78 63.1 10.88 8.44 25.50 9.60 0.020 1.81 0.10 0.050 0.030 1393 126 785 75 78 63.1 10.88 8.44 25.50 9.60 0.020 1.81 0.10 0.050 0.030 1398 126 806 80 63 55 1878 876 0.471.0 3.88 0.210 1.00 1.41 9.071 2.830 1399 127 635 76 85 75 78 53.78 82 73.78 0.10 1.00 1.00 1.41 9.071 2.830 1400 112 755 60 80 83 55 1878 765 77.0 8.75 0.000 0.020 0.020 0.12 0.886 2.250 1400 112 755 60 85 85 3.26 82.73 780 0.000 10.21 0.030 0.000 0.000 0.000 1411 127 600 80 63 65 12.78 600 0.000 10.21 0.000					0.										
1382 109 517 25 64 20 21.04 8.23 623.0 9.93 0.920 106.21 0.10 0.050 2.590 1387 111 975 80 67 63 1490 7.020 7.19 11.24 0.080 1.00 0.10 0.090 6.600 0.390 1388 126 785 78 6.3 10.08 8.44 253.0 9.60 0.020 1.81 0.10 0.050 0.030 1398 126 801 56 85 0.0 6.48 144 370.3 11.10 0.015 1.00 0.10 1.1730 4.980 1398 126 805 80 63 5.5 13.68 8.27 379.0 10.84 0.040 1.00 0.14 1.730 4.980 1400 112 755 80 8 75 88 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 1404 112 543 45 71 3.2 14.90 7.58 605.0 10.21 0.030 3.50 0.20 0.060 4.900 1411 112 259 30 64 3.8 2.00 7.53 2.465.0 6.96 0.020 1.90 0.10 0.060 2.2700 1417 127 1050 85 65 53 14.07 7.24 34.6 7.91 0.015 1.00 0.15 0.00 0.060 2.2700 1421 127 1017 100 63 4.0 12.30 7.55 7.83 9.25 0.015 1.92 0.10 0.050 0.050 0.520 1423 126 474 65 71 5.6 13.54 8.01 8.10 8.96 7.64 0.020 3.97 0.10 0.050 0.050 0.520 1423 126 474 65 71 5.6 13.54 8.01 8.11 8.90 7.55 8.90 0.055 0.0															
1383 11 975 80 87 6.3 14.90 7.02 71.9 11.24 0.080 1.00 0.10 0.090 0.6800 1398 126 612 65 68 63 10.88 844 253.0 9.60 0.020 181 0.10 0.050 0.033 1398 126 805 80 80 80 80 81.51 81.75 7.00 471.0 3.86 0.210 1.00 0.10 1.730 4.890 1398 112 581 100 78 5.5 13.26 8.27 379.0 10.84 0.040 1.00 0.12 0.858 2.280 1400 112 755 80 80 80 80 80 80 80				55	54	5.8	20.60	7.61	529.0	8.60	0.015	1.00	0.10	0.050	6.000
1938 126 785 75 78 63 10.68 8.44 253.0 9.60 0.020 1.81 0.10 0.050 0.030 1398 126 612 65 68 50 16.04 8.14 370.3 11.10 0.015 1.00 0.10 1.1730 4.950 1398 126 905 80 63 5.5 13.68 8.27 379.0 10.84 0.040 1.00 1.00 1.14 9.071 2.830 1398 11.75 881 100 76 88 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 4.003 1.12 755 80 8 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 4.003 1.12 1.25 3.0 4.5 7.13 3.2 14.90 7.58 605.0 10.21 0.030 3.50 0.20 0.060 4.800 4.001 4.11 12.5 4.39 4.5 7.5 2.65 6.96 0.020 1.00 0.10 0.050 0.060 2.770 4.11 12.7 1.00 0.55 6.5 5.3 14.10 7.24 94.6 7.91 0.015 1.60 0.10 0.050 0.070 4.141 12.7 10.00 10.05 6.5 5.3 14.10 7.24 94.6 7.91 0.015 1.60 0.10 0.050 0.070 4.142 12.7 10.07 10.06 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.10 0.110 0.050 0.070 4.142 12.7 4.07 4.5 6.0 1.00 7.82 4.48250 7.63 9.25 0.015 1.92 0.10 0.050 0.520 0.320 4.02 4				25		2.0	21.04								
1398 126 612 65 68 50 16.40 8.14 370.3 11.10 0.015 1.00 1.01 1.730 4.990 1398 126 905 80 63 55 18.78 760 471.0 3.86 0.210 1.00 1.41 0.011 2.830 1399 112 581 100 78 5.5 13.26 8.27 379.0 10.84 0.040 1.00 0.12 0.586 2.280 1403 112 810 75 88 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 4.801 4.044 112 543 45 71 3.2 14.90 7.88 690.0 10.21 0.030 3.50 0.20 0.050 4.900 1411 112 529 30 64 3.8 20.00 7.53 2465.0 6.96 0.020 1.90 0.10 0.060 22.700 1417 127 1050 85 65 65 12.75 8.01 136.0 10.73 1.00 1.00 0.10 0.050 0.070 1419 127 1030 100 85 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.10 0.110 8.200 1422 126 490 35 69 60 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 0.520 1422 126 490 35 69 60 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 0.520 1423 126															
1398 126 905 80 63 5.5 18.78 7.60 471.0 3.86 0.210 1.00 1.41 9.071 2.830 1.039 112 581 100 78 5.5 13.26 8.77 370.0 10.84 0.940 1.00 0.12 0.858 2.280 1400 112 755 80 8 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 1404 112 543 45 71 3.2 14.90 7.58 609.0 10.21 0.030 3.50 0.20 0.050 4.900 1414 112 543 45 71 3.2 14.90 7.58 609.0 10.21 0.030 3.50 0.20 0.050 4.900 1414 112 529 30 64 3.8 2.000 7.53 2.465.0 6.96 0.020 1.900 0.100 0.050 0.070 1414 127 1030 100 85 68 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.100 0.100 0.050 0.070 1414 127 1031 100 85 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.100 0.050 0.070 1422 127 1017 100 63 4.0 12.30 7.35 76.3 9.25 0.015 1.92 0.10 0.050 3.200 1422 126 400 35 60 0.113 8.1 44825.0 7.64 0.020 3.09 0.100 0.050 0.520 1423 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.130 1429 126 720 300 5.6 1.145 7.79 615.0 8.96 0.015 1.00 0.10 0.050 0.130 1435 126 432 45 64 44 17.51 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1440 126 529 100 78 4.3 17.50 7.52 1061 0.620 0.015 1.78 0.10 0.10 0.050 0.520 1448 127 1200 53 6.3 2.009 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1446 126 529 85 6.5 1.145 6.8 3.00 6.30 3.00 3.00 0.10 0.050 0.830 1454 112 545 100 5 5.7 17.70 8.15 449.8 9.46 0.015 1.00 0.10 0.050 0.830 1454 112 545 100 5.50 6.1 1.06 8.20 1.00 1.00 0.10 0.050 0.830 1454 112 545 100 5 5.7 17.70 8.15 8.94 8.94 8.94 0.015 1.00 0.10 0.050 0.830 1.454 112 112 112 112 112 112 112 112 112 112 112 112 11															
1339 112 581 100 76 55 1326 827 379.0 10.94 0.040 1.00 0.12 0.859 2.280 1403 112 810 75 88 3.9 16.30 7.89 675.0 8.74 0.020 3.20 0.20 0.060 4.800 4.801 4.041 112 529 30 64 3.8 2.000 7.53 2.465.0 6.96 0.020 1.90 0.10 0.060 22.700 4.111 112 529 30 64 3.8 2.000 7.53 2.465.0 6.96 0.020 1.90 0.10 0.060 22.700 4.111 112 1300 100 85 53 14.10 7.24 94.6 7.91 0.015 1.00 0.110 0.050 0.070 4.111 127 1030 100 85 53 14.10 7.24 94.6 7.91 0.015 1.68 0.10 0.110 0.050 3.200 4.22															
1403 112 755 60 8 789 675.0 8.74 0.020 3.20 0.20 0.060 4.800 1404 112 543 45 71 3.2 14.90 7.88 609.0 10.21 0.030 3.50 0.20 0.050 4.900 1411 112 529 30 64 3.8 2.00 7.83 2.465.0 6.96 0.020 1.900 0.190 0.060 2.2700 1417 127 1050 85 66 56 12.75 801 136.0 1073 0.015 1.00 0.10 0.050 0.070 1419 127 1030 100 85 66 5.3 14.10 7.24 946 7.91 0.015 1.66 0.10 0.10 0.050 0.070 1421 127 1017 100 63 40 12.30 7.35 76.3 9.25 0.015 1.92 0.10 0.050 3.200 1422 126 474 95 71 56 13.54 801 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1423 126 474 95 71 56 13.54 801 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1433 125 412 425 42 45 44 47.57 7.55 3.99.7 9.43 0.030 2.80 0.10 0.070 7.810 6.740 1435 126 432 435 44 41.75 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1440 126 529 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1446 126 580 100 5 6 1.1 10.68 8.20 3.20 8.20 0.020 1.10 0.050 0.820 1448 127 1200 53 6.3 2.009 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.820 1448 127 1200 53 6.3 2.009 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1454 112 545 100 0.204 7.61 380.1 8.55 0.015 1.00 0.10 0.050 0.830 1454 112 545 100 0.204 7.61 380.1 8.59 0.015 1.00 0.10 0.050 0.830 1454 112 545 100 0.50 0.50 3.830 1.85 0.015 1.00 0.10 0.050 0.830 1454 112 455 100 0.50 5.73 0.71 2.564 9.09 0.020 2.80 0.10 0.050 0.830 1.466 10.9 1.00 0.050 0.530 1.466 1.00 0.050 0.530 1.466 1.00 0.050 0.550 0.830 1.466 1.00 0.050 0.550 0.830 1.166 0.015 1.00 0.10 0.050 0.830 0.000 1.1444 100 0.050 0.550 0.57															
1409 112 810 75 88 3.9 16.30 789 675.0 8.74 0.020 3.20 0.20 0.060 4.800 1404 112 529 30 64 3.8 20.00 7.83 6300 10.21 0.030 3.50 0.22 0.050 4.900 1411 112 529 30 64 3.8 20.00 7.83 2465.0 6.96 0.020 1.90 0.10 0.060 0.27 1417 127 1050 85 66 56 12.75 8.01 138.0 10.73 0.015 1.00 0.10 0.050 0.070 1419 127 1030 100 85 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.10 0.110 0.500 3.200 1422 127 1017 100 3.6 9.6 6.0 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 1422 126 490 3.5 69 6.0 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 1423 126 474 99 7.5 6.1 15.46 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1423 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 7.810 6.740 1430 112 541 0.64 4.2 15.77 7.55 3.97 9.43 0.030 2.80 0.10 0.10 0.770 4.200 1430 125 541 0.64 4.2 15.77 7.55 3.97 9.43 0.030 2.80 0.10 0.050 0.150 1446 126 529 100 7.43 17.57 7.92 404.0 6.33 0.020 1.00 0.10 0.050 0.150 1446 126 529 100 7.43 17.57 7.92 10510 6.20 0.015 1.78 0.10 0.050 0.150 1446 126 529 100 7.43 17.57 7.92 10510 6.20 0.050 1.110 0.050 0.220 1455 126 529 500 7.43 17.57 7.82 10510 6.20 0.050 1.110 0.050 0.220 1456 126 529 500 7.43 17.57 7.82 10510 6.20 0.050 1.110 0.050 0.250 0.250 1457 126 529 500 7.43 17.57 8.50 8.60 0.020 1.100 0.10 0.050 0.250 1458 126 529 500 7.43 17.57 8.50 8.60 0.020 1.10 0.000 0.050 0.220 1457 126 529 500 7.43 17.57 8.50 8.60 0.000 0.150 0.050 0.220 1458 126 529 500 7.43 17.50 0.000 0.000 0.000 0.000 0.000 0.000					78	5.5	13.26	ช.27	379.0	10.84	U.U4U	1.00	0.12	U.858	2.260
1404 112 543 45 71 32 14.90 7.58 609.0 10.21 0.030 3.50 0.20 0.050 4.900 1411 112 529 30 43 38 2000 7.53 2485.0 6.56 0.020 0.015 1.90 0.10 0.060 0.2770 1417 127 1050 85 66 56 12.75 8.01 138.0 10.73 0.015 1.90 0.10 0.050 0.070 1419 127 1030 100 85 63 34 10 724 946 7.91 0.015 1.66 0.10 0.110 0.650 0.070 1421 127 1017 100 63 40 12.30 7.35 76.3 9.25 0.015 1.92 0.10 0.050 3.200 1422 126 490 35 69 60 1917 8.21 44825.0 7.64 0.020 3.90 0.10 0.050 0.520 1423 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1423 126 472 30 52 5.1 1450 7.30 6150 8.06 0.015 1.00 0.10 0.050 0.130 0.112 1420 126 432 45 64 4.2 15.70 7.55 3.99.7 9.43 0.030 2.280 0.10 0.10 0.170 4.200 1435 126 432 45 64 4.7 7.51 7.99 404.0 6.83 0.020 1.00 0.10 0.050 0.150 0.150 1446 127 1200 53 6.3 2009 9.28 242.0 8.74 0.020 1.11 0.10 0.050 0.280 1453 126 529 100 65 6.1 10.06 8.20 1340 9.50 0.020 1.11 0.10 0.050 0.280 1453 126 529 85 76 5.7 7.70 8.15 4498 9.46 0.015 7.79 0.10 0.050 0.280 1453 126 529 85 76 5.7 7.70 8.15 4498 9.46 0.015 7.79 0.10 0.050 0.830 1453 126 529 85 76 5.7 7.70 8.15 4498 9.46 0.015 7.79 0.10 0.050 0.280 1455 111 444 100 66 5.6 15.90 7.79 7.55.0 8.16 0.020 2.90 0.20 0.050 0.280 1455 111 444 100 66 5.6 5.90 7.79 7.55.0 8.16 0.020 2.90 0.20 0.050 0.050 0.050 0.030 1466 10.90 1.11 1.00 0.050 0.530 1.00 0.10 0.050 0.0					88	3.0	16 30	7 80	675.0	8 74	0.020	3.20	0.20	0.060	4 800
1411 112 529 30 64 3.8 20.00 7.53 2465.0 6.96 0.020 1.90 0.10 0.060 22700 0.070 1419 127 1050 85 66 56 1275 8.01 1380 1073 0.015 1.00 0.10 0.050 0.070 0.071 1419 127 1030 100 85 5.3 14.10 7.24 94.6 7.91 0.015 1.68 0.10 0.110 0.850 0.070 1419 127 1017 100 35 80 4.0 123 7.55 7.53 9.25 0.015 1.92 0.10 0.050 0.520 1422 126 490 35 89 6.0 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 1422 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.060 9.37 0.10 0.050 0.520 1423 128 474 95 71 5.6 13.54 8.01 541.0 8.09 0.060 9.37 0.10 0.050 0.520 1423 128 474 95 71 5.6 13.54 8.01 541.0 8.09 0.060 9.37 0.10 0.050 0.130 1423 125 541 0.64 4.2 15.70 7.55 399.7 9.43 0.030 2.80 0.10 0.170 4.200 1435 126 432 455 44 4.4 175 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1440 126 529 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 0.550 0.150 1444 126 529 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 0.550 0.220 1448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1454 112 545 100 2.040 7.61 380.1 8.59 0.020 1.10 0.10 0.050 0.830 1454 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.060 0.830 1454 112 435 15 58 4.6 6.00 7.64 366.0 1.056 0.015 1.00 0.10 0.050 0.830 1454 112 435 15 58 4.6 6.00 7.64 366.0 1.056 0.015 1.00 0.10 0.050 0.830 1454 112 435 35 58 4.6 6.00 7.64 366.0 1.056 0.015 1.00 0.10 0.050 0.830 1.00 1.1475 1.149															
1417 127 1050 85 66 5.6 12.75 8.01 136.0 10.73 0.015 1.00 0.010 0.050 0.070 1419 127 1030 100 85 5.3 14.10 7.24 94.6 7.91 0.015 1.66 0.110 0.110 0.500 0.201 1421 127 1017 1010 63 40 12.30 7.35 76.3 9.25 0.015 1.92 0.10 0.050 0.520 1422 126 490 35 69 60 1917 8.21 448250 7.64 0.020 3.09 0.10 0.050 0.520 1423 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1423 126 270 30 52 6.1 145.0 7.30 615.0 8.08 0.050 9.37 0.10 0.050 0.130 1429 126 320 30 52 6.1 145.0 7.30 615.0 8.08 0.015 1.00 0.10 0.050 0.130 1435 126 432 45 64 4.4 175.1 7.99 404.0 6.83 0.020 1.00 0.10 0.050 0.150 1440 126 529 100 78 4.3 17.50 7.82 1061.0 6.23 0.020 1.11 0.10 0.050 0.250 1448 127 1200 35 6.3 2.09 9.28 242.0 8.74 0.020 1.00 1.10 0.050 0.250 1453 126 529 85 76 57 7.70 8.15 449.8 9.46 0.015 7.91 0.10 0.050 0.830 1453 126 529 85 76 57 7.70 8.15 449.8 9.46 0.015 7.91 0.10 0.050 0.830 1453 126 545 100 66 5.6 5.590 7.79 785.0 8.16 0.020 2.20 0.20 0.050 9.200 1464 109 221 0 0.0000 0															
1421 127 1017 100 63 4.0 12.30 7.55 76.3 9.25 0.015 19.2 0.10 0.050 3.200 1423 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.520 1423 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 0.050 0.130 1429 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.050 9.37 0.10 0.050 0.130 1429 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 0.170 4.200 1435 126 432 45 64 44 17.51 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 14440 126 529 100 78 4.31 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1446 126 850 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.10 0.050 0.220 1448 127 1200 53 6.3 20.99 9.28 24.20 8.74 0.020 1.00 0.10 0.050 0.830 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 1455 111 444 100 66 56 15.50 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1455 111 444 100 66 56 15.50 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1464 109 221 0 1465 109 221 0 1476 1332 70 74 4.5 1465 7.71 256.4 9.99 0.020 2.80 0.10 0.050 0.330 1476 1332 70 74 4.5 14.60 7.78 64.2 9.25 0.015 3.52 0.10 0.050 0.330 0.000 111 1100 0.050 0.330 1200 111 1115 0.07 76 53 13.30 7.40 253.5 9.31 0.015 1.00 0.10 0.050 0.330 1.00 111 1115 0.07 76 53 13.30 7.40 253.5 9.31 0.015 1.00 0.10 0.050 0.330 1.00 111 1115 0.07 76 53 13.30 7.40 253.5 9.31 0.015 1.00 0.10 0.050 0.330 1.00 1.00 0.050 0.330 1.00 1.10 0.050 0.330 1.00 1.10 0.050 0.330 1.200 1.11 1.10 0.050 0.330 1.200 1.11 1.10 0.050 0.330 1.200 1.11 1.10 0.050 0.330 0.000 1.2															
1422 126 490 35 69 6.0 19.17 8.21 44825.0 7.64 0.020 3.09 0.10 0.050 0.520 1423 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 7.810 6.740 1423 126 320 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 7.810 6.740 1435 126 322 45 64 44 17.67 7.55 399.7 9.43 0.030 2.20 0.010 0.050 0.150 0.150 1.440 126 629 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 0.550 0.150 0.164 1.446 126 859 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.10 0.050 0.220 1.448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.11 0.10 0.050 0.220 1.455 114 44 126 529 57 6.5 7.71 7.78 1.5 44.98 9.46 0.015 7.91 0.10 0.400 4.300 1.455 114 444 106 65 6.5 1.06 6.5 6.5 1.06 6.20 0.016 1.78 0.10 0.550 0.220 1.457 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.050 4.720 1.455 114 444 109 65 6.5 6.5 7.71 7.755 7.72 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1.476 115 338 7.0 63 5.3 2.233 8.31 315.0 9.08 0.420 1.00 0.10 0.060 3.700 1.476 115 338 7.0 63 5.3 2.233 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.306 0.330 1.492 115 341 115 0.00 0.05 5.5 2.233 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.306 0.330 1.492 115 341 1.11 1.00 0.05 5.5 2.233 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.300 0.000 1.11 0.000 0.050 0.330 0.001 1.11 0.00 0.050 0.330 0.001 1.11 0.00 0.050 0.050 0.0000 0.000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.	1419	127	1030	100	85	5.3	14.10	7.24	94.6	7.91	0.015	1.66	0.10	0.110	8.200
1429 126 474 95 71 5.6 13.54 8.01 541.0 8.09 0.050 9.37 0.10 0.050 0.130 1429 126 720 30 52 6.1 14.50 7.30 6.150 8.09 0.051 1.00 0.10 7.810 6.740 1430 112 541 0 64 4.2 15.70 7.55 399.7 9.43 0.030 2.80 0.10 0.10 0.050 0.150 1435 126 432 45 64 4.4 17.51 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1446 126 529 100 78 4.3 17.50 7.62 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1446 127 1200 53 6.3 20.09 9.28 24.20 8.74 0.020 1.11 0.10 0.050 0.220 1445 172 1200 53 6.3 20.09 9.28 24.20 8.74 0.020 1.00 0.10 0.050 0.220 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 1454 112 545 100 2.04 7.61 30.01 8.59 0.015 7.91 0.10 0.480 4.300 1455 111 444 100 66 5.6 15.90 7.79 785.0 8.16 0.020 2.20 0.20 0.050 9.200 1464 109 221 0 0 0 0 0 0 0 0 0	1421	127	1017	100	63	4.0	12.30	7.35		9.25	0.015	1.92	0.10	0.050	3.200
1429 126 720 30 52 6.1 14.50 7.30 615.0 8.96 0.015 1.00 0.10 7.810 6.740 1430 112 541 0 641 42 15.70 7.55 399.7 94.3 0.030 2.80 0.10 0.170 4.200 1435 126 432 45 64 4.4 17.51 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1440 126 559 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 0.050 0.150 1446 126 559 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.10 0.050 0.220 1448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1454 112 545 100 20.40 7.61 380.1 8.59 0.015 1.00 0.10 0.560 4.720 1457 112 992 15 67 5.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.050 0.050 3.100 1464 109 221 0 0.00 0.00 0.00 0.00 0.00 0.000 3.100 1465 109 239 0.00 0.00 0.00 0.00 0.000 3.100 1465 109 239 0.00 0.00 0.00 0.000 0.000 3.100 1465 109 239 0.00 0.00 0.00 0.000 0.000 3.100 1465 109 239 0.00 0.00 0.00 0.000															
1435 126 541 0 64 4.2 15.70 7.55 399.7 94.3 0.030 2.80 0.10 0.170 4.200 1435 128 432 45 64 4.4 17.51 7.99 404.0 6.83 0.020 1.00 0.10 0.050 0.150 1440 128 529 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1446 126 850 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.11 0.050 0.220 1448 127 1200 53 6.3 20.09 9.28 24.2.0 8.74 0.020 1.00 0.10 0.050 0.220 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 1454 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.050 9.20 1455 111 444 100 66 5.6 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1464 109 221 0 5 5.6 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1464 109 221 0 5 5.80 7.71 2.56.4 9.09 0.020 2.80 0.10 0.060 3.100 1470 115 338 70 63 5.3 23.31 315.0 9.08 0.420 1.00 0.10 0.090 3.700 1470 115 338 70 63 5.3 23.31 315.0 9.08 0.420 1.00 0.10 0.050 0.830 1492 115 341 534 53															
1435 126 432 45 64 4.4 17.51 7.99 404.0 6.63 0.020 1.00 0.10 0.050 0.150 1446 126 5529 100 78 4.3 17.50 7.89 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1446 126 5529 100 78 4.3 17.50 7.89 1061.0 6.20 0.015 1.78 0.10 0.550 0.220 1448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.10 0.10 0.050 0.220 1448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1454 112 545 100 20.40 7.61 380.1 8.59 0.015 1.00 0.10 0.050 0.050 4.720 1455 112 435 100 65 56 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1457 112 952 15 67 5.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 109 221 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1476 115 338 70 63 5.3 22.33 8.31 315.0 9.80 0.042 1.00 0.10 0.090 3.700 1476 115 338 70 74 4.5 14.60 7.78 64.2 9.25 0.015 3.52 0.10 0.070 6.800 1520 128 451 80 59 17.65 8.09 376.0 8.43 0.210 3.92 0.10 0.050 0.030 2000 111 1115 100 70 5.3 13.30 7.40 253.5 9.31 0.015 1.64 0.10 0.10 0.050 5.750 2003 112 609 100 82 4.7 16.30 8.03 417.2 8.71 0.015 1.64 0.10 0.10 0.050 5.750 2003 112 449 85 60 7.1 7.70 7.86 44.2 8.25 8.31 0.015 1.64 0.10 0.10 0.050 3.900 2006 112 518 55 65 64 4.8 0.03 8.24 3.87 0.020 1.00 0.10 0.050 0.030 2011 126 600 100 74 6.5 18.40 7.78 438.0 8.61 0.020 1.00 0.10 0.050 0.050 2011 126 600 100 74 6.5 6.4 6.2 7.75 9.36 2.90 8.45 0.050 1.00 0.10 0.050 0.200 2012 126 600 100 74 6.5 6.5 6.75 7.50 6.755 0.00 0.050 0.050 0.050 0.050 2003 112 609 709 84 25															
1440 126 529 100 78 4.3 17.50 7.82 1061.0 6.20 0.015 1.78 0.10 2.540 5.310 1.446 126 850 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.10 0.050 0.220 1.448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 1.454 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.560 4.720 1.455 111 444 100 66 5.6 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.505 9.200 1.457 112 952 15 67 52 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 109 221 0 1.465 109 2239 1.471 112 435 35 58 4.6 16.00 7.64 356.0 10.56 0.015 1.00 0.10 0.090 3.700 1476 115 3341 4.5 4.															
1446 126 850 100 65 6.1 10.66 8.20 134.0 9.50 0.020 1.11 0.10 0.050 0.220 1.448 127 1200 63 6.3 20.09 228 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.460 4.300 1454 112 545 100 20.40 7.61 380.1 8.59 0.015 1.00 0.10 0.560 4.720 1.455 111 444 100 66 56 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1457 112 952 15 67 5.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 109 221 0 0 0 0 0 0 0 0 0															
1448 127 1200 53 6.3 20.09 9.28 242.0 8.74 0.020 1.00 0.10 0.050 0.830 1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 1454 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.550 4.720 1455 111 444 100 66 5.6 15.90 7.79 785.0 8.16 0.020 2.90 0.20 0.050 9.200 1467 112 952 15 67 5.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 100 221 0 7.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 109 221 0 7.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1476 112 435 35 58 4.6 16.00 7.64 356.0 10.56 0.015 1.00 0.10 0.090 3.700 1476 115 338 70 63 5.3 22.33 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.830 1492 115 3341 1 1 1 1 1 1 1 1 1															
1453 126 529 85 76 5.7 17.70 8.15 449.8 9.46 0.015 7.91 0.10 0.480 4.300 4.154 112 545 100 2.040 7.61 380.1 8.59 0.015 1.00 0.10 0.560 4.720 1455 111 444 100 66 5.6 15.90 7.79 785.0 8.16 0.020 2.50 0.20 0.050 9.200 1457 112 952 15 67 5.2 15.80 7.71 2564 9.09 0.020 2.80 0.10 0.066 3.100 1464 109 221 0				100											
1454 112 545 100				85											
1457 112 952 15 67 5.2 15.80 7.71 256.4 9.09 0.020 2.80 0.10 0.060 3.100 1464 109 221 0 0 0 0 0 0 0 1476 112 435 35 58 4.6 16.00 7.64 356.0 10.56 0.015 1.00 0.10 0.090 3.700 1477 112 435 35 58 4.6 16.00 7.64 356.0 10.56 0.015 1.00 0.10 0.090 3.700 1478 115 338 70 63 5.3 22.33 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.830 1492 115 341 132 70 74 4.5 14.60 7.78 64.2 9.25 0.015 3.52 0.10 0.070 6.800 1520 126 451 80 59 17.66 8.09 376.0 8.43 0.210 3.92 0.10 0.306 0.030 2001 111 1100 100 76 4.7 17.60 7.83 271.0 8.16 0.030 3.10 0.10 0.050 5.750 2002 111 1000 100 78 4.7 16.30 8.03 417.2 8.71 0.015 1.64 0.10 1.000 3.330 2005 112 518 95 64 4.8 20.99 8.24 348.0 8.61 0.020 1.00 0.10 1.624 0.890 2006 112 966 90 62 6.5 24.44 80.0 384.0 8.61 0.020 1.00 0.10 1.624 0.890 2011 126 600 100 74 4.7 17.30 7.66 462.5 6.13 0.015 2.79 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 1.280 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.020 1.00 0.10 0.050 1.280 2015 126 457 75 50 2.2 2.8 16 71.00 8.17 0.020 1.00 0.10 0.050 1.280 2016 126 457 75 50 2.2 2.8 16 71.00 8.45 0.050 1.00 0.10 0.050 1.280 2017 127 1314 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.280 2018 126 657 100 59 5.6 17.57 9.36 209.0 8.45 0.050 1.00 0.10 0.050 0.850 2079 109 84		112		100						8.59	0.015		0.10	0.560	4.720
1464 109 221 0	1455	111	444	100	66	5.6	15.90	7.79	785.0	8.16	0.020	2.90	0.20	0.050	9.200
1465 109 239					67	5.2	15.80	7.71	256.4	9.09	0.020	2.80	0.10	0.060	3.100
1471 112 435 35 58 4.6 16.00 7.64 356.0 10.56 0.015 1.00 0.10 0.090 3.700 1476 115 338 70 63 5.3 22.33 8.31 315.0 9.08 0.420 1.00 0.10 0.050 0.830 1492 115 341				0											
1476															
1492 115 341															
1519 126 1332 70 74 4.5 14.60 7.78 64.2 9.25 0.015 3.52 0.10 0.070 6.800 1520 126 451 80 59 17.65 8.09 376.0 8.43 0.210 3.92 0.10 0.306 0.030 2001 111 1115 110 70 5.3 13.30 7.40 253.5 9.31 0.015 1.00 0.110 0.050 5.750 2002 111 1000 100 78 4.7 17.60 7.83 271.0 8.16 0.030 3.10 0.10 0.050 5.000 2003 112 609 100 82 4.7 16.30 8.03 417.2 8.71 0.015 1.64 0.10 1.000 3.330 2005 112 518 95 64 4.8 20.09 8.24 348.0 8.61 0.020 1.00 0.10 1.624 0.890 2006 112 966 90 62 6.5 24.44 8.00 384.0 8.37 0.020 1.00 0.10 1.073 1.370 2007 112 434				70	03	5.3	22.33	<u>ა.31</u>	315.0	9.08	0.420	1.00	0.10	0.050	U. გ 30
1520 126 451 80 59 17.65 8.09 376.0 8.43 0.210 3.92 0.10 0.306 0.030				70	74	4.5	14 60	7 78	64.2	9 25	0.015	3.52	0.10	0.070	6 800
2001 111 1115 100 70 5.3 13.30 7.40 253.5 9.31 0.015 1.00 0.10 0.050 5.750						7.0									
2002						5.3									
2003 112 609 100 82 4.7 16.30 8.03 417.2 8.71 0.015 1.64 0.10 1.000 3.330															
2006 112 966 90 62 6.5 24.44 8.00 384.0 8.37 0.020 1.00 0.10 1.073 1.370		112	609	100			16.30						0.10	1.000	
2007 112 434 85 60 7.0 17.30 7.66 462.5 6.13 0.015 2.79 0.10 0.050 4.400 2009 112 555 65 64 5.2 17.10 7.57 438.0 8.06 0.015 1.00 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 3.900 2012 126 1034 95 60 7.1 16.19 8.21 312.0 8.76 0.200 1.00 0.10 0.050 1.390 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.47															
2008 112 449 85 60 7.0 17.30 7.66 462.5 6.13 0.015 2.79 0.10 0.050 4.400 2009 112 555 65 64 5.2 17.10 7.57 438.0 8.06 0.015 1.00 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 6.230 2012 126 1034 95 60 7.1 16.19 8.21 312.0 8.76 0.200 1.00 0.10 0.050 1.390 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 457 75 50 22.20 8.16 710.0 8.17 0.020 1.00 0.10 1.471 1.				90	62	6.5	24.44	8.00	384.0	8.37	0.020	1.00	0.10	1.073	1.370
2009 112 555 65 64 5.2 17.10 7.57 438.0 8.06 0.015 1.00 0.10 0.050 3.900 2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 6.230 2012 126 1034 95 60 7.1 16.19 8.21 312.0 8.76 0.200 1.00 0.10 0.050 1.390 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.471 1.330 2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.				0.5	00	7.0	47.00	7.00	400.5	0.40	0.045	0.70	0.40	0.050	4.400
2011 126 600 100 74 6.5 18.40 7.64 499.5 9.40 0.870 1.00 0.10 0.050 6.230 2012 126 1034 95 60 7.1 16.19 8.21 312.0 8.76 0.200 1.00 0.10 0.050 1.390 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.471 1.330 2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.220 2017 109 617															
2012 126 1034 95 60 7.1 16.19 8.21 312.0 8.76 0.200 1.00 0.10 0.050 1.390 2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.471 1.330 2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.220 2017 109 617 9.36 20.00 8.45 0.080 1.00 0.10 0.050 1.090 2027 127 1314 9.31 9.84 0.080 1.00 0.10 0.050 1.090 2055 109 319 9.25 1.0 1.00 0.10															
2013 126 879 75 55 3.7 17.60 8.17 407.0 8.87 0.030 1.00 0.10 0.050 1.280 2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.471 1.330 2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.220 2017 109 617															
2014 126 741 65 62 6.3 26.39 8.14 342.0 8.17 0.020 1.00 0.10 1.471 1.330 2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.220 2017 109 617 8.17 0.080 1.16 0.19 0.050 0.220 2027 127 1314 8.20 8.45 0.050 1.00 0.10 0.050 1.090 2055 109 319 8.45 0.050 1.00 0.050 1.090 2060 109 285 10 63 3.8 18.09 7.50 5735.0 7.80 0.300 29.90 0.27 0.306 0.460 2073 109 273 20 74 4.2 23.72 8.78 1573.0 9.84 0.080 5.66 0.10 0.050 0.850 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
2015 126 457 75 50 22.20 8.16 710.0 8.17 0.080 1.16 0.19 0.050 0.220 2017 109 617															
2017 109 617 617 617 617 617 617 617 617 618 618 618 619 619 617 619 619 617 619 <td></td>															
2029 127 1210 100 59 5.6 17.57 9.36 209.0 8.45 0.050 1.00 0.10 0.050 1.090 2055 109 319															
2055 109 319 <td></td>															
2060 109 285 10 63 3.8 18.09 7.50 5735.0 7.80 0.300 29.90 0.27 0.306 0.460 2073 109 273 20 74 4.2 23.72 8.78 1573.0 9.84 0.080 5.66 0.10 0.050 0.850 2079 109 84 25				100	59	5.6	17.57	9.36	209.0	8.45	0.050	1.00	0.10	0.050	1.090
2073 109 273 20 74 4.2 23.72 8.78 1573.0 9.84 0.080 5.66 0.10 0.050 0.850 2079 109 84 25 8.54 0.015 1.00 0.10 0.190 4.720 2086 112 594 60 50 6.0 17.30 8.09 638.0 8.54 0.015 1.00 0.10 0.190 4.720 2142 126 657 100 21.07 8.74 391.0 7.99 0.200 1.00 0.10 0.050 1.610 2174 127 1115 85 75 6.5 12.50 7.39 157.4 9.24 0.015 2.20 0.10 0.050 3.700 2193 126 325 100 8.20 8.24 0.015 20.20 0.10 0.060 8.200 3000 109 318 35 68 15.77 7.42 2596.0 4				10		0.0	40.00	7.50	F70F -	7.00	0.000	00.00	0.0=	0.000	0.400
2079 109 84 25 8.09 638.0 8.54 0.015 1.00 0.10 0.190 4.720 2142 126 657 100 21.07 8.74 391.0 7.99 0.200 1.00 0.10 0.050 1.610 2174 127 1115 85 75 6.5 12.50 7.39 157.4 9.24 0.015 2.20 0.10 0.050 3.700 2193 126 325 100 2204 109 341 40 47 5.2 19.80 7.29 3048.0 9.06 0.015 20.20 0.10 0.060 8.200 3000 109 318 35 68 15.77 7.42 2596.0 4.84 0.090 1.00 0.57 0.215 1.280															
2086 112 594 60 50 6.0 17.30 8.09 638.0 8.54 0.015 1.00 0.10 0.190 4.720 2142 126 657 100 21.07 8.74 391.0 7.99 0.200 1.00 0.10 0.050 1.610 2174 127 1115 85 75 6.5 12.50 7.39 157.4 9.24 0.015 2.20 0.10 0.050 3.700 2193 126 325 100 20 0.015 2.20 0.10 0.060 8.200 3000 109 318 35 68 15.77 7.42 2596.0 4.84 0.090 1.00 0.57 0.215 1.280					/4	4.2	23.72	ö./8	15/3.0	9.84	0.080	5.66	0.10	0.050	U.850
2142 126 657 100 21.07 8.74 391.0 7.99 0.200 1.00 0.10 0.050 1.610 2174 127 1115 85 75 6.5 12.50 7.39 157.4 9.24 0.015 2.20 0.10 0.050 3.700 2193 126 325 100 2204 109 341 40 47 5.2 19.80 7.29 3048.0 9.06 0.015 20.20 0.10 0.060 8.200 3000 109 318 35 68 15.77 7.42 2596.0 4.84 0.090 1.00 0.57 0.215 1.280					50	6.0	17 20	8 00	638 U	2 5/	0.015	1 00	0.10	0.100	4 7 2∩
2174 127 1115 85 75 6.5 12.50 7.39 157.4 9.24 0.015 2.20 0.10 0.050 3.700 2193 126 325 100 0					50	0.0									
2193 126 325 100					75	6.5									
2204 109 341 40 47 5.2 19.80 7.29 3048.0 9.06 0.015 20.20 0.10 0.060 8.200 3000 109 318 35 68 15.77 7.42 2596.0 4.84 0.090 1.00 0.57 0.215 1.280						2.0		50		2.= I			JJ	2.000	
3000 109 318 35 68 15.77 7.42 2596.0 4.84 0.090 1.00 0.57 0.215 1.280					47	5.2	19.80	7.29	3048.0	9.06	0.015	20.20	0.10	0.060	8.200
3001 112 400 40 53 3.3 17.96 7.94 3294.0 7.29 0.710 7.71 0.64 0.490 0.200									2596.0						
	3001	112	400	40	53	3.3	17.96	7.94	3294.0	7.29	0.710	7.71	0.64	0.490	0.200

Anexo 2

Informe de Macroinvertebrados

Equipo de trabajo

Dr. Javier Oscoz Escudero (Universidad de Navarra) Dr. Rafael Miranda Ferreiro (Universidad de Navarra) Dr. Andrés Mellado Díaz (ICA SL)

RED BIOLOGICA DEL EBRO: ANÁLISIS DE MACROINVERTEBRADOS EN LAS REDES DE VIGILANCIA, CONTROL OPERATIVO Y REFERENCIA

INFORME FINAL Diciembre 2007

RED BIOLOGICA DEL EBRO: ANÁLISIS DE MACROINVERTEBRADOS EN LAS REDES DE VIGILANCIA, CONTROL OPERATIVO Y REFERENCIA

Diciembre 2007

Equipo:

-Dr. Javier Oscoz Escudero

-Dr. Andrés Mellado Díaz

-Dr. Rafael Miranda Ferreiro

Departamento de Zoología y Ecología

Facultad de Ciencias, Universidad de Navarra

C/ Irunlarrea s/n, E-31008, Pamplona (Navarra), España.

C/ Miguel Menéndez Boneta 2, 8 28460 Los Molinos, Madrid

Ingeniería y Ciencia Ambiental S.L.

(+34) 948 425 600. Ext:: 6281 - Fax. 948 425 649.

(+34) 91 855 00 29

E-mail: <u>joscoz@alumni.unav.es</u> – <u>rmiranda@unav.es</u>

E-mail: amellado@um.es

INDICE

-INTRODUCCIÓN	1
-METODOLOGÍA	5
-RESULTADOS DEL MUESTREO DE MACROINVERTEBRADOS EN EL AÑO 2007	11
-ANÁLISIS POR CUENCAS PARCIALES	125
-ANÁLISIS POR REDES	155
-BIBLIOGRAFÍA	171
-ANEXOS	177
-ANEXO I	179
-ANEXO II	187
-ANEXO III	195

INTRODUCCIÓN

INTRODUCCIÓN

Los ecosistemas acuáticos tienen una importancia fundamental, tanto porque el agua es un recurso natural importante, como por las amplias influencias ecológicas que los ecosistemas acuáticos tienen sobre el resto de los biomas. Esta importancia hace que el agua deba considerarse como un patrimonio al que proteger y defender, potenciando su uso sostenible y mejorando en la medida de lo posible la calidad de este medio. Reflejo de esta concepción y visión ha sido la promulgación y el comienzo de implantación de la Directiva 2000/60/CE o Directiva Marco del Agua (DMA), cuyo objetivo es establecer un marco para la protección de las aguas y los diferentes ecosistemas acuáticos, y en la cual se demanda el uso de métodos biológicos para estimar el Estado Ecológico de las masas de agua. Dicho concepto de Estado Ecológico es más amplio que el de calidad, pues se define como "Una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales". Más concretamente, la mencionada DMA establece que han de ser los indicadores biológicos (fitoplancton, macrófitos, organismos fitobentónicos, fauna bentónica de invertebrados y fauna ictiológica) los que determinen en última instancia el estado ecológico de una masa de agua. De la DMA se desprende que los Estados miembros deberán alcanzar antes del año 2015 al menos un buen estado de las aguas en todas las masas de agua, las cuales previamente deben haber sido definidas y delimitadas.

Dentro de las actuaciones que la DMA dispone se encuentra la definición de una serie de redes como la red de Referencia, la red de Control Operativo o la red de Vigilancia. La red de Referencia se compone de una serie de puntos en cada ecotipo fluvial que alcanzan un muy buen estado, y con los cuales se establecerán las condiciones de referencia para cada ecotipo fluvial. Por su parte las redes de Control Operativo y la de Vigilancia se encuadran dentro de la red de seguimiento, con la cual se pretende ofrecer una visión general coherente y completa del estado ecológico y químico de la cuenca, permitiendo la clasificación de las aguas en cinco clases. Dicha red de seguimiento sería operativa a los seis años a partir de la entrada en vigor de la DMA. El control de Vigilancia se realiza en una serie de masas de aguas las cuales permiten evaluar el estado de las aguas en general y con las que además se pueden evaluar los cambios a largo plazo (tanto en condiciones naturales como resultado de la actividad humana) y realizar una concepción eficaz y efectiva de los programas de control. Por su parte el Control Operativo se realiza en aquellas masas que se considere que puedan no cumplir los objetivos medioambientales que la DMA exige o en las que se viertan sustancias incluidas dentro de la lista de sustancias prioritarias, con objeto de determinar su estado ecológico y evaluar los cambios que se puedan producir como consecuencia de la puesta en marcha de los programas de medidas.

Confederación Hidrográfica del Ebro viene realizando desde hace años diferentes estudios con indicadores biológicos en toda la cuenca del río Ebro. Concretamente, para el caso de los macroinvertebrados se vienen realizando desde 1990 estudios sobre la calidad del agua mediante el uso de macroinvertebrados bentónicos aplicando el índice IBMWP (Alba-Tercedor y Sánchez-Ortega 1988), en la antiguamente denominada Red de Control de Variables Ambientales. Esto ha permitido tener una extensa serie de datos biológicos, pero al tratarse de datos derivados de una red de puntos establecida años antes de la concepción de la DMA, dicha red no resultaba adecuada para las necesidades que planteaba la DMA. El trabajo de redefinición realizado en esta y otras redes de control previamente existentes llevó a la creación de la red CEMAS (Control del Estado de Masas de Aguas Superficiales), en las que se incluyen las anteriormente citadas Redes de Referencia, Vigilancia y Control Operativo.

El objetivo del presente estudio fue el análisis de la comunidad de macroinvertebrados bentónicos y la evaluación del estado ecológico del agua mediante dichos organismos en la cuenca del Ebro en las estaciones pertenecientes a las Redes de Referencia, Vigilancia y Control operativo.

METODOLOGÍA

METODOLOGÍA

En un primer momento se seleccionaron un total de 331 estaciones de muestreo, pero posteriores cambios en la inclusión de algunas estaciones en las diferentes redes determinaron que el número final de estaciones a analizar fuera de 323, las cuales se detallan en el Anexo I. Se realizó una única campaña de muestreo que tuvo lugar entre mediados de Junio y finales de Septiembre. Para la obtención de las muestras de macroinvertebrados se utilizó una red de mano estándar de acuerdo a lo especificado por la norma internacional EN 27828:1994, con una malla de Nytal de 500 µm de luz. Se ha seguido la metodología propuesta por Jáimez-Cuellar et al. (2006) respecto a la toma y procesado de las muestras de macroinvertebrados. Se realizó en primer lugar un muestreo multihábitat de acuerdo al protocolo del IBMWP (Jáimez-Cuellar et al. 2002), pero teniendo en cuenta que el sustrato que se removía por delante de la red debía ser de 0,5 m² (lo que se considera un kick). Se muestrearon todos los microhábitats diferentes encontrados en el tramo de muestreo, contabilizándose el número de kicks tomados en cada uno. Dicha muestra se examinaba en campo, separándose en un vial con etanol 96% al menos un ejemplar de cada uno de los taxones diferentes hallados, salvo en el caso de especies sensibles como los representantes de la familia Unionidae en los que sólo se anotaba su presencia, liberándose a continuación los ejemplares en el mismo tramo. Se daba por terminada esta parte del muestreo cuando nuevos kicks no aportaron taxones nuevos. El material recogido se almacenaba en botes de plástico de 500 ml, fijándose mediante la adición de formaldehído al 40%, hasta conseguir una dilución de la muestra del 4%, etiquetándose adecuadamente para su correcta identificación. Tras esto se recorría el tramo para calcular el porcentaje de extensión de cada microhábitat presente en el mismo. Se realizaron nuevos kicks en los microhábitats que en el primer muestreo hubieran resultado submuestreados, de manera que el número de kicks tomados finalmente en cada tramo fuera finalmente proporcional a su representación en el tramo. Los nuevos kicks tomados (denominados muestra de ajuste) se almacenaron y fijaron con el mismo método usado para los primeros kicks (muestra IBMWP). Todo el material usado en cada estación fue desinfectado tras el muestreo, de cara a evitar en la medida de lo posible la propagación del mejillón cebra (Dreissena polymorpha).

Una vez en el laboratorio se combinan las muestras de IBMWP y la de ajuste para el procesado de la muestra global. Se filtraba dicha muestra a través de tres tamices, uno de 5 mm, uno de 1 mm y uno de 0,5 mm, de manera que se obtuvieron tres fracciones (grande, mediana y pequeña), una en cada tamiz. De la fracción grande se clasificaron y contaron todos los ejemplares. De la fracción mediana en una primera fase se extrajeron todos los taxones diferentes que se encontraron. A continuación dicha fracción se vertía en una

bandeja cuadriculada, de la cual se extraía el contenido de una de las cuadrículas elegida al azar (lo que se denomina alícuota). Se clasificaban y contaban todos los ejemplares de dicha alícuota. Si el número de ejemplares hallados era de al menos 100, se procedía a estimar con ello la abundancia en la fracción total, mientras que si era inferior a 100 se procedía a analizar otra alícuota escogida al azar hasta llegar al menos a dicho número para estimar la abundancia. Con la fracción fina se procedía de igual manera que con la fracción intermedia. Cada muestra fue analizada en su totalidad con la ayuda de un estereomicroscopio (x7-x45 aumentos) con luz incidente, clasificándose todos los individuos hallados hasta nivel de familia, ya que este es el nivel taxonómico requerido para calcular el índice IBMWP, y además representa un indicador fidedigno de las condiciones ambientales (Graça et al. 1995, Olsgard et al. 1998). Para la clasificación se utilizaron diferentes claves taxonómicas generales, principalmente las recogidas por Tachet et al. (1984, 2000), usando en algunos casos bibliografía específica para ciertos grupos taxonómicos.

Tras el análisis de las muestras y la determinación de los taxones presentes se calcularon las abundancias y los índices bióticos IBMWP e IASPT. El índice IBMWP es una adaptación a la fauna peninsular del índice BMWP desarrollado en el Reino Unido, y está basado en la algunos presencia/ausencia de grupos taxonómicos entre población macroinvertebrados del tramo de río objeto de estudio. Cada uno de estos grupos tiene asignado un valor entero entre 1 y 10 (Tabla I), según sus requerimientos en cuanto a la calidad de las aguas en las que viven sean menores o mayores. La suma de los valores de todos los grupos presentes en la muestra indicará la calidad de las aguas en el punto, de acuerdo a los rangos marcados por el índice para cada clase de calidad (Tabla II). Para el cálculo de estos índices en este estudio se tuvieron en cuenta los taxones, valores para cada taxón y rangos de clases de calidad del IBMWP señalados por Alba-Tercedor et al. (2002) y Jáimez-Cuellar et al. (2002).

Además en algunas estaciones para las que existían datos, y como análisis complementario en el caso de que se creyera conveniente, se estudió la estructura de grupos tróficos existente, ya que las alteraciones en el ecosistema pueden condicionar la distribución y abundancia relativa de estos grupos (Statzner et al. 2001) por alterar la disponibilidad de diferentes recursos tróficos o por la acción de diversas toxinas asociadas o relacionadas con estos recursos tróficos. Para ello, los macroinvertebrados fueron clasificados en cuatro grupos tróficos (Trituradores, Colectores, Raspadores y Depredadores) de acuerdo a los criterios de Cummins (1974), Tachet et al. (1984) y Barbour et al. (1999).



Familias	Puntuación
Siphlonuridae, Heptageniidae, Leptophlebiidae, Potamanthidae, Ephemeridae Taeniopterygidae, Leuctridae, Capniidae, Perlodidae, Perlidae, Chloroperlidae Aphelocheiridae Phryganeidae, Molannidae, Beraeidae, Odontoceridae, Leptoceridae, Goeridae, Thremmatidae, Calamoceratidae, Lepidostomatidae, Brachycentridae, Sericostomatidae Athericidae, Blephaceridae	10
Astacidae Lestidae, Calopterygidae, Gomphidae, Cordulegasteridae, Aeshnidae, Cordulidae, Libellulidae Psychomyiidae, Philopotamidae, Glossossomatidae	8
Ephemerellidae, Prosopistomatidae Nemouridae Rhyacophilidae, Polycentropodidae, Limnephilidae, Ecnomidae	7
Neritidae, Viviparidae, Ancylidae, Thiaridae, Unionidae, Ferrissidae Hydroptilidae Corophidae, Gammaridae, Atydae, Palaemonidae Platycnemidae, Coenagrionidae	6
Oligoneuriidae, Polymitarcidae Dryopidae, Elmidae, Hydrochidae, Hydraenidae, Hydropsychidae Tipulidae, Simuliidae Planariidae, Dendrocoelidae, Dugesiidae	5
Baetidae, Caenidae Haliplidae, Curculionidae, Chrysomelidae Tabanidae, Stratiomyidae, Empididae, Dolichopodidae, Dixidae, Ceratopogonidae, Limoniidae, Psychodidae, Sciomyzidae, Rhagionidae, Muscidae, Ptychopteridae Pyralidae Sialidae Piscicolidae Hidracarina	4
Mesoveliidae, Hydrometridae, Gerridae, Nepidae, Naucoridae, Pleidae, Veliidae, Notonectidae, Corixidae Helodidae (Scirtidae), Hydrophilidae, Hygrobiidae, Dytiscidae, Gyrynidae, Noteridae, Psephenidae Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, Planorbidae, Bithyniidae, Sphaeridae Glossiphoniidae, Hirudidae, Erpobdellidae Asellidae, Ostracoda	3
Chironomidae, Culicidae, Ephydridae, Muscidae, Thaumaleidae	2
_Syrphidae , Oligochaeta (todas las clases)	1

Tabla I. Puntuaciones asignadas a las diferentes familias de macroinvertebrados acuáticos para la obtención del IBMWP.

Clase	Estado ecológico	Valor	Significado Calidad	Color				
1	Muy Bueno	≥101	Buena. Aguas no contaminadas o no alteradas de modo sensible	Azul				
II	Buena	61-100	Aceptable. Son evidentes algunos efectos de contaminación					
III	Moderado	36-60	Dudosa. Aguas contaminadas					
IV	Deficiente	16-35	Crítica. Aguas muy contaminadas	Naranja				
V	Malo	<15	Muy Crítica. Aguas fuertemente contaminadas	Rojo				

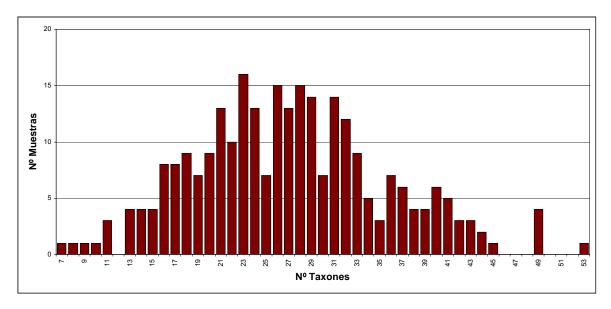
Tabla II. Clases de Estado Ecológico, significación de los valores IBMWP y colores a utilizar para las representaciones cartográficas.

RESULTADOS MACROINVERTEBRADOS 2007

RESULTADOS DEL MUESTREO DE MACROINVERTEBRADOS EN EL AÑO 2007

En total se pudieron muestrear 272 estaciones, no pudiéndose hacer el resto por encontrarse secas, ser inaccesibles o encontrarse con altos caudales los cuales imposibilitaban el acceso al cauce o la recogida de una muestra adecuada. En el Anexo II se recogen los resultados obtenidos al analizar estas muestras estudiadas. En dicho Anexo se proporcionan los datos de número de taxones hallados, número de taxones incluidos en el IBMWP, valor obtenido en el índice IBMWP y valor del índice IASPT. Por su parte en el Anexo III se recogen los datos de abundancias relativas halladas para cada taxón en cada muestra analizada. Debido a que en el momento de realizar el informe no se disponía todavía de los datos de abundancias relativas de todas las estaciones de muestreo, los datos de dicho Anexo se dividen en dos partes. Por una parte para las estaciones de las que si existían datos de abundancias relativas se ofrecen directamente dichos datos, mientras para las estaciones para las que no había aún datos de abundancias relativas se ofrece una aproximación a dichos datos mediante el uso de rangos de abundancia calculados en campo y específicos para cada taxón.

En el total de las muestras analizadas se encontraron 122 taxones diferentes, lo que es una alta proporción el total de taxones totalmente acuáticos presentes en la Península (cerca de 130). Esto da una idea de la gran diversidad de taxones que existen en la cuenca del Ebro, lo que puede estar en relación con la notable diversidad de tipos de ríos existentes en esta cuenca. En la Tabla III se muestra el número de estaciones en la que apareció cada uno de estos taxones y el porcentaje de estaciones en las que apareció al menos un ejemplar de dicho taxón. Los taxones que más frecuentemente estuvieron en las muestras fueron Chironomidae y Baetidae, algo ya señalado por Vivas *et al.* (2002) en anteriores estudios realizados en cuencas mediterráneas. Otros grupos con alta ocurrencia o presencia de aparición fueron Oligochaeta, Elmidae, Caenidae, Hidracarina e Hydropsychidae.


El número de taxones encontrado por estación de muestreo osciló entre los 7 taxones de la estación 1119 (Río Corb en Vilanova de la Barca) y los 53 de la estación 1004 (Río Nela en Puentedey), mientras que el número medio de taxones encontrados por estación fue de 27. En la Figura 1 se representa la distribución de frecuencias del número de taxones encontrado en cada punto de muestreo. Se observa que dicha distribución se aproxima a una distribución Normal, siendo lo más frecuente en la Cuenca del río Ebro que en cada muestra se encuentre entre 21 y 32 taxones diferentes.

Grupo	Taxón	Nº muestras	% Estaciones	Grupo	Taxón	Nº muestras	% Estacione
Coleoptera	Curculionidae	2	0,74	Hirudinea	Erpobdellidae	126	46,32
	Dryopidae	58	21,32		Glossiphoniidae	82	30,15
	Dytiscidae	135	49,63		Hirudidae	8	2,94
	Elmidae	219	80,51		Piscicolidae	2	0,74
	Gyrinidae	68	25,00	Megaloptera	Sialidae	41	15,07
	Haliplidae	68	25,00	Mollusca	Ancylidae	130	47,79
	Helophoridae	33	12,13		Bithyniidae	5	1,84
	Hydraenidae	102	37,50		Ferrissidae	6	2,21
	Hydrochidae	1	0,37		Hydrobiidae	149	54,78
	Hydrophilidae	75	27,57		Lymnaeidae	88	32,35
	Noteridae	4	1,47		Neritidae	26	9,56
	Psephenidae	1	0,37		Physidae	96	35,29
	Scirtidae / Helodidae	31	11,40		Planorbidae	15	5,51
Crustacea	Asellidae	38				108	
Jiustacea			13,97		Sphaeridae		39,71
	Stenasellidae	1	0,37		Unionidae	4	1,47
	Atydae	43	15,81		Valvatidae	1	0,37
	Palaemonidae	1	0,37		Corbicula	4	1,47
	Cyrolanidae	1	0,37		Dreissena	3	1,10
	Gammaridae	157	57,72	Acari	Hidracarina	229	84,19
	Niphargidae	4	1,47	Odonata	Aeschnidae	49	18,01
	Ostracoda	89	32,72		Calopterygidae	46	16,91
	Copepoda	38	13,97		Coenagrionidae	41	15,07
	Anomopoda	10	3,68		Cordulegasteridae	27	9,93
	Pacifastacus	19	6,99		Gomphidae	72	26,47
	Procambarus	29	10,66		Lestidae	6	2,21
Diptera	Athericidae	75	27,57		Libellulidae	25	9,19
	Blephariceridae	16	5,88		Platycnemididae	26	9,56
	Ceratopogonidae	99	36,40	Oligochaeta	Oligochaeta	249	91,54
	Chironomidae	268	98,53	Plecoptera	Chloroperlidae	11	4,04
	Culicidae	16	5,88	ricooptera	Leuctridae	161	59,19
	Dixidae	43	15,81		Nemouridae	52	19,12
		25			Perlidae	66	
	Dolichopodidae		9,19			25	24,26
	Empididae	113	41,54		Perlodidae		9,19
	Ephydridae	18	6,62	- · · · ·	Taeniopterygidae	1	0,37
	Limoniidae	145	53,31	Triclada	Dugesiidae	44	16,18
	Muscidae	91	33,46		Planariidae	41	15,07
	Psychodidae	36	13,24	Trichoptera	Beraeidae	1	0,37
	Ptychopteridae	1	0,37		Brachycentridae	20	7,35
	Rhagionidae	10	3,68		Ecnomyidae	3	1,10
	Sciomyzidae	6	2,21		Glossosomatidae	21	7,72
	Simuliidae	210	77,21		Goeridae	20	7,35
	Stratiomyidae	27	9,93		Hydropsychidae	230	84,56
	Tabanidae	74	27,21		Hydroptilidae	138	50,74
	Tipulidae	103	37,87		Lepidostomatidae	15	5,51
Ephemeroptera	Baetidae	269	98,90		Leptoceridae	64	23,53
	Caenidae	228	83,82		Limnephilidae	85	31,25
	Ephemerellidae	145	53,31		Odontoceridae	25	9,19
	Ephemeridae	38	13,97		Philopotamidae	37	13.60
	Heptageniidae	183	67,28		Polycentropodidae	115	42,28
	Leptophlebiidae	117			Psychomyiidae	56	
			43,01		, ,		20,59
	Oligoneuriidae	16	5,88		Rhyacophilidae	140	51,47
	Polymitarcidae	42	15,44	04	Sericostomatidae	64	23,53
	Potamanthidae	25	9,19	Otros	Branchiobdellidae	1	0,37
	Siphlonuridae	3	1,10		Nematoda	46	16,91
leteroptera	Aphelocheiridae	2	0,74		Hydra	3	1,10
	Corixidae	135	49,63		Osmylidae	1	0,37
	Gerridae	195	71,69		Gordius	4	1,47
	Hydrometridae	57	20,96		Spongillidae	2	0,74
	Mesoveliidae	2	0,74				
	Naucoridae	18	6,62				
	Nepidae	46	16,91				
	Notonectidae	38	13,97				
	Pleidae	4	1,47				
	Veliidae	32	11,76				

Tabla III. Número y porcentaje (%) de muestras en las que se ha hallado cada taxón de macroinvertebrados en el año 2007.

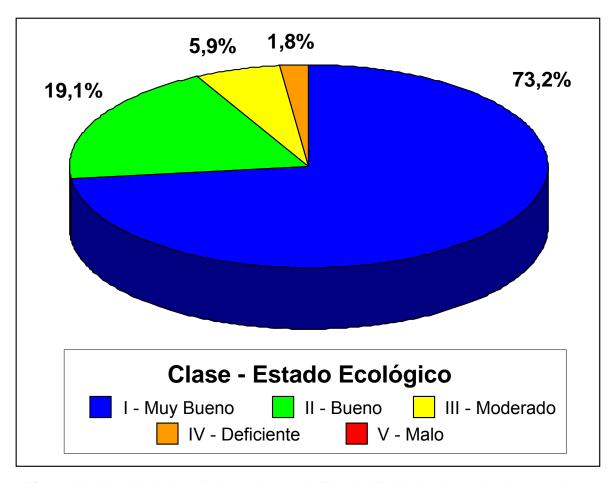


Fig. 1. Distribución de frecuencias del número de taxones halladas por muestra en la cuenca del río Ebro en el año 2007.

Centrándonos en los resultados de los índices bióticos, los valores encontrados en 2007 en el índice IBMWP oscilaron entre los 22 encontrados la estación 1119 (Río Corb en Vilanova de la Barca) y los 317 de la estación 1004 (Río Nela en Puentedey), con un valor medio en el índice de 134. Por su parte el IASPT osciló entre los 2,875 encontrados en la estación 1422 (Río Salado en la Estación de Aforo de Esténoz) y los 7,444 hallados en la estación 1106 (Río Noguera Pallaresa en Llavorsí), con un valor medio de 4,978. Los resultados en cuanto al Estado Ecológico de las aguas de acuerdo a los valores del índice IBMWP mostraron que la mayoría de los puntos analizados alcanzaron al menos una calificación de "Bueno" (Fig. 2), concretamente un 92,3% de las estaciones, siendo además mayoría las estaciones que alcanzaban el Estado Ecológico superior de "Muy Bueno" (un 73,2% de las estaciones analizadas). Del resto de las estaciones el casi el 6% obtuvo una calificación de Estado "Moderado" y algo menos del 2% tuvo una calificación de "Deficiente". Ninguna de las estaciones estudiadas se situó por debajo de esta clase de Estado Ecológico. Estos resultados implican que la mayoría de la cuenca alcanza en estos momentos, en el caso de los macroinvertebrados, los niveles de Estado Ecológico que la DMA exige. Comparando estos resultados, que darían una visión global del estado de la cuenca, con los encontrados en los años 2004 y 2005 (años en los que también se puede considerar que se realizaron estudios globales que daban una visión global del estado de toda la cuenca), se observa que parece haberse dado una mejoría en el porcentaje de estaciones que alcanzarían los objetivos de la DMA. Esto podría confirmar la aparente mejoría respecto al Estado Ecológico

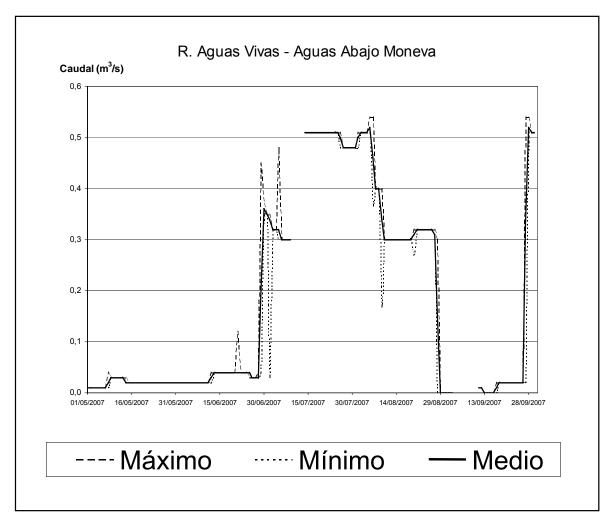
Fig. 2. Distribución de las distintas clases de Estado Ecológico determinados mediante el índice biótico IBMWP en las estaciones de la cuenca del río Ebro analizadas en el año 2007.

que parece estarse produciendo en el conjunto de la cuenca del Ebro (Oscoz et al. En prensa).

A continuación se exponen los resultados obtenidos en todos los puntos analizados, agrupándolos por ríos. En ellos, y siempre que fue posible, se recopilaron datos sobre el caudal del río durante el periodo de estudio, a partir de los datos ofrecidos por el Sistema Automático de Información Hidrológica de la Cuenca Hidrográfica del Ebro (SAIH Ebro). Se intenta comentar también posibles factores que pudieran haber afectado al muestreo o que pudieran afectar o ser responsables de los resultados hallados.

Río Aguas Limpias

Se había planteado el estudio de una estación (CEMAS 0538 en el Embalse de Sarra), la cual pertenecía a la red de referencia. Sin embargo la estación propuesta no es adecuada para el muestreo biológico, ya que se localiza en el propio embalse, cerca del paredón de la presa junto a un aliviadero. No existe cauce con agua por debajo de la presa, ya que parece haber una derivación hasta cerca de la localidad de Sallent de Gállego. El muestreo en la zona de Sallent no parece que fuera adecuado ni representativo de la masa, ya que hay señales perceptibles de vertidos orgánicos en el cauce. Se sugiere en todo caso la posibilidad de muestrear aguas arriba del embalse, pero considerando en tal caso que tal vez no se deberían asimilar las condiciones fisicoquímicas tomadas en el punto original con las condiciones biológicas del río en la entrada de la zona embalsada, tanto por las distintas condiciones existentes como por la presencia de algunos negocios (bar-cafetería) entre ambos puntos que pudieran afectar a las condiciones del agua.


Río Aguas Vivas

En este estudio se habían seleccionado inicialmente tres estaciones de muestreo en este río (CEMAS 1224 en Baños de Segura, CEMAS 1225 en Blesa y CEMAS 1227 en Azaila). Sin embargo la estación 1224 fue dada de baja de la red de referencia, a la cual pertenecía, no siendo necesario su estudio.

En la Fig. 3 se muestra el nivel de agua medido en la estación de aforo localizada aguas abajo del embalse de Moneva durante el periodo de estudio. Se observa que hubo fuerte aumento de caudal a finales de Junio, el cual se mantuvo más o menos constante hasta finales de Agosto. Sin embargo esto no fue suficiente para que el río tuviera un caudal suficiente de agua corriente en el tramo inferior (estación 1227 en Azaila), sino que el cauce se encontraba casi seco y muy invadido por carrizo que impedía el acceso al mismo, con algunos lugares donde existían pozas o charcos aislados con agua libre (Fig. 4), por lo que no se pudo llevar a cabo el muestreo. Se pueden comparar las imágenes de los años 2004 (Fig. 5) y el año 2007 (Fig. 4) para comprobar el cambio sufrido por el tramo, al cual puede haber ayudado el bajo caudal que parece sufrir este río en estos últimos años. Esta carencia de un caudal continuo en el cauce, a pesar de que parecía existir un caudal estable en gran parte del periodo de muestreo, podría deberse a que las aguas del embalse de Moneva se utilizan para regadío, además de las filtraciones de agua que parecen producirse en el curso de este río.

Por su parte en el punto superior (estación 1225 en Blesa) tampoco se encontraron las condiciones apropiadas para realizar un muestreo, pues además de existir una densa

Fig. 3. Caudales (mínimo, medio y máximo) registrados en el río Aguas Vivas en el periodo de estudio.

vegetación que restringía las posibilidades de muestreo, se encontró que la poca agua que existía procedía casi exclusivamente de fugas existentes en la fosa séptica de la localidad de Blesa. Dicha fosa séptica se encontraba en mal estado (presentando zonas rotas y agrietadas), estaba totalmente llena y el agua rebosaba sin control aparente. Debido a esta circunstancia excepcional, que hacía que el punto no fuera representativo de las condiciones de toda la masa, y por la imposibilidad de encontrar tramos adecuados para el muestreo (tanto por el bajo caudal que impedía encontrar zonas adecuadas de muestreo como por el limitado acceso que la vegetación imponía) no se pudo tomar la muestra de macroinvertebrados.

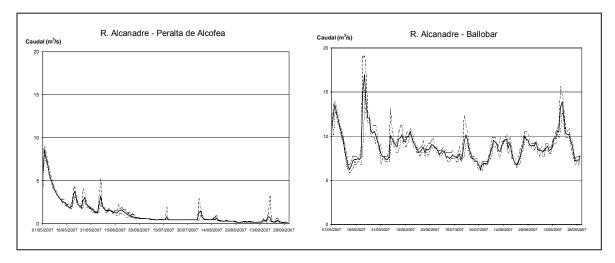


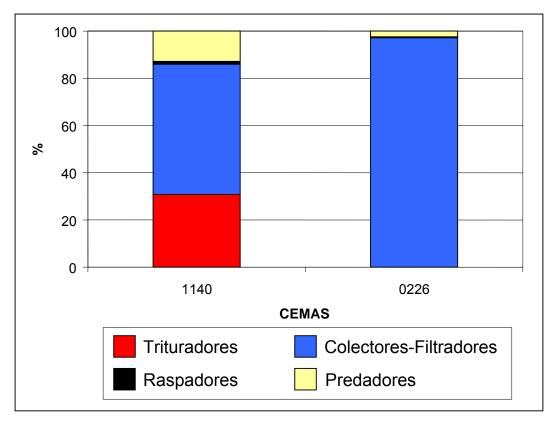
Fig. 4. Estación del río Aguas Vivas en el tramo de Azaila (CEMAS 1227) en el año 2007. (Flecha blanca: zona origen de la foto de la Fig. 5. Círculo blanco: Área mostrada en la Fig. 5).

Fig. 5. Estación del río Aguas Vivas en el tramo de Azaila (CEMAS 1227) en el año 2004.

Fig. 6. Caudales (mínimo, medio y máximo) registrados en el río Alcanadre en el periodo de estudio. (Leyenda como en Fig. 3).

Río Alcanadre

En este río se seleccionaron originalmente cinco estaciones de muestreo (CEMAS 1140 en Laguarta, CEMAS 1397 en Pedruel, CEMAS 2007 en Casbas, CEMAS 1141 en Puente de Las Cellas y CEMAS 0226 en Ontiñena). La estación 1397 fue dada de baja de la red de referencia, a la cual pertenecía, no siendo necesario su estudio. Por su parte las estaciones 2007 y 1141 resultaron inaccesibles, la primera por ser un tramo de río inaccesibles (tras un arduo camino se llega a zona de laderas con largas y abruptas pendientes de 75-80°) y la segunda por estar la zona cerrada debido a las obras de construcción de una autovía. Hay que señalar que el muestreo en la estación 1140 fue laborioso y dificultoso, tanto por el escaso caudal circulante como por el limitado acceso que existe en el tramo debido a la densa y tupida vegetación arbustiva existente.


En la Fig. 6 se representa la evolución del caudal en dos estaciones de aforo localizadas en distintos tramos del río. Se observa que si bien hubo un pequeño incremento en el caudal circulante unos 10 días antes de la fecha de muestreo, éste no parece que fuera de gran magnitud, por lo que la fauna no se habría visto demasiado afectada y el muestreo podría considerarse adecuado. Ambas estaciones obtuvieron elevados valores en el índice biótico (Tabla IV), indicativos de un buen estado ecológico, lo que les llevaría a cumplir los requerimientos de calidad exigidos por la DMA.

El análisis del porcentaje de macroinvertebrados según grupos tróficos (Fig. 7) mostró que en la parte superior los grupos predominantes eran Trituradores y Colectores-Filtradores, mientras que en el punto inferior los primeros desaparecían y casi la mayoría de organismos

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1140	Laguarta	01/08/07	5,393	151	I	Muy Bueno
0226	Ontiñena	02/08/07	5,400	108	I	Muy Bueno

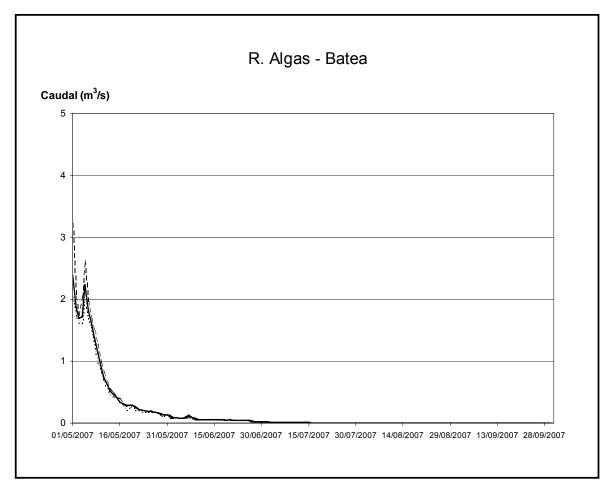

Tabla IV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Alcanadre el año 2007.

Fig. 7. Estructura por grupos tróficos en las estaciones analizadas del río Alcanadre en 2007.

eran Colectores-Filtradores. Esta variación a lo largo del río no es anómala sino que sería la esperable según la teoría del *River Continuum* (Vannote *et al.* 1980), ya que aumenta la disponibilidad de materia orgánica de pequeño tamaño (FPOM) a la vez que suele disminuir la disponibilidad de materia orgánica de tamaño mayor (CPOM). Aunque a veces una predominancia de Colectores-Filtradores puede ser un indicativo de la existencia de un enriquecimiento orgánico (Del Moral *et al.* 1997, Bonada *et al.* 2000, Oscoz *et al.* 2006), no parece que esto fuera el factor principal en Ontiñena, ya que los organismos más abundantes fueron las efémeras, mientras que en situaciones de fuerte enriquecimiento orgánico suelen verse favorecidos grupos como los dípteros y los oligoquetos (Oscoz *et al.* 1999, Rueda *et al.* 2002).

Fig. 8. Caudales (mínimo, medio y máximo) registrados en el río Algas en el periodo de estudio. (Leyenda como en Fig. 3).

Río Algas

En este río se habían seleccionado dos estaciones de muestreo (CEMAS 0623 en Mas de Bañetes y CEMAS 1464 en Maella-Batea). Como se aprecia en la Fig. 8 en este río hubo un acusado descenso del caudal, de forma que se puede considerar que el caudal era nulo en casi todo el estiaje. Esta situación hizo que la estación superior (CEMAS 0623) se encontrara formada por pozas débilmente interconectadas por hilillos de corriente, mientras que en la estación inferior (CEMAS 1464) sólo quedaban charcos aislados.

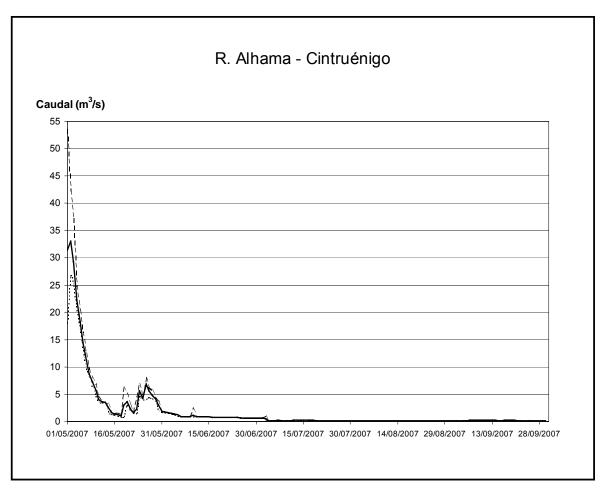
Los resultados de los índices bióticos reflejados en la Tabla V muestran que el Estado Ecológico fue "Muy Bueno" en el tramo superior, pero sólo alcanzó la calificación de "Moderado" en el punto inferior. Sin embargo esta mala situación, más que reflejo de una mala calidad en el agua podría ser debida a que por la sequía este tramo estaba formado por charcos no conectados, situación en la cual la muestra tomada no debería tomarse

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
0623	Mas de Bañetas	25/08/07	5,130	154	I	Muy Bueno
1464	Maella - Batea	28/08/07	4,000	48	Ш	Moderado

Tabla V. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Algas el año 2007.

como representativa de las condiciones en el medio. Puesto que este negativo resultado se puede debe a causas naturales (sequía), no se estaría infringiendo la DMA si este deterioro se demuestra que es temporal (como se dispone Articulo 4, Apartado 6 de la mencionada DMA). Por ello sería necesario analizar el estado de las aguas en una época en la que el caudal fuera suficiente y el río tuviera continuidad, de cara a asegurar que ambas estaciones cumplen los requisitos de la DMA.

Río Alhama


En este río se seleccionaron tres estaciones de muestreo (CEMAS 1193 en Magaña, CEMAS 0243 en Venta de Baños y CEMAS 0214 en Alfaro). El caudal en este río fue bastante uniforme en el periodo de muestreo (Fig. 9), por lo que no existirían alteraciones de este tipo que pudieran afectar a la representatividad de las muestras tomadas.

Los resultados encontrados en el análisis de las muestras de macroinvertebrados no revelaron ninguna situación negativa, alcanzándose en las tres estaciones un Estado Ecológico "Muy Bueno" (Tabla VI). Aunque el valor del IBMWP descendía a lo largo del río, en ningún momento se alcanzaban valores por debajo de 100, por lo que no parece que el río Alhama presente problemas para alcanzar las exigencias que la DMA plantea.

Río Alzania

En este río se analizó el estado de las aguas en una estación (CEMAS 0534 en Urdalur). Dicho punto se localizaba aguas abajo del embalse de Urdalur, y el tramo de muestreo se localizaba aguas abajo de donde terminaba el tramo modificado tras el paredón del embalse. En dicho punto terminaba la zona de escollera de las orillas y el río volvía a discurrir a través del bosque. Los valores hallados para los índices bióticos (IBMWP= 122; IASPT= 6,100) catalogaron esta masa dentro de la clase superior, con un estado ecológico "Muy Bueno", lo cual le haría alcanzar las exigencias de la DMA.

Fig. 9. Caudales (mínimo, medio y máximo) registrados en el río Alhama en el periodo de estudio. (Leyenda como en Fig. 3).

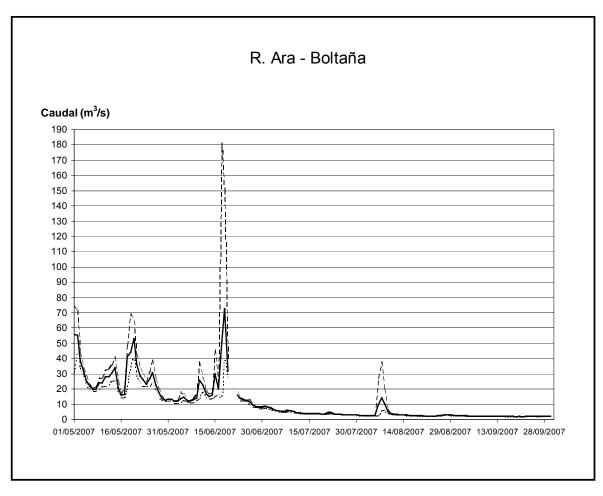
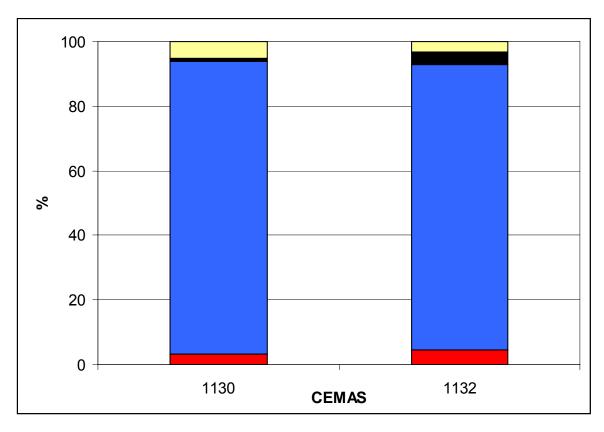

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1193	Magaña	04/08/07	5,210	224	I	Muy Bueno
0234	Venta de Baños	08/08/07	4,290	133	I	Muy Bueno
0214	Alfaro	12/07/07	4,708	113	I	Muy Bueno

Tabla VI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Alhama el año 2007.

Río Ara

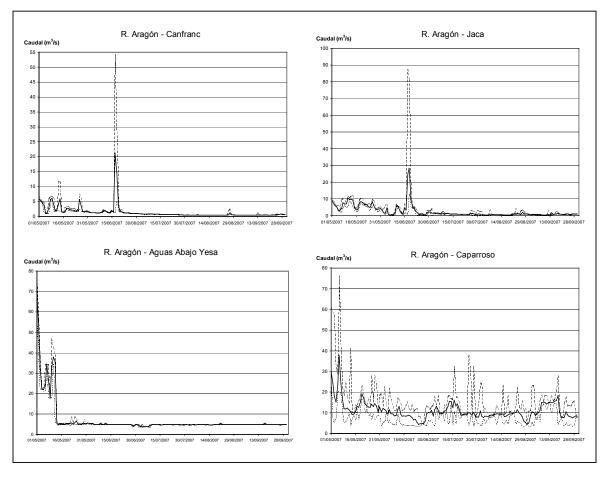
Se analizó el estado de las aguas de este río en dos estaciones de muestreo (CEMAS 1130 en Torla y CEMAS 1132 en Ainsa). La Fig. 10 muestra el caudal medido en el río Ara a lo largo del periodo de estudio, no detectándose alteraciones del mismo que pudieran haber afectado a la representatividad de las muestras tomadas. En la estación de Ainsa se constató la presencia en la orilla derecha de un aporte aparentemente residual (ya percibido en 2005), por lo cual se evitó muestrear en la zona del río afectada por dicho aporte.


Fig. 10. Caudales (mínimo, medio y máximo) registrados en el río Ara en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS Estación	Fecha	IASPT	IBMWP CI	ase	Estado ecológico
1130 Torla	27/08/07	6,360	159	I	Muy Bueno
1132 Ainsa	23/08/07	5,741	155	I	Muy Bueno

Tabla VII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Algas el año 2007.

Los valores de los índices bióticos hallados (Tabla VII) catalogaron ambas estaciones en el estado ecológico más elevado, por lo que no parece que en estos tramos se halle en peligro la consecución de los objetivos que la DMA exige. Sin embargo en la estación de Torla se detectó cierto olor que pudiera indicar que en las inmediaciones existía un aporte orgánico al río (tal vez del camping situado aguas arriba), y además el lecho del cauce se encontró muy resbaladizo. El río parece estar recibiendo algún aporte orgánico en esta zona qu, ya que el porcentaje de Colectores-Filtradores en el tramo superior parece ser más de lo que se esperaría en un río de montaña (Fig. 11). Esta suposición de un nivel intermedio de


Fig. 11. Estructura por grupos tróficos en las estaciones analizadas del río Ara en 2007. (Leyenda como en la Fig. 7).

enriquecimiento orgánico se vería apoyada por la elevada abundancia relativa de Simúlidos, los cuales se alimentan de materia orgánica en suspensión (Johnson *et al.* 1993).

Río Aragón

En este río se seleccionaron diez estaciones de muestreo (1045 en Candanchú - Puente de Santa Cristina, 0529 en Castiello de Jaca, 0018 en Jaca, 2142 en Santa Cilia, 1047 en Puentelarreina de Jaca, 0101 en Yesa, 0205 en Cáseda, 0005 en Caparroso, 0650 en Marcilla, 0530 en Milagro). Es de destacar que en la fecha de los muestreos, en el tramo de río entre la confluencia del río Gas y el embalse de Yesa el agua bajaba muy turbio y con una notable cantidad de sedimentos en suspensión. Dicha alteración provenía del mencionado afluente, pero se desconocía la causa de la misma. Por su parte también es de señalar que en la estación de Caparroso existía un colector aguas abajo del tramo muestreado, y que durante el muestreo se detectaron perceptibles oscilaciones en el caudal circulante.

Fig. 12. Caudales (mínimo, medio y máximo) registrados en el río Aragón en el periodo de estudio. (Leyenda como en Fig. 3).

En la Fig. 12 se representa la evolución del caudal en distintos lugares de este río a lo largo del periodo de muestreo. Se observa que en la parte alta del río se registró un importante incremento de caudal a mediados de Junio. Sin embargo como dicha zona se muestreó casi dos meses después no afectarían a la validez y representatividad de la muestras tomadas. Por su parte la época de muestreo del tramo bajo (finales Junio a mediados de Julio) coincidió con un periodo de caudales sin bruscas variaciones, por lo que también las muestras tomadas serían representativas.

Los resultados encontrados en las diferentes estaciones del río Aragón se muestran en la Tabla VIII. Todos los puntos muestreados tuvieron al menos el Estado Ecológico "Bueno" que la DMA exige, alcanzándose además en la mayoría la categoría de Estado Ecológico "Muy Bueno". Sólo las estaciones de Milagro y Caparroso (ambas localizadas en el tramo inferior) registraron la calificación de "Bueno". Resulta llamativo en el caso de Caparroso el bajo valor del índice IASPT, lo cual podría denotar que existe alguna alteración en el tramo

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1045	Candanchú	07/08/07	5,200	130	ı	Muy Bueno
0529	Castiello de Jaca	07/08/07	5,773	127	I	Muy Bueno
0018	Jaca	07/08/07	5,731	149	ı	Muy Bueno
2142	Santa Cilia	13/08/07	5,531	177	I	Muy Bueno
1047	Puentelarreina de Jaca	14/08/07	5,852	158	I	Muy Bueno
0101	Yesa	14/08/07	4,667	112	ı	Muy Bueno
0205	Cáseda	14/08/07	5,138	149	ı	Muy Bueno
0005	Caparroso	28/06/07	3,625	87	II	Bueno
0650	Marcilla	28/06/07	5,000	155	- 1	Muy Bueno
0530	Milagro	12/07/07	4,450	89	II	Bueno

Tabla VIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Aragón el año 2007.

que puede estar afectando a la fauna. Se cree conveniente realizar un seguimiento en este tramo bajo, sobre todo teniendo en cuenta que en campañas anteriores esta estación no alcanzaba los objetivos exigidos por la DMA.

Como dato complementario cabe destacar el hallazgo en la estación de Candanchú (CEMAS 1045) de una larva de *Eubria palustris* (Germar, 1818) (Coleoptera, Psephenidae), especie de la que existen pocas citas y que había sido también recientemente citada en el tramo medio-bajo de este mismo río (Oscoz y Durán 2004).

Río Arakil

Se analizó el estado de las aguas de este río en tres estaciones (0569 en Alsasua-Iturmendi, 1520 en Irañeta y 0068 en Asiain). Hay que señalar que la ubicación original de la estación CEMAS 0569 no resultaba adecuada para el muestreo biológico, por ser inaccesible, lento y profundo, por lo que tras recorrer gran parte de la masa se consiguió encontrar un tramo muestreable por debajo de la presa del viejo molino de Iturmendi. Por otra parte se debe señalar que en la orilla derecha de la estación 1520 se encuentra una fosa séptica, existiendo un pequeño, pero perceptible, efluente de dicha fosa séptica en el río. Sin embargo, habida cuenta de que el caudal existente en el río es mucho mayor y que el muestreo se comienza bastante metros aguas abajo, se entiende que la influencia de este pequeño afluente sobre el río o sobre la representatividad de la muestra de esta estación será mínima.

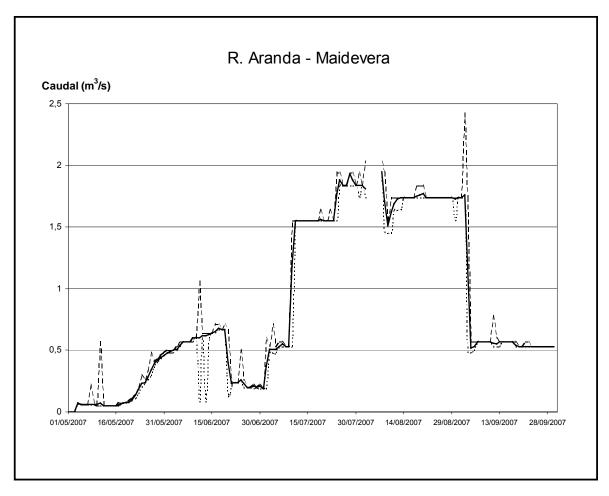
En la Tabla IX se exponen los resultados obtenidos del análisis de las muestras de macroinvertebrados tomadas. Las estaciones estudiadas obtuvieron valores en el índice

CEMAS	Estación	Fecha	IASPT	IBMWP C	lase	Estado ecológico
0569	Alsasua - Iturmendi	19/06/07	4,241	123	I	Muy Bueno
1520	Irañeta	20/06/07	4,852	131	1	Muy Bueno
0068	Asiain	25/06/07	4,643	130	I	Muy Bueno

Tabla IX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Arakil el año 2007.

IBMWP similares, todos ellos indicativos de un Estado Ecológico "Muy Bueno", por lo que no parece que en este río existan problemas para alcanzar los niveles de calidad que la DMA demanda.

Río Aranda


Se seleccionaron dos estaciones de muestreo en este río (1403 en Aranda de Moncayo y 1404 en Brea de Aragón). En la Fig. 13 se recogen los datos de caudal registrados enel río Aranda a lo largo del periodo de estudio. Se observa que entre mediados de Julio y finales de Agosto hubo un fuerte incremento en el caudal circulante, lo cual podría afectar a los resultados. A pesar de ello, el hecho de que el caudal no muestre picos continuos, sino que más o menos se mantiene un valor más o menos constante, puede propiciar que la fauna se adapte a las nuevas condiciones. Esto podría posibilitar que una muestra tomada un tiempo después del incremento inicial de caudal pudiera ser representativa. Este pudo ser el caso de la muestra tomada en la estación de Brea, si bien la falta de los datos concretos en la fecha de muestreo (4 de Agosto) no permiten asegurar con certeza este extremo.

Los resultados de los índices bióticos calificaron sus aguas dentro del Estado Ecológico "Muy Bueno", por lo que a fecha de hoy se cumplirían en ambas estaciones los objetivos exigidos por la DMA.

Río Arazas

En un principio se habían seleccionado dos estaciones en este río (2027 Torla (Pradera Ordesa) y 2028 Torla (Desembocadura)). Sin embargo la estación 2028 fue dada de baja de la red de Referencia, por lo que finalmente no se incluyó en el muestreo. Por su parte, la estación 2027 no pudo muestrearse, ya que se encontraba dentro del Parque Natural de Ordesa-Monte Perdido, para trabajar en el cual se requiere un permiso específico que no se pudo obtener para la fecha de muestreo.

Fig. 13. Caudales (mínimo, medio y máximo) registrados en el río Aranda en el periodo de estudio. (Leyenda como en Fig. 3).

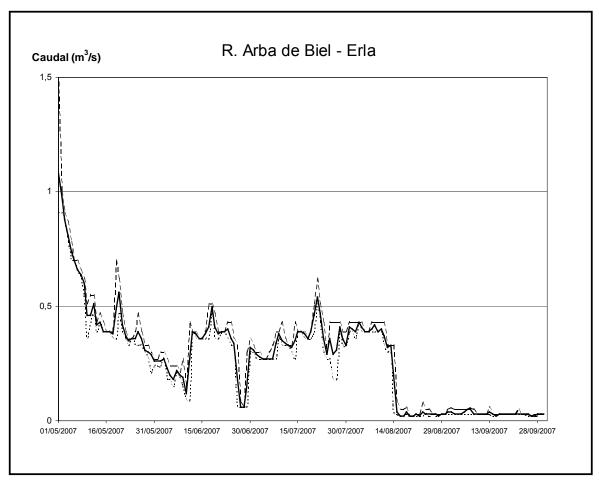

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1403	Aranda de Moncayo	04/08/07	4,156	133	I	Muy Bueno
1404	Brea de Aragón	04/08/07	3,613	112	I	Muy Bueno

Tabla X. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Aranda el año 2007.

Río Arba de Biel

Inicialmente se seleccionaron tres estaciones en este río (1279 en El Frago, 0537 en Luna y 1280 en Erla). Sin embargo la estación 1279 fue dada de baja de la red de Referencia, de forma que no se visitó. Por su parte la estación 0537 de Luna se localizaba a la altura de un azud, aparentemente de abastecimiento. Dicho azud derivaba todo el agua a una acequia, de manera que aguas abajo del azud no existían más que algunos charcos aislados formados probablemente por infiltraciones del azud o de la capa freática. Sin embargo, su aislamiento y falta de interconexión no permitía que se dieran las condiciones para realizar

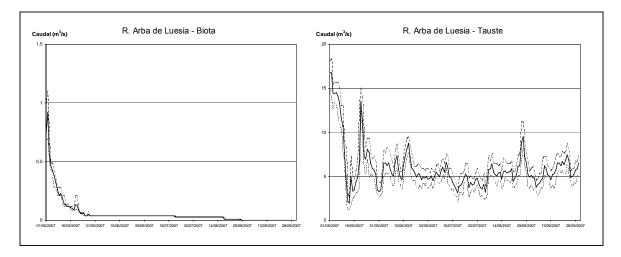
Fig. 14. Caudales (mínimo, medio y máximo) registrados en el río Arba de Biel en el periodo de estudio. (Leyenda como en Fig. 3).

un muestreo adecuado. Aguas arriba del azud tampoco había condiciones apropiadas para el muestreo, por tratarse de una zona de agua estancada. Por ello sólo se pudo realizar el muestreo en la estación 1280 en Erla.

La Fig. 14 muestra la evolución del caudal en el río Arba a lo largo del periodo de muestreo en la zona de Erla. Se observa que no hubo antes de la fecha de muestreo incrementos destacables de caudal, por lo que la muestra tomada sería representativa. Los resultados del análisis de la muestra (IBMWP= 139; IASPT= 4,484) otorgaron un Estado Ecológico "Muy Bueno" a este tramo del río, y no parece que existan graves impedimentos para seguir manteniendo los niveles exigidos por la DMA.

Río Arba de Luesia

En este río se habían seleccionado cuatro estaciones de muestreo (1083 en Luesia, 0703 en Malpica de Arba, 2055 en Ejea de los Caballeros y 0060 en Tauste). La primera de las



estaciones (1083) no pudo muestrearse por hallarse casi seca, con sólo algunos charcos aislados formados por infiltración. En el punto 0703, a pesar de existir poco agua si que se pudo muestrear, pues la continuidad del cauce permitía un muestreo más o menos adecuado. El tramo de río correspondiente al punto 2055 se encontraba estancado y lleno de vegetación, lo que no permitía un muestreo adecuado. Existía aguas arriba de esta zona un azud que retenía (y obviamente derivaba) casi todo el aqua de este río. Se intentó hallar un punto de muestreo alternativo, para lo cual se visitó la zona estudiada en el año 2006, pero se comprobó que las intensas crecidas que han tenido lugar en este río (con marcas de caudal a más de 8 metros de altura del cauce actual), alteraron dicha zona, haciéndola más profunda y totalmente inaccesible. Por su parte en la estación 0060, la zona más adecuada para el muestreo (junto a la estación de aforo) se encontraba en obras con movimientos de maquinaria en las orillas y el cauce, por lo que no era muestreable. Se realizó un muestreo unos 200 m aguas arriba, aguas abajo del aliviadero de la EDAR de Tauste, pero el muestreo se vio muy limitado por la baja disponibilidad de zonas muestreables (por profundidad, velocidad y sustrato), lo cual podría afectar parcialmente a la representatividad de la muestra.

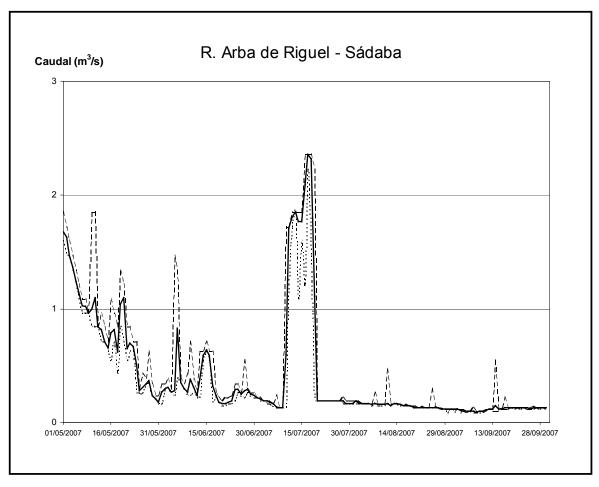
En la Fig. 15 se muestra la variación de caudal registrada en dos estaciones de aforo del río Arba de Luesia a lo largo del periodo de muestreo. En la parte alta del río el caudal se mantuvo en valores bajos y muy constantes desde finales del mes de Mayo. En cambio en la parte baja, si bien el caudal medio tuvo ciertas variaciones no demasiado acusadas en las fechas anteriores al muestreo, se observa que el caudal tiene perceptibles variaciones diarias. Esto se ve claramente por la clara separación de los niveles de caudales máximo, medio y mínimo que hay diariamente, lo que significaría que este río sufre a lo largo de ese periodo variaciones casi idénticas de caudal todos los días. Este hecho podría afectar negativamente a la fauna, pues se conoce que las variaciones de caudal afectan a la fauna reduciendo su riqueza, tanto por disminuir la disponibilidad de sustrato adecuado para la misma, por la inestabilidad de sustrato que suele ir asociada a las variaciones de caudal, como por el estrés que las variaciones de caudal provocan en la fauna (Cortes et al. 1998, Oscoz & Escala 2006).

Los resultados hallados en las dos estaciones analizadas se muestran en la Tabla XI. La estación 0703 (Malpica de Arba) alcanzó un Estado Ecológico "Muy Bueno", pero en cambio la estación 0060 (Tauste) sólo obtuvo una calificación de "Moderado". Esta negativa situación podría estar parcialmente condicionada por las anteriormente comentadas limitaciones que se sufrieron para realizar el muestreo, pero también podría estar motivada tanto por las variaciones de caudal que se registran diariamente como por el impacto que el efluente de la EDAR de Tauste puede tener sobre la fauna de macroinvertebrados. Habida

Fig. 15. Caudales (mínimo, medio y máximo) registrados en el río Arba de Luesia en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
0703	Malpica de Arba	16/07/07	4,600	115	I	Muy Bueno
0060	Tauste	17/07/07	4,077	53	Ш	Moderado

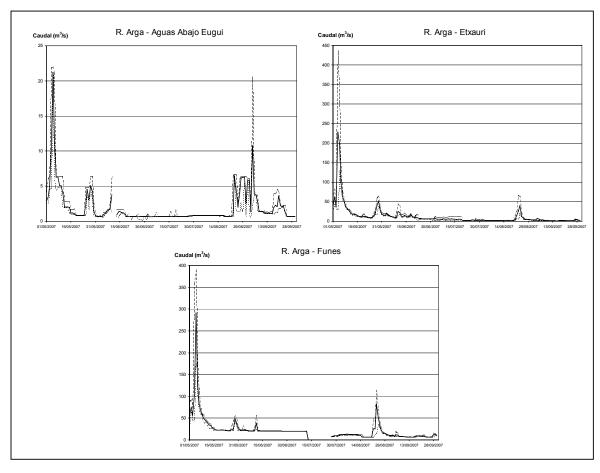
Tabla XI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Arba de Luesia el año 2007.


cuenta el aspecto que el punto presentaba se cree posible que el tramo pueda estar negativamente afectado por más de una alteración. Se cree necesario seguir realizando un seguimiento del estado para asegurar su Estado Ecológico y analizar que presiones puede estar sufriendo y como paliarlas de cara a alcanzar los objetivos que la DMA pide.

Río Arba de Riquel

Se seleccionó para el estudio del Estado Ecológico una estación en este río (1277 en Sádaba). El río Arba de Riguel a su paso por la localidad de Sádaba se encuentra totalmente canalizado y cementado, sin que haya ningún sustrato, lo que lo convierte en un lugar no adecuado para el muestreo. Sólo en la parte superior no existe canalización, en un corto tramo, más bien léntico, localizado por debajo de presa. El muestreo se realiza sobre todo en esta zona, si bien dependiendo del caudal circulante puede no ser una zona del todo adecuada.

En la Fig. 16 se muestra la evolución del caudal circulante en este río a lo largo del periodo de muestreo. Se puede comprobar que justo unos días antes de la fecha de muestreo se produjo un fuerte incremento en el caudal (casi se multiplicó por 10), incremento que se


Fig. 16 Caudales (mínimo, medio y máximo) registrados en el río Arba de Riguel en el periodo de estudio. (Leyenda como en Fig. 3).

mantuvo constante durante unos días (incluyendo la fecha de muestreo), lo cual podría afectar a la representatividad de la muestra tomada. A pesar de estos inconvenientes (aumento de caudal y escasez de zonas de sustrato adecuadas para el muestreo), se obtuvieron unos valores de los índices (IBMWP= 139; IASPT= 4,344) que calificaron esta estación dentro de un Estado Ecológico "Muy Bueno", haciéndola cumplir el nivel exigido por la DMA.

Río Areta

Se estudió el estado de las aguas de este río en una estación (1435 en Rípodas). No se observaron en la fecha de muestreo señales en el tramo que indicaran que se hubieran producido incrementos bruscos de caudal u otras alteraciones que pudieran afectar a la validez de la muestra recogida. Los valores hallados para los índices en esta estación

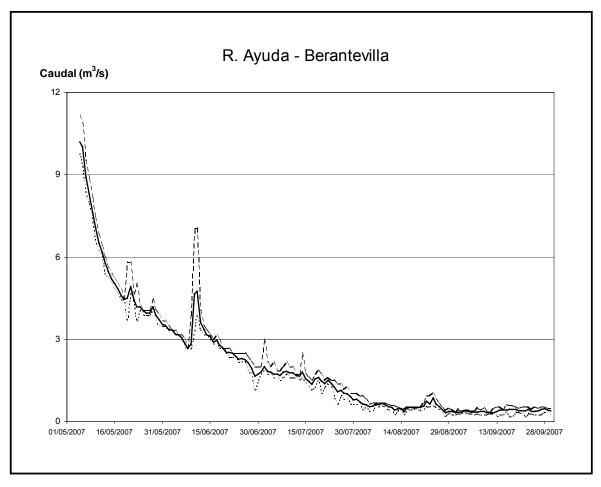
Fig. 17 Caudales (mínimo, medio y máximo) registrados en el río Arga durante el periodo de estudio. (Leyenda como en Fig. 3).

(IBMWP= 164; IASPT= 5,125) le otorgaron un Estado Ecológico *"Muy Bueno"*, por lo que se cumplirían los niveles que la DMA demanda.

Río Arga

En este río se analizó el estado de las aguas en ocho estaciones (1072 en Quinto Real, 0159 en Huarte, 1311 en Pamplona-Landaben, 0217 en Ororbia, 0069 en Etxauri, 0577 en Puentelarreina, 0647 en Peralta y 0004 en Funes). En esta última estación se debió variar su localización a una zona por debajo del pueblo, pues la localización original no era ni accesible ni muestreable. De la misma manera se tuvo que proceder con la estación Puentelarreina, ya que la ubicación original se localizaba por encima de una presa y era un tramo léntico y profundo. Los caudales existentes en este río durante el periodo de muestreo (Fig. 17) no mostraron que se produjeran variaciones bruscas de caudal en las fechas previas al muestreo.

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1072	Quinto Real	02/07/07	6,244	256	1	Muy Bueno
0159	Huarte	02/07/07	5,083	122	I	Muy Bueno
1311	Pamplona – Landaben	25/06/06	4,250	85	II	Bueno
0217	Ororbia	25/06/06	3,611	65	11-111	Bueno – Moderado
0069	Etxauri	20/06/07	4,333	117	- 1	Muy Bueno
0577	Puentelarreina	20/06/07	4,100	82	II	Bueno
0647	Peralta	28/06/07	4,400	88	II	Bueno
0004	Funes	28/06/07	4,625	74	II	Bueno


Tabla XII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Arga en el año 2007.

En la Tabla XII se exponen los resultados hallados del análisis de la muestras tomadas. Se observa que prácticamente en todo el río se cumplen los objetivos que la DMA exige. El Estado Ecológico es "Muy Bueno" hasta llegar a Pamplona, donde desciende a "Bueno". Este dencenso puede estar motivado tanto por la influencia del núcleo urbano de Pamplona como por la confluencia del río Elorz por encima del tramo de muestreo. Es en el siguiente punto (0217 en Ororbia) donde el IBMWP y el IASPT alcanzan los valores más bajos, llegándose a un estado intermedio entre "Bueno" y "Moderado". Posiblemente la localización de esta estación por debajo de la EDAR que trata las aguas de la comarca de Pamplona sea responsable de este deterioro en los valores de los índices bióticos y el consiguiente descenso del Estado Ecológico. A pesar de ello se debe indicar que este resultado mejora los que se hallaron en anteriores campañas, pero todavía no se puede considerar que se ha alcanzado los niveles que la DMA exige. El río vuelve a recuperar un Estado "Muy Bueno" en Etxauri, tal vez en parte ayudado por el aporte de aguas de calidad por parte del río Arakil, para volver a descender a valores indicativos de un estado "Bueno" por debajo de la localidad de Puentelarreina, por lo que en toda esta zona del río Arga también se cumplirían los requisitos de la DMA.

Río Aurín

En esta masa se había escogido una estación de muestreo (0539 en Isín), pero no pudo muestrearse por hallarse el cauce seco. Esta masa de agua parece ser un cauce temporal que sobre todo lleva agua con tormentas, las cuales pueden ser muy fuertes, ya que todo el cauce es una gran gravera que denota la magnitud de las avenidas que pueden acaecer.

Fig. 18 Caudales (mínimo, medio y máximo) registrados en el río Ayuda durante el periodo de estudio. (Leyenda como en Fig. 3).

Río Ayuda

Se había planteado estudiar el estado de las aguas de este río en una estación (1032 en la Carretera a Miranda). Sin embargo en las fechas previstas de muestreo hubo un fuerte incremento del caudal circulante (Fig. 18), posiblemente como consecuencia de fuertes tormentas. Debido a ello el acceso al cauce no fue posible y no se pudo tomar la muestra para su estudio.

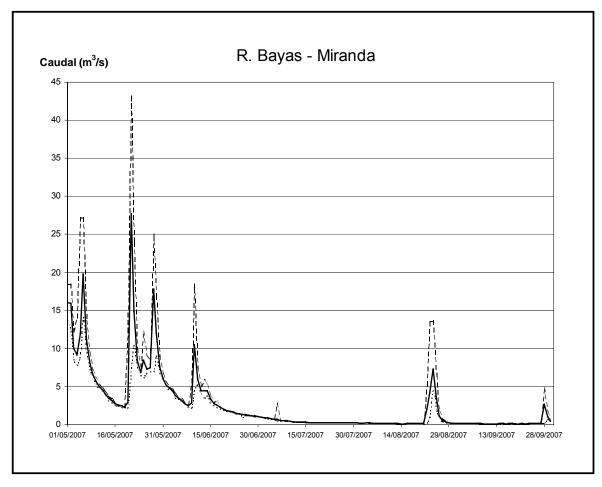
Barranco Balces

Se denomina así (según la toponimia marcada en el propio lugar) a la masa de agua donde se localiza la estación CEMAS 2006 cerca de Las Bellostas, la cual se había originalmente asignado al río Isuala. El camino de acceso hasta esta estación es muy largo y complicado, estando en algunos momentos bastante deteriorado y abrupto. La fecha de muestreo existía

un bajo caudal que no obstante si posibilitó el muestreo del punto, aunque la predominancia de sustrato de losa en las zonas más lóticas restringía parcialmente las posibilidades de muestreo. Los resultados obtenidos en el índice (IBMWP= 154; IASPT= 5,500) catalogaron las aguas de esta masa dentro del Estado Ecológico "Muy Bueno", cumpliéndose por ello los objetivos de la DMA.

Barranco Calvó

Se había previsto analizar el estado de esta masa en un punto (0628 en Benabarre). Sin embargo el punto donde se localiza el río se trata de una pequeña presa que debía servir de abastecimiento para alguna localidad. Por debajo de dicha presa el cauce está totalmente seco y se compone de roca madre, siendo visible que no es habitual que circule mucho agua por el mismo. El tramo por encima de la presa es una zona estancada de agua, no adecuada para realizar un muestreo de macroinvertebrados. Se recorrió la masa buscando una ubicación alternativa, pero no se pudo encontrar ninguna zona accesible en la que hubiera una lámina continua de agua suficiente para permitir un muestreo.


Barranco La Violada

Se escogió una estación (2060 EA aguas arriba de Zuera) para el análisis del estado de esta masa. Esta estación se localiza en una estación de aforo, siendo el único punto desde el que se puede e alguna manera acceder a la masa, ya que el resto de la masa tiene un denso carrizo junto a la escollera que impiden totalmente el acceso al cauce. Este punto alcanzó según los índices calculados un Estado Ecológico "Bueno" (IBMWP= 87; IASPT= 4,350), por lo que se cumplirían en estos momentos los requisitos de la DMA.

Río Barrosa

Se analizó el estado de las aguas de este río en un punto (1417 en Parzán). No se encontraron en esta estación en la fecha de muestreo señales que indicaran que se hubiera podido producir ninguna avenida importante que pudiera afectar a la integridad del tramo de muestreo. Los valores calculados para los índices bióticos (IBMWP= 156; IASPT= 6,000) otorgaron a este punto un Estado Ecológico "Muy Bueno", lo que le haría no tener inconvenientes para cumplir los objetivos de la DMA.

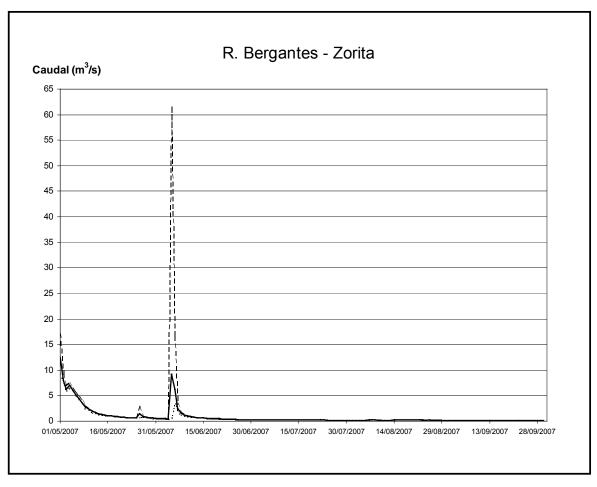


Fig. 19 Caudales (mínimo, medio y máximo) registrados en el río Bayas durante el periodo de estudio. (Leyenda como en Fig. 3).

Río Bayas

En este río se había seleccionado dos estaciones de muestreo (0644 en Aldaroa y 0165 en Miranda de Ebro). Sin embargo las crecidas que se registraron en su tramo bajo en las fechas de muestreo (ver Fig. 19), provocadas posiblemente por las mismas tormentas a las que nos hemos referido antes al hablar del río Ayuda, no permitieron el acceso al río Bayas en la estación inferior, por lo que sólo pudo estudiarse el estado de las aguas en la estación 0644. Esta estación se localizaba dentro del Parque Natural de Gorbeia, en un tramo por debajo de una pequeña presa. Los valores alcanzados por los índices bióticos (IBMWP= 245; IASPT= 6,125) calificaron el estado de esta aguas como "Muy Bueno", denotando la alta calidad que se mantiene en esta zona natural.

Fig. 20. Caudales (mínimo, medio y máximo) registrados en el río Bergantes en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1380	Mare Deu de la Balma	23/08/07	4,692	183	I	Muy Bueno
0806	Aguiaviva-Canalillas	23/08/07	5,108	189	I	Muy Bueno

Tabla XIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Bergantes el año 2007.

Río Bergantes

En este río se escogieron dos estaciones de muestreo (1380 en Mare Deu de la Balma y 0806 en Aguaviva-Canalillas). En la Fig. 20 se observa que este río sufrió a principios de Junio una crecida muy intensa y puntual, pero que al haberse producido más de dos meses antes de la fecha de muestreo no habría tenido influencia en los resultados obtenidos. Los valores de los índices hallados (Tabla XIII) otorgaron a este río un estado Ecológico "Muy Bueno" en las dos estaciones analizadas, por lo que no parece que existan problemas para cumplir los requisitos de la DMA.

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1429	San Millán de la Cogolla	11/07/07	5,718	223	I	Muy Bueno
1430	Cárdenas	06/08/08	4,500	126	I	Muy Bueno

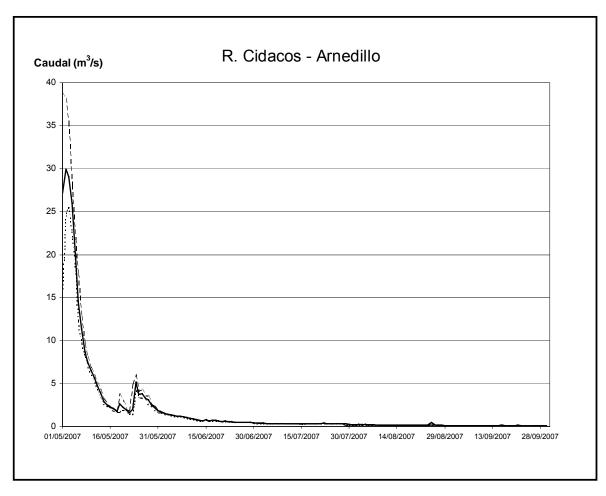
Tabla XIV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Cárdenas el año 2007.

Río Cámaras

Se había seleccionado una estación en este río (2017 en Herrera de los Navarros), sin embargo esta masa se encontraba totalmente seca en el tramo que se había visitado en el año 2006. Se buscó aguas arriba la nueva localización propuesta y se encontró que sólo existían en el tramo algunos charcos aislados, por lo que no se pudo realizar un muestreo al no darse las condiciones necesarias. Por las características del canal en ambos tramos parece que esta masa es un cauce temporal que puede llevar grandes volúmenes de caudal en momentos de fuertes tormentas.

Río Canaleta

En esta masas se había seleccionado una estación (0582 en Bot), la cual no se pudo muestrear por hallarse seca. En el tramo superior sólo había un carrizal y en la parte inferior del tramo existía una charca totalmente estancada y cubierta de *Lemna* sp.


Río Cárdenas

Se habían seleccionado dos estaciones en este río (1429 en San millán de la Cogolla y 1430 en Cárdenas). Ambas estaciones se pudieron muestrear sin dificultad. Los resultados hallados en ambas estaciones se muestran en la Tabla XIV. Como se observa ambos tramos tuvieron valores altos en el índice IBMWP que les hacía alcanzar un Estado Ecológico "Muy Bueno", por lo que actualmente no parece que hubiera problemas para alcanzar las exigencias de la DMA.

Río Carol

Se analizó el estado de las aguas de este río en un punto (1519 en La Tour de Carol). Los resultados de los índices (IBMWP= 155; IASPT= 5,741) catalogaron las aguas de este tramo dentro del estado *"Muy Bueno"*, por lo que cumpliría los objetivos de la DMA.

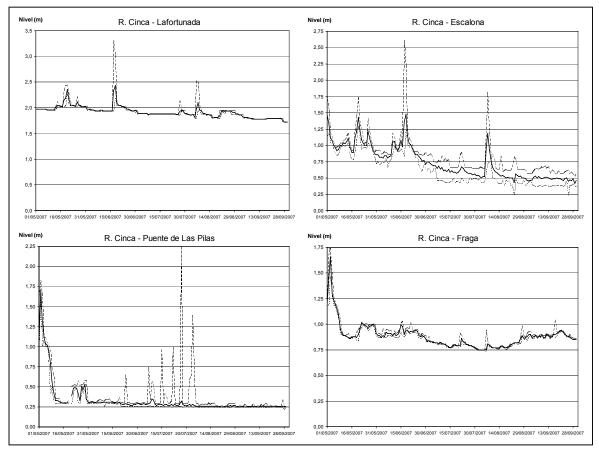
Fig. 21. Caudales (mínimo, medio y máximo) registrados en el río Cidacos en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1455	Yanguas	05/08/07	5,056	182	I	Muy Bueno
0242	Autol	08/08/08	4,536	127	I	Muy Bueno

Tabla XV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Cidacos el año 2007.

Río Cidacos

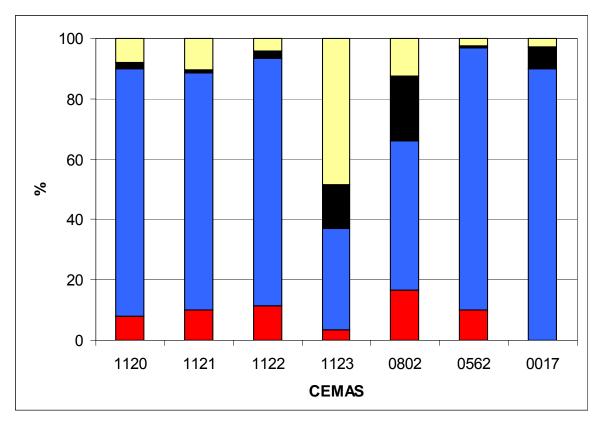
Se escogieron dos estaciones de muestreo en esta masa (1455 en Yanguas y 0242 en Autol). En la Fig. 21 se muestra el caudal del río Cidacos en la época de muestreo, no existiendo avenidas destacables que pudieran afectar a la representatividad de las muestras tomadas. Los resultados obtenidos (Tabla XV) muestran que se alcanzaron valores en el índice indicativos de un Estado Ecológico "Muy Bueno", por lo que actualmente no parece que en esta masa haya peligro de no conseguir los objetivos exigidos por la DMA.


Río Cinca

En este río se escogieron inicialmente nueve estaciones de estudio (1120 en Salinas, 1121 en Laspuña, 1122 en Ainsa, 1123 en El Grado, 0802 en el Puente de Las Pilas, 0228 Aguas arriba de Monzón, 0562 en Conchel, 0549 en Ballobar y 0017 en Fraga). De todas estas estaciones hubo dos (0228 y 0549) que no se pudieron muestrear. La primera de ellas por ser inaccesible, ya que el que parecía ser acceso original al río se ha cubierto de una densa vegetación de carrizo y Anea que impiden alcanzar la orilla. Da la impresión que esta situación pudo estar propiciada por unas obras de alcantarillado que parece que se realizaron en esta zona en Febrero. Se recorrió la masa buscando una entrada alternativa, pero la orilla derecha es un cortado inaccesible, y la izquierda en un denso bosque de ribera que no permite el acceso. Sólo se pudo acceder a la orilla del río en un punto concreto (unos 500 m por encima del punto original), pero en esta zona el río Cinca es muy lento y muy profundo, lo que imposibilita el muestreo biológico. Por su parte la estación 0549 también resultaba inaccesible por el denso bosque de ribera, y las únicas zonas donde se podían acceder hasta el cauce correspondían con escolleras en zonas muy profundas que no permitían un muestreo biológico. Hay que anotar también que el muestreo en el punto 0017 estuvo parcialmente limitado por el caudal existente, pero que se pudo tomar una muestra que se considera adecuada. Por otra parte en el punto 1123 (Aguas Abajo de El Grado), el sustrato del río se encontraba totalmente cubierto por una masa pardo-naranja clara, de manera similar a lo que se había encontrado en el año 2005. También se debe señalar que en las zonas más lentas de la estación 0802 se acumulaba un sedimento fino muy negro que tenía un olor fétido muy fuerte.

En la Fig. 22 se muestra la evolución del nivel de agua registrado en varios puntos del río Cinca a lo largo del periodo de estudio. Se puede observar que en la parte alta existió un fuerte incremento de caudal en la primera semana de Agosto, posiblemente consecuencia de tormentas en la zona. Sin embargo puesto que las muestras en esta zona se recogieron más de dos semanas después, se cree que este hecho no habrá condicionado la validez de la muestra. Por su parte, en el tramo del Puente de las Pilas se produjeron durante Julio fuertes incrementos diarios del caudal máximo, pero dichos picos no se produjeron en Agosto, mes en el que se realizó el muestreo en esta zona, por lo que tampoco se cree que la muestra tomada estaría afectada en su representatividad. Por último en el tramo inferior (Fraga), es perceptible el aumento de caudal registrado en la primera semana de Agosto, pero tampoco se cree que ello afectara a la validez de la muestra recogida.

En la Tabla XVI se resumen los resultados obtenidos del análisis de las muestras de macroinvertebrados en las diferentes estaciones analizadas en el río Cinca. Se observa que todos los puntos estudiados alcanzaron el Estado Ecológico "Muy Bueno", por lo que en la


Fig. 22. Niveles (mínimo, medio y máximo) registrados en el río Cinca en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP CI	ase	Estado ecológico
1120	Salinas	28/08/07	5,808	151	I	Muy Bueno
1121	Laspuña	27/08/07	5,355	166	I	Muy Bueno
1122	Ainsa	23/08/07	6,000	132	I	Muy Bueno
1123	El Grado	20/08/07	5,364	118	I	Muy Bueno
0802	Puente de las Pilas	20/08/07	5,286	148	I	Muy Bueno
0562	Conchel	16/08/07	5,292	127	I	Muy Bueno
0017	Fraga	02/08/07	4,609	106	I	Muy Bueno

Tabla XVI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Cinca el año 2007.

actualidad se puede decir que se alcanzan los objetivos que la DMA exige en el río Cinca. Aunque se observa un descenso en el valor del IBMWP en la estación de 1123, este no es suficiente para reducir el nivel del Estado Ecológico, volviendo a aumentar el IBMWP en la siguiente estación de muestreo. Nuevamente en Fraga se observa un descenso del IBMWP, el cual tampoco es suficiente para reducir la clase de Estado Ecológico.

Fig. 23. Estructura por grupos tróficos en las estaciones analizadas del río Cinca en 2007. (Leyenda como en la Fig. 7).

Analizando la estructura de la comunidad de macroinvertebrados por grupos tróficos a lo largo de este río (Fig. 23) se puede destacar el cambio que se produce en las estaciones 1123 y 0802. En estas estaciones adquieren más importancia los predadores y los raspadores. Estos últimos se pueden ver favorecidos por las características del río Cinca en estos puntos, ya que el cauce se ensancha y recibe una insolación muy notable, lo que favorecería el desarrollo del perifiton del que este grupo se alimenta (Grugaugh *et al.* 1996). Además la producción primaria se ve incrementada por debajo de los embalses por el descenso de la turbidez (Jeffries y Mills 1990), y se ha visto que los raspadores incrementan su abundancia por debajo de zonas de embalses (Vallania y Corigliano 2007), por lo que la localización de ambos puntos por debajo del Embalse de El Grado también podría explicar este aumento. A pesar de este cambio, como ya se ha dicho, el Estado Ecológico se mantendría en niveles adecuados.

Río Cinqueta

En este río se analizó el estado de las aguas en una estación de muestreo (1127 en Salinas). No se observaron en la fecha de muestreo alteraciones en el tramo que señalaran la existencia de ninguna perturbación que pudiera afectar a la fauna o a la muestra tomada. Los valores hallados respecto a los índices bióticos calculados (IBMWP= 141; IASPT= 6,130) calificaron el Estado Ecológico en este tramo de "Muy Bueno", por lo que se cumplen los criterios marcado por la DMA.

Río Ciurana

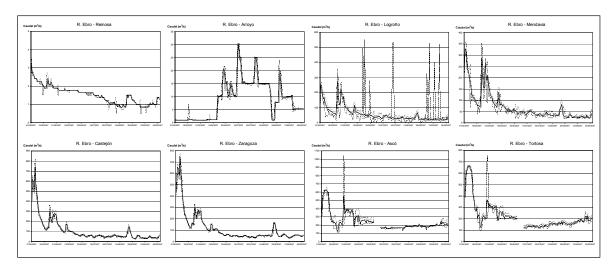
En este río se había planteado el estudio de una estación (2079 en Bellmunt de Priorat), pero esta masa corresponde a un cauce temporal y el punto se encontró totalmente seco la fecha de muestreo, no pudiéndose tomar la muestra.

Río Clamor Amarga

Se había previsto el estudio de esta masa en una estación (0225 Aguas Abajo de Zaidín). Sin embargo no se pudo muestrear, ya que el único punto accesible (bajo un puente) bajaba profundo y turbio, pudiéndose sólo entrar al cauce en unos enormes bloque se refuerzo de los pilares del puente, los cuales no eran muestreables. El resto de la masa se encuentra cubierta de carrizo y cañas, no siendo accesible, y pareciendo ser además en general profundo, turbio y rápido. Se considera que la única opción de muestreo se localiza por debajo del mencionado puente, pero que debe muestrearse en fechas en las que haya un menor caudal.

Río Corb

En este río se había escogido una estación (1119 en Vilanova de la Barca) para estudiar el estado de las aguas. Se tuvo que cambiar la zona de muestreo, pues el día de muestreo la zona propuesta originalmente no permitía un muestreo bueno y seguro, por ser un tramo encajado y existir un caudal alto. Se traslada el muestreo a una zona dentro de un camping antes de la desembocadura en el Segre. En conversación con un lugareño nos informa de que la fecha de muestreo el río lleva el doble que el caudal habitual y además señala que se suelen producir vertidos de purines en el río, sobre todo por las noches. El tramo aparentemente tenía poca diversidad de macroinvertebrados, dando una apariencia de estar muy lavado. El punto analizado sólo alcanzó un Estado Ecológico "Deficiente" de acuerdo a los índices calculados (IBMWP= 22; IASPT= 3,143). Esta situación podría indicar que existe



una fuente de contaminación en este tramo, si bien también las condiciones de alto caudal pueden ser responsables del bajo valor del índice. Se cree necesario seguir analizando lo que ocurre en este tramo para averiguar las causas de pobre Estado Ecológico, de cara a poder paliar esta situación y conseguir cumplir los niveles exigidos por la DMA.

Río Ebro

En este río se seleccionaron en un principio 33 estaciones de muestreo de cara a analizar el estado de sus aguas (1149 en Reinosa, 1150 en Aldea de Ebro, 0161 en Cereceda, 1454 en Trespaderne, 0001 en Miranda de Ebro, 1306 en Ircio, 0208 en Conchas de Haro, 1154 en Aguas arriba Haro, 0595 en San Vicente de la Sonsierra, 1156 en Puente de El Ciego, 0571 en Logroño - Varea, 1157 en Mendavia, 0120 en Lodosa, 0504 en Rincón de Soto, 0505 en Alfaro, 0002 en Castejón, 0506 en Tudela, 0162 en Ribaforada, 0508 en Gallur, 1164 en Alagón, 0657 en Zaragoza-Almozara, 1295 en El Burgo de Ebro, 0211 en Presa Pina, 0592 en Pina de Ebro, 0590 en Escatrón, 1296 en Azud de Rueda, 1297 en Flix, 0163 en Ascó, 1167 en Mora de Ebro, 0511 en Benifallet, 0512 en Xerta, 0027 en Tortosa y 0605 en Amposta). Las estaciones 1154, 0208, 1156, 0512 y 0605 no se pudieron muestrear por no ser tramos vadeables y tener demasiada anchura y profundidad en la fecha en que fueron visitadas. En el punto 0161 el canal abandonado estaba en obras y no era funcional, y no se podía acceder al río, el cual era además profundo, por lo que tampoco pudo muestrearse. La estación de muestreo 0590 se localizaba junto a la central de Escatrón, siendo aparentemente inaccesible. Se pidió permiso a la central (en obras de ampliación actualmente) para poder entrar a comprobarlo y, acompañados de la responsable de medio ambiente de la obras se comprobó que todo el tramo era lento y profundo, resultando por ello imposible para el muestreo biológico. La estación 0001 tampoco se pudo estudiar por encontrarse la fecha de la visita con un alto caudal que no permitía el acceso al río para su muestreo. La estación 0657 resultó inaccesible por encontrarse toda la ribera cerrada por las obras asociadas con la Expo 2008. La estación 0211 tampoco se pudo muestrear, pues el punto original era un canal de derivación no muestreable, mientras que en el cauce había obras en la presa, desviándose casi toda el agua a un canal lateral y quedando por debajo de la presa sólo agua estancada. Los puntos 0163 y 0511, a pesar de que si se recogió una muestra de macroinvertebrados, se debe señalar que son tramos muy limitados, ya que no resultan vadeables. Respecto a la estación 0120, el punto original se localizaba en el canal de derivación de una presa, por lo que se trasladó el punto de muestreo biológico al tramo de río localizado junto al puente de Lodosa. La estación 0162, cuya localización original se situaba en la presa de Pignatelli, tampoco era muestreable, por lo que se recorrió la masa en busca de un emplazamiento alternativo, el cual se encontró cerca de la localidad de

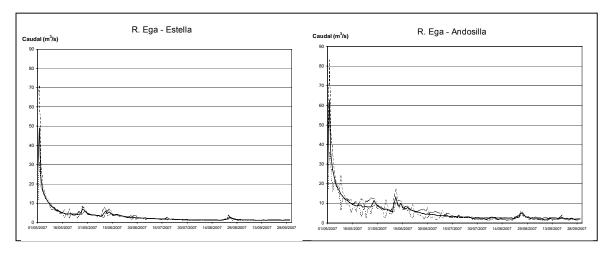
Fig. 24 Caudales (mínimo, medio y máximo) registrados en el río Ebro durante el periodo de estudio. (Leyenda como en Fig. 3).

Ribaforada. Se debería comprobar la posibilidad de que alguno de los puntos antes mencionados pudieran ser estudiados en otras épocas o circunstancias, o las posibilidades de encontrar en alguno de ellos zonas alternativas para el muestreo de los biológicos.

En la Fig. 24 se representan los valores de los caudales circulantes en distintos puntos del río Ebro durante el periodo de muestreo. Salvo en algunas fechas y en el tramo más alto, en general no hubo avenidas reseñables en las fechas de los muestreos. En los puntos 1150 y 1454 se constató que había la fecha de muestreo una crecida (visible en los datos de la estación de Arroyo) que condicionó parcialmente el muestreo de macroinvertebrados, crecida que podría estar motivada por desembalses de agua procedentes del embalse del Ebro. Son también de destacar las puntuales crecidas diarias que a veces parecen producirse en la zona de Logroño, aunque no parece que éstas habrían influido demasiado en la muestra tomada.

En la Tabla XVII se resumen los datos obtenidos respecto a los índices bióticos aplicados en las distintas estaciones del río Ebro analizadas. Gran parte del río Ebro se mantuvo en valores del IBMWP dentro de los estados ecológicos "Bueno" y "Muy Bueno", siendo el tramo más bajo donde parecía existir un descenso más acusado de la calidad, si bien en algunas estaciones intermedias se seguían manteniendo valores correspondientes a un Estado Ecológico "Bueno". En la estación 1454 se alcanzó un estado intermedio entre "Bueno" y "Moderado", pero esto parece que pudo estar motivado por las restricciones que el muestreo tuvo por el alto caudal circulante. Sería necesario continuar analizando el estado en este tramo de cara a asegurar si en él se alcanzan las condiciones que la DMA pide. En la estación de Flix también se encontró un estado intermedio entre "Bueno" y

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1149	Reinosa	19/07/07	4,750	133	I	Muy Bueno
1150	Aldea de Ebro	19/07/07	5,667	119	- 1	Muy Bueno
1454	Trespaderne	15/07/07	4,333	65	11-111	Bueno - Moderado
1306	Ircio	13/06/07	5,000	115	I	Muy Bueno
0595	S. Vicente de la Sonsierra	11/07/07	5,429	76	II	Bueno
0571	Varea - Logroño	26/06/07	4,846	126	1	Muy Bueno
1157	Mendavia	27/06/07	5,389	97	II-I	Bueno - Muy Bueno
0120	Lodosa	27/06/07	5,350	107	I	Muy Bueno
0504	Rincón de Soto	27/06/07	5,192	135	I	Muy Bueno
0505	Alfaro	12/07/07	4,846	126	1	Muy Bueno
0002	Castejón	12/07/07	4,571	96	11-1	Bueno-Muy Bueno
0506	Tudela	11/07/07	4,571	96	II-I	Bueno - Muy Bueno
0162	Ribaforada	11/07/07	5,261	121	I	Muy Bueno
0508	Gallur	17/07/07	4,444	80	II	Bueno
1164	Alagón	19/07/07	4,375	105	1-11	Muy Bueno - Bueno
1295	El Burgo de Ebro	26/07/07	4,667	70	II	Bueno
0592	Pina de Ebro	26/07/07	4,231	110	- 1	Muy Bueno
1296	Azud de Rueda	24/07/07	4,111	74	П	Bueno
1297	Flix	27/08/07	3,875	62	II-III	Bueno - Moderado
0163	Ascó	27/08/07	3,846	50	Ш	Moderado
1167	Mora de Ebro	26/08/07	3,526	67	П	Bueno
0511	Benifallet	26/08/07	4,222	76	П	Bueno
0027	Tortosa	26/08/07	3,733	56	III-II	Moderado - Bueno


Tabla XVII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Ebro el año 2007.

"Moderado", debiéndose analizar más detenidamente las causas que pueden llevar a esta situación de cara a poder mejorarse. Los resultados hallados en las estaciones 0163 ("Moderado") y 0027 (estado intermedio entre "Bueno" y "Moderado") podrían estar condicionadas parcialmente por las limitaciones existentes para tomar la muestra, por lo que debería seguir analizándose su situación en el futuro. Así pues, parece que gran parte del eje del río Ebro podrían cumplir actualmente las exigencias de la DMA, pero se ve necesario el analizar más detenidamente la situación existente en la parte baja o en algunos lugares concretos de este río.

Río Ega

En este río se seleccionaron cuatro estaciones de muestreo (1039 en Lagrán, 0071 en Zubielki, 0572 en el Señorío de Arínzano y 0003 en San Adrian). En la estación 1039 se

Fig. 25 Caudales (mínimo, medio y máximo) registrados en el río Ega durante el periodo de estudio. (Leyenda como en Fig. 3).

habían realizado obras de acondicionamiento de los márgenes, creándose un pequeño paseo fluvial y eliminando gran parte de la vegetación de ribera. La estación 0071, originalmente denominada Estella (Aguas Arriba) se ha cambiado de nombre para evitar confusiones, pues se localiza en la localidad de Zubielki. Se trata de un punto con una profundidad media elevada y donde predominan los sustratos finos, lo que podría condicionar parcialmente el muestreo. Por su parte la estación 0003, originalmente localizada en Andosilla, era una zona profunda y léntica, no muestreable, por lo que se trasladó el punto de muestreo biológico a la zona de San Adrian.

No se produjeron en la época de muestreo avenidas o crecidas destacables que pudieran haber condicionado la representatividad de las muestras tomadas (Fig. 25). Los resultados de los índices bióticos calculados (Tabla XVIII) calificaron las aguas de este río dentro de los estados ecológicos "Bueno" o "Muy Bueno", por lo que no parece que existan problemas para el cumplimiento de la DMA. Es de destacar además que en el punto de San Adrian se encontró un ejemplar vivo de Unio mancus, especie protegida en Europa por la Directiva Hábitat (Anexo V) y por la convención de Berna (Anexo III), y que en España se ha propuesto que sea incluida dentro del catálogo Nacional de Especies Amenazadas bajo la categoría de especie "Sensible a la alteración de su hábitat" (Gómez-Moliner et al. 2001).

Río Elorz

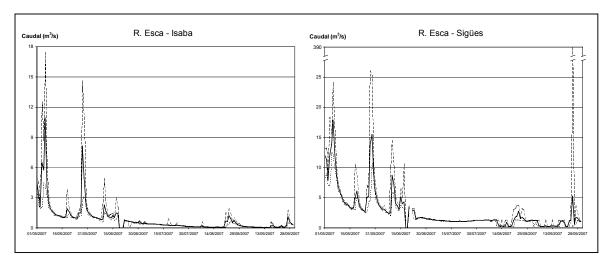
En esta masa se escogió una estación (3001 en Pamplona) localizada cerca de la confluencia de este río con el Arga. Se trata de una zona donde son visibles los restos de basura y se percibe olor por aportes orgánicos. Los valores hallados en los índices bióticos

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1039	Lagrán	21/06/07	4,400	111	I	Muy Bueno
0071	Zubielki	21/06/07	5,167	93	II	Bueno
0572	Señorío de Arínzano	21/06/07	5,316	101	1-11	Muy Bueno – Bueno
0003	San Adrian	27/06/07	5,000	135	1	Muy Bueno

Tabla XVIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Ega el año 2007.

(IBMWP= 58; IASPT= 3,867) calificaron las aguas de este río dentro del Estado Ecológico intermedio entre "Moderado" y "Bueno". El análisis de los grupos tróficos mostró que más del 99% de los organismos correspondían al grupo de colectores-filtradores, algo que se ve reforzado por el hecho de que la mayor abundancia correspondía a los quironómidos, seguidos de los oligoquetos. Llama también la atención que más del 95% de la comunidad de macroinvertebrados estuviera formada por sólo tres taxones (Chironomidae, Oligochaeta y Baetidae). Parece pues claro que en este punto existen alteraciones que no le permiten de momento alcanzar de manera estable los objetivos de la DMA.

Río Erro


En este río se analizó el estado de las aguas en una estación (1393 en Sorogain). No se encontraron en la fecha de muestreo señales que indicaran que se hubiera producido ninguna avenida o circunstancia que pudiera haber afectado a la representatividad de la muestra tomada. El resultado de los índices bióticos calculados (IBMWP= 241; IASPT= 6,179) calificaron las aguas de esta estación dentro de un Estado Ecológico "Muy Bueno", por lo que se cumplirían los objetivos de la DMA.

Río Esca

Se seleccionaron en este río dos estaciones para el estudio del Estado Ecológico (0816 en Burgui y 0702 en Sigües). La primera de ñas estaciones se localiza por debajo de una pequeña presa en la localidad de Burgui, mientras que la segunda se localiza por debajo de una estación de aforo situada en una foz cercana a Sigües.

En la Fig. 26 se muestra la variación de caudal que ha existido en este río a lo largo del periodo de muestreo. Se observa que aunque en algunas fechas han existido incrementos considerables en el caudal circulante, dichas avenidas tuvieron lugar o bien después o bien mucho antes de la fecha de muestreo. Por ello no se considera que pudieran afectar a la

Fig. 26. Caudales (mínimo, medio y máximo) registrados en el río Esca en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
0816	Burgui	14/08/07	6,000	156	I	Muy Bueno
0702	Sigües	14/08/07	5,677	176	1	Muy Bueno

Tabla XIX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Esca el año 2007.

representatividad de la muestra recogida. En la Tabla XIX se muestran los resultados hallados tras el análisis de las muestras de macroinvertebrados recogidas, las cuales alcanzaron valores en los índices correspondientes a un Estado Ecológico "Muy Bueno". Por ello se podría decir que el río Esca actualmente no tendría problemas en cumplir las exigencias planteadas por la DMA.

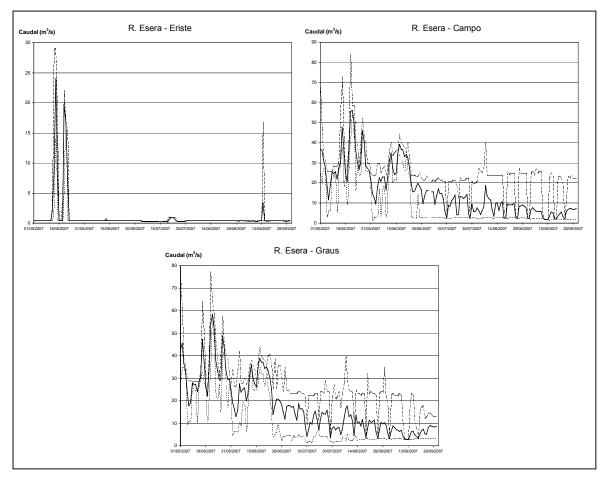
Río Escuriza

En este río se había seleccionado una estación (1368 en Ariño). El tramo muestreado recibe el aporte de agua de una acequia que confluye en su margen derecha. Los resultados hallados respecto a los índices bióticos (IBMWP= 101; IASPT= 4,208) otorgaron a las aguas de esta estación un Estado Ecológico intermedio entre "Muy Bueno" y "Bueno", lo que haría que en este tramo se cumplieran los objetivos marcados por la DMA.

Río Ésera

Aunque inicialmente se habían seleccionado cinco estaciones para el estudio de este río (1270 en Plan de Hospital de Benasque, 1133 en Castejón de Sos, 1134 en la carretera

Ainsa-Campo, 1135 en Perarrua y 0013 en Graus), posteriormente se añadió una nueva estación (1476 en su desembocadura). Hay que señalar que en la estación 1133 existe en la orilla izquierda un vertido de aguas residuales por debajo del puente, pero puesto que el muestreo se realiza aguas arriba del puente, dicho vertido no afecta al tramo de estudio. Por otra parte se debe señalar que en general este río se encontró bastante turbio en las estaciones localizadas por debajo de Perarrua, con presencia de un sedimento grisáceo. Por último no se pudo muestrear en la estación 1134 por encontrarse en una momento de alto caudal, posiblemente procedente de una suelta de una central hidroeléctrica, el cual imposibilitaba el poder acceder al río a tomar una muestra sin ser arrastrado por la corriente.


En la Fig. 27 se recogen las variaciones de caudal existentes en este río a lo largo del periodo de estudio. En el tramo alto no se registraron en las fechas de muestreo variaciones de caudal que pudieran afectar a la fauna en el río. Sin embargo en el tramo cercano a Campo y en el de Graus existen variaciones diaria en los caudales circulantes (reflejado por las diferencias que siempre se dan entre los caudales máximos, medios y mínimos), provocados posiblemente por los ritomos de suelta de agua que existirían en las centrales eléctricas y embalses destinados a producción eléctrica de la zona, como es el caso del la presa de Linsoles, localizada por encima de Campo.

En la Tabla XX se recogen los resultados obtenidos del análisis de las muestras de macroinvertebrados analizadas en este río. La mayor parte de las estaciones alcanzaban un Estado Ecológico "Muy Bueno", y sólo la estación 0013 localizada en Graus obtenía una calificación de estado intermedio entre "Muy Bueno" y "Bueno". Tal vez este menor valor en el índice pudiera ser reflejo del estrés que la comunidad de macroinvertebrado tiene debido a las variaciones de caudal que este tramo sufre diariamente, ya que se conoce que la actividad de las centrales hidroeléctricas pueden alterar la comunidad macroinvertebrados bentónicos (Cortes et al. 1998, Oscoz y Escala 2006). Sin embargo, a pesar de esa fuente de estrés, el río todavía mantendría los requerimientos que la DMA especifica en cuanto a Estado Ecológico.

Río Estarrún

En este río se seleccionó una estación (2012 en Aisa) para el estudio del estado de sus aguas. La fecha de muestreo se observaron señales de que el río había sufrido un aumento de caudal en las últimas 24 horas (incremento de al menos 20 cm en su nivel). Éste sería debido a las tormentas que se dieron en la zona, y aunque el caudal se había reducido era patente que era mayor que el que había debido mantener en fechas pasadas. A pesar de ello se consideró que la subida de caudal no habría sido de tipo catastrófica y que la fauna

Fig. 27. Caudales (mínimo, medio y máximo) registrados en el río Ésera en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1270	Plan de Hospital	22/08/07	6,808	177	I	Muy Bueno
1133	Castejón de Sos	22/08/07	5,385	140	I	Muy Bueno
1135	Perarrua	21/08/07	5,714	120	I	Muy Bueno
0013	Graus	21/08/07	5,316	101	I-II	Muy Bueno – Bueno
1476	Desembocadura	20/08/07	5,367	161	I	Muy Bueno

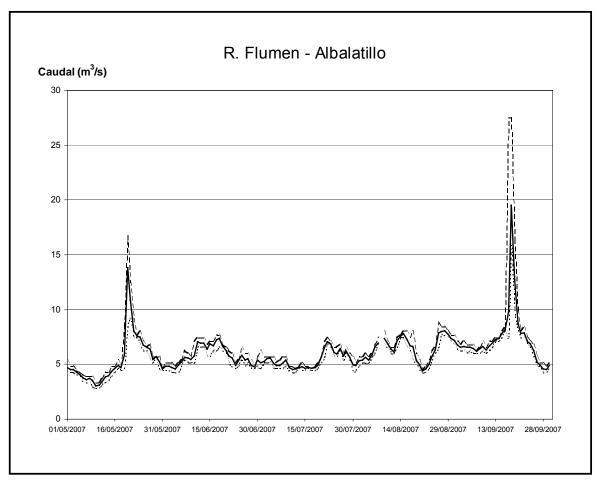
Tabla XX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Ésera el año 2007.

del río se habría visto poco afectada. El resultado del análisis de la muestra tomada (IBMWP= 191; IASPT= 5,969) otorgó a las aguas de esta estación un Estado Ecológico *"Muy Bueno"*, lo que hace que actualmente se cumplan los objetivos que la DMA exige.

Río Flamisell

Se analizó el estado de las aguas en una estación de muestreo (1110 en Pobleta de Bellvehi), la cual alcanzó valores en los índices indicativos de un Estado Ecológico "Muy Bueno" (IBMWP= 197; IASPT= 5,794). Con estos resultados la estación cumpliría actualmente los objetivos de la DMA.

Río Flumen


Se seleccionaron tres estaciones para el estudio del estado de las aguas en este río (0551 en Tierz, 0227 en Sariñena y 1465 en E.A. Sariñena). Sin embargo no se pudo muestrear en la estación 0227 debido a que resultaba inaccesible. Aunque se recorrió la masa buscando un acceso alternativo al original no se encontró, pues la vegetación de árboles, zarzas, carrizo y anea impedía el acceso, y además, debido a las aguas que se infiltran del drenaje de los regadíos, el río llevaba un alto caudal y tenía por ello una fuerte corriente. Este alto caudal hizo también imposible el muestreo de la estación 1465, pues en la única zona accesible que existe, el caudal no garantizaba unas mínimas condiciones de seguridad que permitieran realizar un muestreo adecuado. De cara a futuros estudios podría ser conveniente ajustar las fechas de los muestreos en esta zona a épocas en las que no se realicen riegos en los cultivos.

La Fig. 28 muestra la variación de caudal existente en el río Flumen en la estación de Aforo de Albalatillo, localizada cerca de la confluencia con el Alcanadre. Los resultados hallados en la estación muestreada (IBMWP= 110; IASPT= 5,000) calificaron las aguas del río Flumen dentro de un Estado Ecológico "Muy Bueno". Se puede por ello decir que en el tramo superior parece no haber problemas para alcanzar los niveles de calidad exigidos por la DMA, pero se debe seguir analizando la situación en la parte baja del río, para lo cual se cree necesario realizar los muestreos en una época donde no existan alteraciones del caudal por los riegos y/o buscar de manera más intensa posibles accesos alternativos localizados en el tramo bajo del río.

Río Fontobal

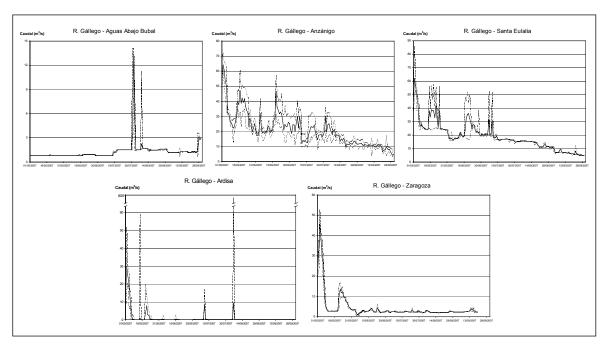
Se seleccionó una estación de muestreo en esta masa (0540 en Ayerbe). El tramo original al que se llegaba según las indicaciones de las coordenadas GPS era un cauce totalmente seco. Sin embargo 500 m aguas abajo de dicha zona, cerca del Camping de Ayerbe, se localizó un tramo donde existía algo de agua, tal vez procedente de otro afluente o de alguna acequia de río. Unos 100-200 m más adelante existía un azud que derivaba todo el

Fig. 28 Caudales (mínimo, medio y máximo) registrados en el río Flumen periodo de estudio. (Leyenda como en Fig. 3).

agua de este tramo a una canalización subterránea, quedando el cauce del río nuevamente del todo seco. Finalmente se decidió tomar la muestra de este río en este tramo alternativo. A pesar de estas, *a priori*, adversas condiciones, los resultados hallados en esta estación (IBMWP= 134; IASPT= 4,786) calificaron sus aguas dentro de un Estado Ecológico *"Muy Bueno"*, lo que haría que se cumplieran los requisitos de la DMA en este corto tramo. Se debería de todas formas conocer la procedencia de estas aguas y el uso al que están destinadas en la derivación existente.

Río Formiga

Se había seleccionado en un principio una estación en este río (2022 en Bastaras), pero posteriormente fue dado de baja de la red de Referencia, a la cual pertenecía, por lo que finalmente no se estudió.


Río Gállego

Se seleccionaron 12 estaciones para el análisis del estado de las aguas en este río (1087 en Formigal, 0618 en el Embalse del Gállego, 1088 en Biescas, 1089 en Sabiñánigo, 1090 en Hostal de Ipies, 0561 en Jabarrella, 0123 en Anzánigo, 1092 en Murillo de Gállego, 0808 en Santa Eulalia, 1492 Central de Marracos, 0247 en Villanueva de Gállego y 0089 en Santa Isabel-Zaragoza). La estación 1089 presentaba una acceso muy difícil debido al crecimiento experimentado por la vegetación de ribera, y sólo era muestreable un corto tramo de rápidos entre dos zonas remansadas localizadas entre la presa de Sabiñánigo y un azud de reciente construcción. Además a la altura de este azud, en la orilla derecha, existe un aporte de aguas residuales, las cuales no tendían efecto sobre la muestra tomada por hallarse fuera de la zona muestreable. Por su parte, la ubicación original de la estación 1090 resultaba inaccesible por la abundante vegetación de ribera, por lo que se buscó un acceso alternativo que se localizó unos kilómetros aguas abajo. No se pudo muestrear en la estación 1492, ya que el tramo era lento y profundo aguas arriba, y en la zona de desagüe del agua de la central era demasiado rápido y profundo. En el recorrido de acceso hasta el punto de muestreo se recorrió la masa y se constató que el río en general es muy lento y con carrizo y que los accesos son cortados con una pendiente aproximada de 70°. En la estación 0089 eran patentes las señales indicativas de una polución de las aguas, ya que hay un sedimento fino que cubre todo el cauce, el aqua arrastra materia en suspensión y se hallan restos de celulosa.

En la Fig. 29 se recogen los caudales medidos en distinta zonas del río Gállego durante el periodo de estudio. Se observa que en la parte alta se debió realizar una suelta desde el embalse de Bubal una semana antes de la fecha de muestreo. Dicho aumento de caudal podría haber afectado en todo caso a la fauna en la estación 1088 (Biescas), si bien no se percibieron durante el muestreo señales de que dicha estación hubiera tenido una crecida catastrófica que pudiera haber afectado a la comunidad biótica. La sucesión de diferentes embalses que existen a partir de este punto (Sabiñánigo, Jabarrella, Javierrelatre, La Peña) habría minimizado este incremento de caudal en los siguientes puntos. Si que es perceptible que en la zona de Anzánigo existen variaciones diarias en el caudal del río, provocadas seguramente por el ritmo de actividad de las centrales eléctricas existentes en la zona. Por último, se detecta un enorme incremento del caudal máximo en la zona de Ardisa a principios de Agosto. Sin embargo, las estaciones localizadas por debajo de este embalse se muestrearon o bien antes, o bien mucho después, por lo que no se cree que esa avenida catastrófica hubiera afectado a la representatividad de la muestra tomada en ellas.

En la Tabla XXI se recogen los resultados hallados en las diferentes estaciones de este río que se analizaron. Se observa que la mayor parte del río Gállego alcanzó valores en los

Fig. 29. Caudales (mínimo, medio y máximo) registrados en el río Gállego en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1087	Formigal	06/08/07	5,762	121	ı	Muy Bueno
0618	Embalse del Gállego	06/08/07	6,211	118	- 1	Muy Bueno
1088	Biescas	06/08/07	5,920	148	I	Muy Bueno
1089	Sabiñánigo	08/08/07	4,286	90	II	Bueno
1090	Hostal de Ipiés	08/08/07	5,282	206	I	Muy Bueno
0561	Jabarrella	08/08/07	5,325	213	I	Muy Bueno
0123	Anzánigo	08/08/07	5,343	187	I	Muy Bueno
1092	Murillo de Gállego	09/08/07	5,226	162	I	Muy Bueno
0808	Santa Eulalia	09/08/07	5,800	174	I	Muy Bueno
0247	Villanueva de Gállego	29/08/07	3,800	76	II	Bueno
0089	Santa Isabel	23/07/07	3,000	33	IV-III	Deficiente-Moderado

Tabla XXI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Gállego el año 2007.

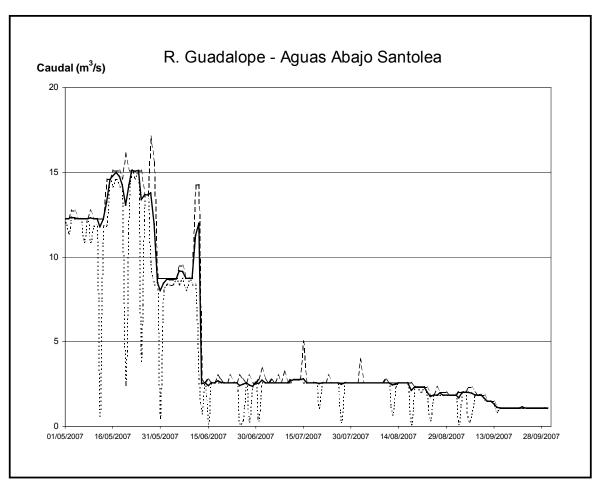
índices bióticos indicativos de un Estado Ecológico "Muy Bueno", o cuanto menos "Bueno". Sólo la estación 0089 localizada en Santa Isabel – Zaragoza registró un Estado Ecológico intermedio entre "Deficiente" y "Moderado", lo cual le haría no alcanzar las exigencias de la DMA. Parece que en este tramo bajo del río se esta produciendo una pérdida de la calidad de las aguas debido a la existencia de una fuerte polución orgánica, lo que también se puede ver por la dominancia de quironómidos y oligoquetos (que conforman más del 95% de la comunidad), taxones resistentes a la contaminación orgánica e indicadores habituales de

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1298	Artires	17/09/07	5,870	135	I	Muy Bueno
0705	Es Bordes	17/09/07	5,565	128	- 1	Muy Bueno
1299	Bossots	17/09/07	5,500	99	II-I	Bueno – Muy Bueno

Tabla XXII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Garona el año 2007.

enriquecimiento orgánico (Del Moral *at al.* 1997). Llama también la atención que más del 99% de la comunidad esté formado por sólo tres grupos -Chironomidae, Oligochaeta y Physidae-, este último grupo también con especies muy resistentes a la contaminación, de manera que puede ser encontrada incluso en depuradoras de agua residuales (Larraz *et al.* 2007). Posiblemente la fuerte actividad industrial de esta zona y la influencia de los núcleos urbanos existentes pueda ser la responsable de esta negativa situación.

Como dato complementario se señala la presencia de un individuo joven de *Anodonta* sp. en la estación 0808.


Río Garona

En este río se seleccionaron tres estaciones de cara a analizar el estado de sus aguas (1298 en Arties, 0705 en Es Bordes y 1299 en Bossots). En esta última estación se producen muchas oscilaciones del caudal y se encontraron dificultades en el muestreo, debido al elevado caudal existente y por la presencia de un sustrato grueso muy resbaladizo. La Tabla XXII recoge los resultados obtenidos al analizar las muestras de las estaciones analizadas. Todas ellas cumplieron los requisitos de la DMA, con un Estado Ecológico "Muy Bueno" en las dos estaciones superiores y un Estado Ecológico intermedio entre "Bueno" y "Muy Bueno" en la estación 1299.

Río Grío

Se analizó el estado de las aguas de esta masa en una estación (0583 en La Almunia de Doña Godina). Se trata de un pequeño arroyo con un pequeño azud desde el que se deriva agua, estando el cauce seco a unos 50 m por debajo de dicho azud. Los resultados hallados en los índices bióticos (IBMWP= 166; IASPT= 4,611) otorgaron un Estado Ecológico "Muy Bueno" a las aguas de esta estación.

Fig. 30 Caudales (mínimo, medio y máximo) registrados en el río Guadalope periodo de estudio. (Leyenda como en Fig. 3).

Río Guadalope

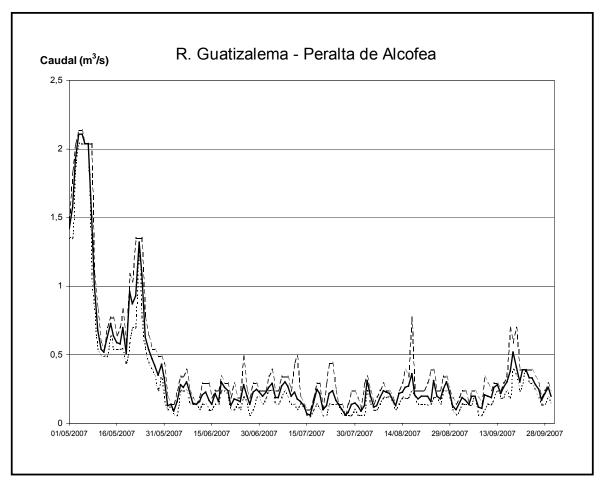
Se seleccionaron ocho estaciones de muestreo de cara a analizar las aguas en este río (1234 en Aliaga, 1253 en Ladruñán, 0106 en Santolea, 1235 en Mas de las Matas, 0015 en Derivación acequia de Alcañiz, 1238 Aguas abajo de Alcañiz, 1239 en EA Caspe y 1376 en Palanca-Caspe). No se pudo tomar la muestra en la estación 0015 pues tras llegar al lugar del azud no se encontraron accesos, y el tramo era demasiado léntico. Tampoco se tomó la muestra de la estación 1376, donde se comprobó que el agua del río pertenecía a un vertido de la EDAR.

La Fig. 30 representa la evolución del caudal en este río a lo largo del periodo de muestreo, no observándose en las fechas de muestreo avenidas que pudieran haber condicionado la validez y representatividad de los muestreos. En la Tabla XXIII se resumen los datos obtenidos del análisis de los macroinvertebrados en las diferentes estaciones del río Guadalope. Prácticamente todas ellas obtuvieron una calificación de Estado Ecológico "Muy

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1234	Aliaga	22/08/07	5,098	209	I	Muy Bueno
1253	Ladruñan	22/08/07	4,933	148	1	Muy Bueno
0106	Santolea	22/08/07	5,276	153	I	Muy Bueno
1235	Mas de las Matas	23/08/07	5,026	196	I	Muy Bueno
1238	Aguas Abajo Alcañiz	24/08/07	4,000	106	I	Muy Bueno
1239	Caspe E.A.	28/08/07	4,609	68	Ш	Bueno

Tabla XXIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Guadalope el año 2007.

Bueno", y sólo la estación 1238, localizada por debajo de la EDAR de Alcañiz, vio reducido su Estado Ecológico a un nivel "Bueno". Ello podría indicar que la mayor parte del río Guadalope podría cumplir las exigencias de la DMA, si bien se cree necesario por una parte confirmar que se mantiene al menos el Estado "Bueno" en el tramo de la estación 1238 y por otra parte analizar con detalle la situación en el entorno de la estación 1376, donde en años anteriores no se alcanzaban los niveles de calidad que la DMA demanda. Por otra parte, como dato complementario, se apunta la presencia de un juvenil de Anodonta sp. en la estación 0106, especie de la que se ha recomendado su inclusión en el Catálogo Nacional de Especies Amenazadas en la categoría de "Interés especial" (Gómez-Moliner et al. 2001).


Río Guarga

Se seleccionó una estación de muestreo en este río (2014 en Ordovés) para el estudio del estado de sus aguas. No hubo problemas para el muestreo de dicho tramo, el cual obtuvo una calificación de Estado Ecológico "Muy Bueno" a tenor de los valores obtenidos en sus índices bióticos (IBMWP= 155; IASPT= 5,536). Esto implica que el tramo cumpliría las exigencias que la DMA impone.

Río Guatizalema

Se seleccionaron cuatro estaciones de muestreo en este río (1398 en Nocito, 1399 en Molinos de Sipan, 1285 en Sietamo y 0032 en Peralta de Alcofea). No se pudo tomar la muestra en la estación 0032 por ser inaccesible y hallarse la masa de agua muy estancada. Aunque se recorrió la masa aguas arriba en busca de un posible acceso, no se halló una zona accesible que no tuviera el agua estancada. La estación 1398 no se pudo tomar en la localización marcada originalmente, por lo que se tomó en el tramo de río junto al camping de Nocito. En esta zona se detectaba un olor claro indicativo de que existe un vertido

Fig. 31. Caudales (mínimo, medio y máximo) registrados en el río Guatizalema en el periodo de estudio. (Leyenda como en Fig. 3).

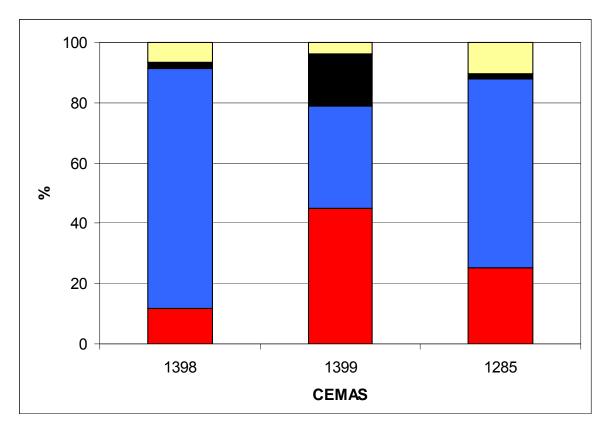
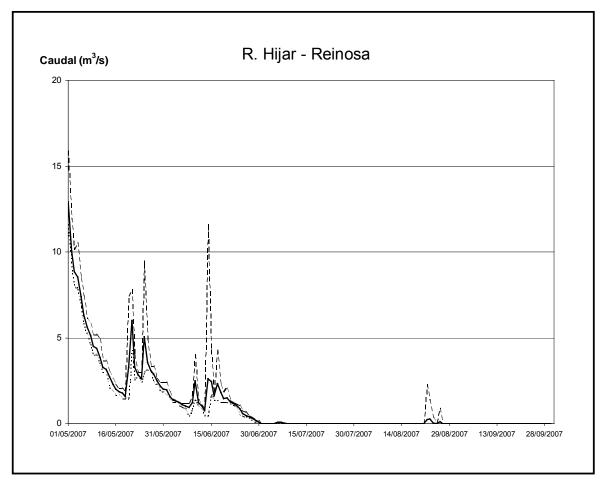

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1398	Nocito	01/08/07	5,000	155	I	Muy Bueno
1399	Molinos de Sipan	30/07/07	5,333	160	1	Muy Bueno
1285	Sietamo	30/07/07	5,000	85	II	Bueno

Tabla XXIV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Guatizalema el año 2007.

orgánico, y el bajo caudal hizo que las zonas lóticas fueran escasas, a pesar de lo cual se pudo tomar una muestra. La muestra de la estación 1285 se tomo a unos 50-100 m por debajo de la estación de aforo, ya que en esta el agua es profunda y más bien lenta.

La Fig. 31 representa la evolución del caudal en este río durante la época de estudio. En la Tabla XXIV se exponen los resultados hallados para los índices bióticos calculados. En los dos puntos superiores se alcanzó un Estado Ecológico "Muy Bueno", mientras que en el punto inferior se obtuvo un valor indicativo de Estado Ecológico "Bueno". Esto significaría


Fig. 32. Estructura por grupos tróficos en las estaciones analizadas del río Guatizalema en 2007. (Leyenda como en la Fig. 7).

que en este tramo se cumplirían los objetivos de la DMA. A pesar de que en la estación 1398 se alcanzara un alto valor en el índice, se debe señalar que si que parecía haber una alteración en la comunidad de macroinvertebrados. El análisis del porcentaje de grupos tróficos (Fig. 32) mostró que en este tramo el porcentaje de colectores-filtradores era algo mayor que el esperado, reduciéndose el de organismos trituradores. Esto podría indicar que en el tramo efectivamente existiría un aporte orgánico, el cual, mientras no llegue a niveles muy altos limitantes para algunos taxones, podría actuar como una fuente de energía añadida que favoreciera el desarrollo de un mayor número de grupos de macroinvertebrados.

Río Hijar

Se había seleccionado una estación de muestreo en este río (0203 en Espinilla). En la Fig. 32 se muestra la evolución del caudal de este río a lo largo del periodo de estudio. Se observa que tras algunos incrementos de caudal acaecidos en Mayo y a mediados de Junio, el caudal se redujo y se mantuvo bastante bajo en casi todo el periodo analizado. Los

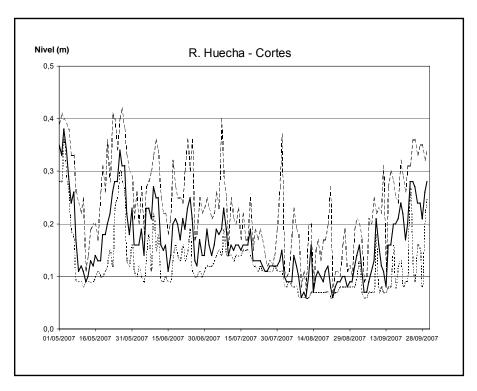
Fig. 33. Caudales (mínimo, medio y máximo) registrados en el río Hijar en el periodo de estudio. (Leyenda como en Fig. 3).

valores de los índices bióticos hallados en esta estación (IBMWP= 241; IASPT= 5,878) otorgaron a sus aguas un Estado Ecológico "Muy Bueno", no pareciendo que en esta zona puedan existir problemas para poder cumplir los niveles que la DMA demanda.

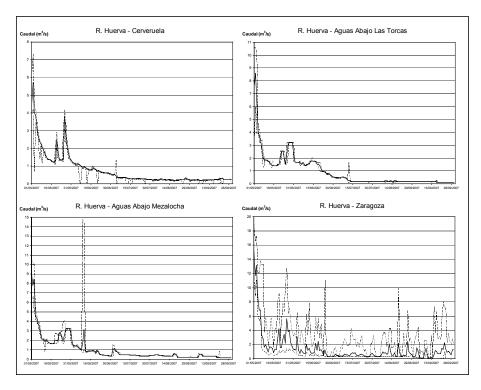
Río Homino

Se seleccionó en esta masa una estación (2086 en Terminón) para analizar el estado de las aguas. Se trata de un arroyo con abundante vegetación y rodeado de cultivos frutales. El análisis de la muestra tomada otorgó a esta estación un Estado Ecológico *"Muy Bueno"* (IBMWP= 133; IASPT= 4,926), por lo que actualmente se alcanzarían en esta masa los objetivos de la DMA.

Río Huecha


En este río se seleccionaron dos estaciones de muestreo (0541 en Bulbuente y 1350 en Mallen). Sin embargo la estación 0541 se encontró totalmente seca y no se pudo tomar ninguna muestra. Por su parte en la estación 1350 el acceso estaba muy limitado, y en el único punto donde se pudo acceder a la orilla, en ella existía un depósito de limo de más de 50 cm donde el muestreador se hundió y quedó clavado nada más entrar y dar un paso, siendo imposible el muestreo. Se fue hasta la localidad de Magallón buscando un punto alternativo, y en ella se encontró que el río tenía muy poco caudal y estaba prácticamente estancado, lo que no permitía tampoco su muestreo no era algo representativo del estado de la masa por abajo. Parece ser que entre estas localidades entra agua de un canal para regar. A lo largo de toda la masa no se pudo localizar mas que una zona donde el cauce fuera accesible, pero dicha zona es justo el punto de paso de la autopista, siendo un tramo de unos pocos metros canalizada y totalmente en sombra. Eso le convierte en un lugar totalmente alterado y no representativo de la masa, por lo que tampoco se realizó el muestreo. En la Fig. 34 se muestra la evolución del caudal en este río a lo largo del periodo de estudio. Se observa que en él se producen notables variaciones del caudal a lo largo del día, posiblemente como consecuencia del mayor o menor uso del agua para regar que se haga en las distintas horas del día.

Río Huerva


En esta masa se escogieron seis estaciones en las que se analizaría el estado de las aguas (1219 en Cerveruela, 0612 en Villanueva de Huerva, 1382 Aguas Abajo de Villanueva de Huerva, 0570 en Botorrita, 0565 en la Fuente de La Junquera y 0216 en Zaragoza). La estación 0570 se localizaba originalmente en Muel, pero se trataba de una zona totalmente artificial y canalizada no muestreable. Se recorrió la masa para localizar un lugar accesible y muestreable, el cual se localizó junto a Botorrita. Por su parte la estación 0565 no se pudo muestrear porque se estaban realizando obras en todo su entorno y el cauce con movimiento de maquinaria por el mismo, estando totalmente cerrado el acceso al punto.

En la Fig. 35 se representa la evolución del caudal circulante en distintos lugares de este río a lo largo del periodo de estudio. En general no se produjeron incrementos de caudal notables en la fechas previas a los muestreos, si bien si que se aprecia que en el tramo de Zaragoza el río soporta variaciones diarias en su caudal de cierta magnitud. A pesar de ello la fecha de muestreo en la estación localizada en dicha zona no se observaron señales que indicaran que se hubiera producido una crecida catastrófica que pudiera haber afectado a la comunidad del tramo.

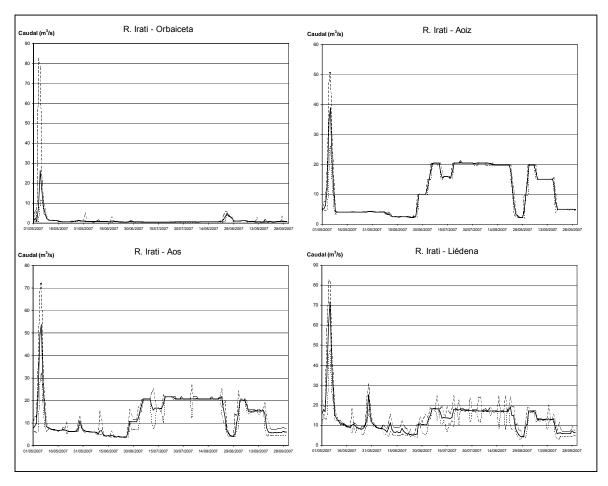
Fig. 34. Niveles (mínimo, medio y máximo) registrados en el río Huecha en el periodo de estudio. (Leyenda como en Fig. 3).

Fig. 35. Caudales (mínimo, medio y máximo) registrados en el río Huerva en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1219	Cerveruela	25/07/07	5,500	154	I	Muy Bueno
0612	Villanueva de Huerva	25/07/07	4,774	148	- 1	Muy Bueno
1382	Ag. Ab. Villanueva de H.	25/07/07	3,636	80	II	Bueno
0570	Botorrita	25/07/07	3,857	54	Ш	Moderado
0216	Zaragoza	23/07/07	3,647	62	II-III	Bueno – Moderado

Tabla XXV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Huerva el año 2007.

En la Tabla XXV se resumen los resultados obtenidos del análisis de las muestras tomadas en cada estación de muestreo. El río Huerva mantuvo un Estado Ecológico "Muy Bueno" hasta la estación localizada en Villanueva de Huerva, descendiendo a una Estado "Bueno" por debajo de dicha localidad. En el tramo más bajo del río Huerva el Estado Ecológico desciende hasta "Moderado" o niveles intermedios entre "Moderado" y "Bueno". Hay que señalar que en el tramo de Zaragoza se detectaron vertidos de basura y vertidos orgánicos, además de constatarse la presencia de ratas en la orilla. Esto hace que en este último tramo del río no se estén alcanzando los niveles demandados por la DMA, debiéndose por ello actuar en esta zona para eliminar o reducir las fuentes de contaminación y conseguir recuperar la calidad biológica del río Huerva hasta unos niveles que permitan alcanzar al menos un Estado Ecológico "Bueno" de manera segura.

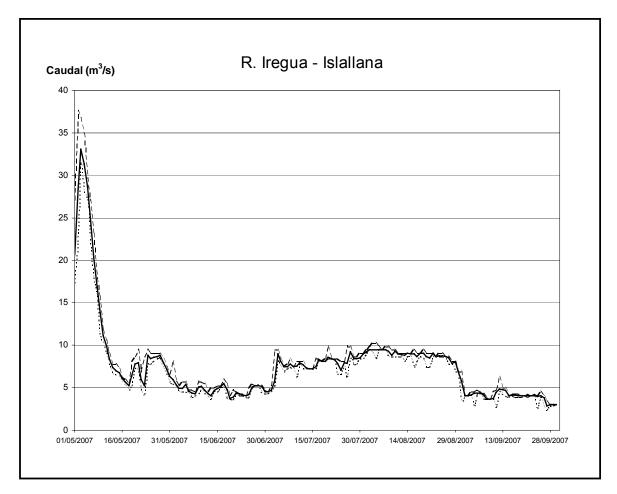

Río Inglares

En este ríos se escogió un punto de muestreo (1034 en Peñacerrada), el cual es un tramo de agua fría con abundante vegetación acuática y de ribera. Los resultados hallados en esta estación (IBMWP= 115; IASPT= 5,000) encuadraron sus aguas dentro de un Estado Ecológico "Muy Bueno", lo que le haría cumplir los requisitos exigidos por la DMA.

Río Irati

En un principio en este río se habían señalado cuatro estaciones de muestreo (1446 en cola embalse de Irabia, 1062 en Oroz-Betelu, 1064 en Lumbier y 0065 en Liédena). Sin embargo, la estación 1446 no corresponde al río Irati, sino que se localiza en el río Urbeltza, que en su unión con el río Urtxuria forman el río Irati. Por ello la información de esta estación se proporciona más adelante, refiriéndonos al río Urbeltza (o Urbeltz). La estación 1062 se localizaba por debajo de una presa y bajo la fosa séptica de la localidad de Oroz-Betelu. Debido a esto y a la dificultad de muestreo en la zona se buscó un tramo alternativo de

Fig. 36. Caudales (mínimo, medio y máximo) registrados en el río Irati en el periodo de estudio. (Leyenda como en Fig. 3).


muestreo aguas arriba de la mencionada localidad. De la misma manera, la estación 0065 localizada en Liédena no era muestreable, por ser un tramo lento y profundo debido a la existencia de una presa. Se localizó un punto de muestreo alternativo entre la localidad de Liédena y la Foz de Lumbier.

La Fig. 36 muestra las variaciones de caudal que se registraron en el río Irati a lo largo del periodo de muestreo. Sed observa que hacia finales de Junio se debió proceder al desembalse del embalse de Itoiz, lo que podría haber tenido alguna influencia en las posibilidades de muestreo en los puntos localizados por debajo de dicho embalse. En la Tabla XXVI se muestran los resultado hallados tras el análisis de las muestras de macroinvertebrados recogidas. Se observa que todos los puntos obtuvieron valores altos en sus índices, lo que otorgaba a estos tramos un Estado Ecológico "Muy Bueno" y les haría poder alcanzar los objetivos marcados por la DMA sin problemas.

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1062	Oroz – Betelu	04/07/07	5,625	180	I	Muy Bueno
1064	Lumbier	03/07/07	5,367	161	- 1	Muy Bueno
0065	Liédena	03/07/07	5,185	140	I	Muy Bueno

Tabla XXVI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Irati el año 2007.

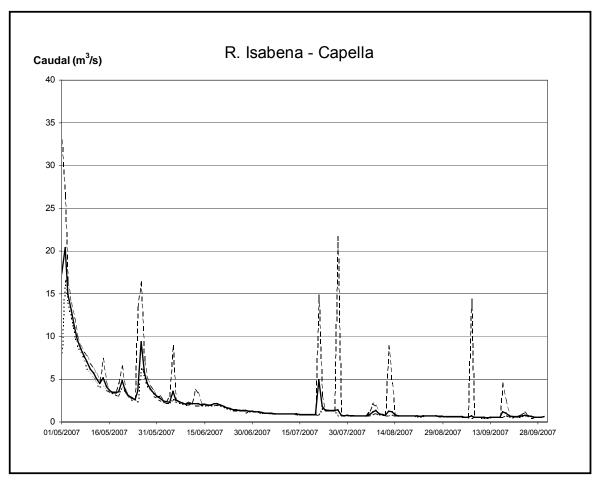
Fig. 37. Caudales (mínimo, medio y máximo) registrados en el río Iregua en el periodo de estudio. (Leyenda como en Fig. 3).

Río Iregua

En este río se seleccionaron cuatro estaciones de muestreo (1183 Puente Villoslada de Cameros, 1184 Puente de Almarza de Cameros, 0036 en Islallana y 1457 en Alberite). En la Fig. 37 se representa la evolución de los caudales de este río a lo largo del periodo de estudio. No se produjeron las fechas previas de los muestreos avenidas o aumentos de caudal destacables que pudieran influir en la representatividad de las muestras tomadas.

CEMAS	Estación	Fecha	IASPT	IBMWP C	Clase	Estado ecológico
1183	Puente a Villoslada de C.	05/08/07	5,732	235	I	Muy Bueno
1184	Puente Almarza de C.	06/08/07	5,828	169	I	Muy Bueno
0036	Islallana	06/08/07	5,115	133	I	Muy Bueno
1457	Alberite	07/08/07	5,250	105	1-11	Muy Bueno – Bueno

Tabla XXVII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Iregua el año 2007.


En la Tabla XXVII se recogen los valores hallados para los distintos puntos analizados. Se observa que todas las estaciones obtuvieron en general valores altos pertenecientes a un Estado Ecológico "Muy Bueno". Sólo en el tramo más bajo (estación 1457) el índice estuvo en valores que correspondían a una situación intermedia entre "Muy Bueno" y "Bueno". Con ello se podría pensar que el río Iregua no presenta actualmente problemas para poder mantener estos niveles de calidad que le harían cumplir los requisitos de la DMA.

Río Isabena

En este río se seleccionaron dos estaciones de muestreo (1137 en Laspaúles y 1139 en Isabena). El acceso a la estación 1137 no resultó cómodo, ya que hay una densa vegetación en las orillas. En esta estación se comprobó que en la orilla derecha, justo bajo el puente de la carretera desagua el alcantarillado de la localidad de Laspaúles, el cual afecta de manera notoria a las aguas del río Isabena por debajo de dicho puente. Dicho vertido se realiza de una manera continua. Por otra parte, también junto al puente pero en la orilla izquierda, existe otro tubo de desagüe que debe provenir de un barrio cercano, el cual no vierte de manera continua, pero se pudo comprobar que efectivamente vertía. Se evitó cuidadosamente tomar nada de muestra en las zonas afectadas por estos vertidos, de manera que el muestreo se realizó del puente hacia arriba, en las áreas no afectadas por estos vertidos. Se debe señalar además que en la parte superior del tramo existe una zona acondicionada para que el ganado beba en el río, por lo cual existen cercas de alambre que atraviesan el río para impedir la fuga del ganado. Por otra parte, en la estación 1139 las aguas bajaban bastante turbias, y existía un sedimento grisáceo que se depositaba especialmente en las zonas más lentas.

En la Fig. 38 se señala la evolución del caudal circulante en el río Isabena a lo largo del periodo de estudio. Se observa que entre mediados de Julio y de Agosto se produjeron algunos incrementos puntuales pero intensos (entre duplicar o quintuplicar el caudal circulante). Aunque la última de estas avenidas, de menor intensidad, tuvo lugar más de una

Fig. 38. Caudales (mínimo, medio y máximo) registrados en el río Isabena en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1137	Laspaúles	22/08/07	5,952	125	I	Muy Bueno
1139	Isabena	21/08/07	5,913	136	1	Muy Bueno

Tabla XXVIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Isabena el año 2007.

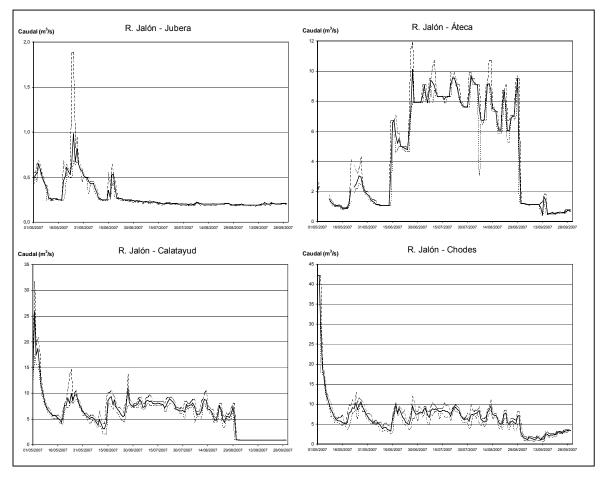
semana antes de la fecha de muestreo, podría haber tenido algún efecto negativo sobre la fauna de macroinvertebrados de la estación inferior. En la Tabla XXVIII se muestran los resultados hallados en las dos estaciones analizadas respecto a los índices bióticos de macroinvertebrados. Ambas estaciones alcanzaron valores indicativos de un Estado Ecológico "Muy Bueno", lo que les haría cumplir los objetivos de la DMA.

Río Isuala

Aunque en un principio se habían señalado dos estaciones de muestreo para este río (2006 en Las Bellostas y 2005 en Alberuela de la Liena), como ya se ha señalado antes, la masa de agua de la primera de las citadas estaciones parecía denominarse realmente Barranco Balces, y ya se han comentado sus resultados antes. Los valores del índice hallados en la estación 2005 fueron altos (IBMWP= 147; IASPT= 5,654), otorgándole por ello un Estado Ecológico "Muy Bueno", lo que le hace cumplir los objetivos de la DMA.

Río Isuela I

Se ha denominado Isuela I al río Isuela que nace en la Sierra de Moncayo y discurre en su mayor parte por la Provincia de Zaragoza hasta desembocar en el río Aranda. En este río se seleccionó una estación (1400 en Cálcena) para el análisis del estado de sus aguas. Sin embargo el tramo de muestreo se encontró seco, con sólo una lámina de agua por debajo del puente, lo cual no era representativo para el muestreo.


Río Isuela II

Se ha denominado Isuela II al río Isuela que nace en las Sierras cercanas a Arguis en la provincia de Huesca y desemboca en el río Flumen. En este río se ha estudiado el estado de las aguas en una estación (0218 en Pompenillo), localizada aguas abajo de la ciudad de Huesca. El tramo parecía haber sido alterado hacía relativamente poco tiempo, tal vez como consecuencia del arreglo del puente, con una estabilización y eliminación de gran parte de la vegetación de las riberas. El río presentaba en este punto un mal aspecto, con restos de vertidos de desagüe y un fuerte olor a vertidos orgánicos. Los resultados hallados en la muestra de macroinvertebrados (IBMWP= 33; IASPT= 3,000) confirmaban este mal estado, otorgando al tramo un Estado Ecológico intermedio entre "Deficiente" y "Moderado". Esta mala situación derivada de los aportes orgánicos que debe recibir el río se percibía también cuando se comprobaba que más del 99% de la comunidad de macroinvertebrados estaba compuesta de sólo tres taxones (Chironomidae, Oligochaeta y Physidae), los cuales suelen indicar frecuentemente la existencia de enriquecimiento orgánico en las aguas (Gallardo-Mayenco *et al.* 2004).

Río Jalón

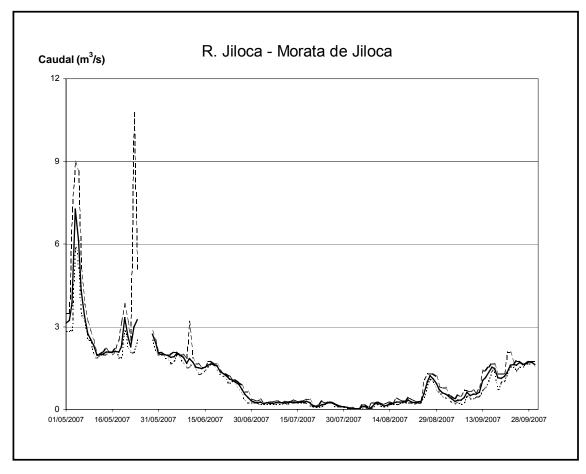
En este punto se escogieron nueve estaciones de muestreo para el estudio del estado de las aguas (1207 en Santa María de Huerta, 1260 en Bubierca, 0126 Aguas Arriba de Áteca,

Fig. 39. Caudales (mínimo, medio y máximo) registrados en el río Jalón en el periodo de estudio. (Leyenda como en Fig. 3).

1208 en Áteca, 0593 en Terrer, 0009 en Huérmeda, 0586 en Saviñan, 1210 en Épila y 0087 en Grisén). El alto caudal existente por debajo de la confluencia del río Piedra para regadíos de frutales en la zona dificultó el muestreo en gran parte de las estaciones localizadas por debajo de dicho punto. La estación 0009 en Huérmeda no se pudo muestrear por localizarse en un tramo léntico no muestreable formado por el azud de una central hidroeléctrica. En esta zona debería realizarse el muestreo biológico en el tramo por debajo de este azud, siempre que las condiciones de caudal lo permitan. Tampoco se pudo muestrear las estaciones 0586 y 1210 por el elevado caudal existente que los convierten en zonas no vadeables. Por su parte el punto original marcado para la estación 0087 se localizaba en un azud donde el agua estaba muy estancada, por lo que se trasladó el punto de muestreo aguas abajo hasta el Parque de El Caracol, donde se pudo tomar una muestra con normalidad. En la Fig. 39 se muestra la variación del caudal en distintos puntos del río Jalón a lo largo del periodo de estudio. Se observa que desde mediados de Junio este río tuvo un fuerte incremento en su caudal en el tramo medio, debido al desembalse de agua para

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1207	Santa María de Huerta	01/08/07	4,643	65	11-111	Bueno – Moderado
1260	Bubierca	01/08/07	4,833	87	II	Bueno
0126	Aguas Arriba Áteca	01/08/07	4,308	56	111-11	Moderado – Bueno
1208	Áteca	02/08/07	4,000	60	111-11	Moderado – Bueno
0593	Terrer	02/08/07	4,294	73	II	Bueno
0087	Grisen – Parque Caracol	19/07/08	4,059	69	П	Bueno

Tabla XXIX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Jalón el año 2007.


regadío de los cultivos de la zona, manteniéndose dichos caudales altos de manera muy continua hasta finales de Agosto. Puesto que los muestreos se realizaron más de mes y medio después del inicio de los desembalses, se puede pensar que la fauna podría haberse recuperado parcialmente, si bien las fuertes corrientes que pueden existir serían un facto de estrés más a tener en cuenta.

En la Tabla XXIX se resumen los valores hallados para los índices bióticos en las distintas estaciones de muestreo. Se observa que varios puntos del río obtienen valores que lo califican dentro de un Estado Ecológico "Bueno", y sólo en el entorno de Santa María de Huerta y de Áteca se registra un estado intermedio entre "Moderado" y "Bueno". En el primer punto si parece haber problemas de contaminación, sin embargo esta situación en Áteca puede estar parcialmente motivada por las limitaciones que el muestreo tuvo debido a los elevados caudales. Se considera que aunque actualmente parezca que gran parte del río Jalón pueda estar cumpliendo los objetivos de la DMA, se debería asegurar que esto es así, para lo cual se ve necesario continuar el estudio de estos puntos e intentar hacer aquellos tramos que se ven afectados por los desembalses del embalse de la Tranquera antes de que éstos se produzcan.

Río Jerea

Se planteó el estudio del estado de las aguas en este río en una estación (0166 en Palazuelos de Cuesta Urria). En la Fig. 40 se muestra la evolución del caudal de este río durante el periodo de muestreo. No hubo en los días anteriores a la fecha de muestreo crecidas que afectaran a la validez de la muestra. Los resultados obtenidos en el análisis de la muestra (IBMWP= 168; IASPT= 5,419) calificaron las aguas dentro de Estado Ecológico "Muy Bueno", por lo que se cumplirían los requisitos de la DMA.

Fig. 41. Caudales (mínimo, medio y máximo) registrados en el río Jiloca en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
0042	Aguas Arriba Calamocha	30/07/07	5,500	55	Ш	Moderado
1358	Calamocha	31/07/07	4,600	92	II	Bueno
0244	Luco de Jiloca	08/08/07	4,650	93	П	Bueno
1203	Morata de Jiloca	03/08/07	7,000	63	11-111	Bueno – Moderado

Tabla XXX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Jiloca el año 2007.

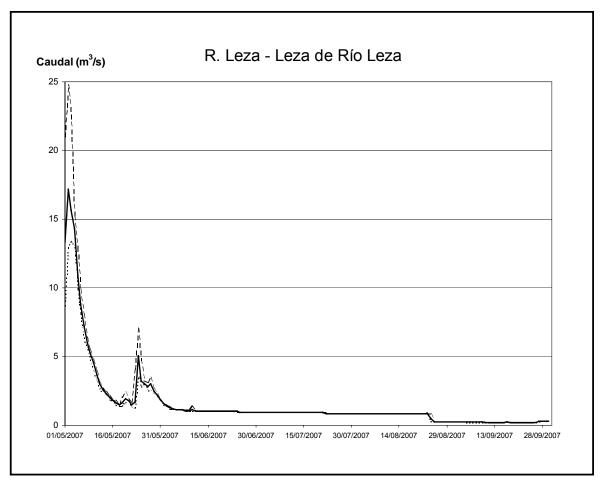
Río Jiloca

En este río se seleccionaron cuatro estaciones de muestreo (0042 Aguas Arriba de Calamocha, 1358 en Calamocha, 0244 en Luco de Jiloca y 1203 en Morata de Jiloca). En la Fig. 41 se muestra la evolución del caudal en este río a lo largo del periodo de muestreo, no existiendo incrementos de caudal en las fechas previas al muestreo que pudieran afectar a la validez de la muestra tomada. En la Tabla XXX se muestran los resultados encontrados en los puntos analizados de río. Las aguas de este río tuvieron una calificación de Estado

"Bueno" en las estaciones 1358 y 0244. En la estación 0042, en la que se habían localizado dos vertidos urbanos en el puente, sólo se obtuvo un nivel "Moderado", mientras que en la estación 1203, en la que se detectó un vertido de aguas residuales urbanas por debajo del tramo, se tuvo un estado intermedio entre "Bueno" y "Moderado". Sin embargo en este última estación es muy llamativo que con el bajo valor del índice IBMWP y el poco número de taxones existentes, el valor del IASPT resultaba ser muy alto, lo cual podría resultar algo contradictorio. Se debería analizar con más detenimiento lo que ocurre en esta zona, así como en el tramo más alto, de cara a paliar las posibles afecciones que puedan estar provocando que no se alcancen los objetivos de la DMA.

Río Jubera

Se había seleccionado una estación en este río (0528 en Murillo de río Leza), pero dicho punto correspondía con un tramo marcadamente mediterráneo que se encontró totalmente seco, por lo que no se pudo muestrear.


Río Larraun

En este río se había escogido para el estudio del estado de sus aguas una estación de muestreo (1317 en Urritza). Dicha estación se localiza por encima de esa localidad, y corresponde con una larga corta (tramo canalizado por donde originalmente no discurría el río) de unos 500 m creada durante la construcción de la Autovía del norte (A-15). La presencia de escolleras en ambas orillas limita la presencia de vegetación de ribera, aunque se ha ido creando una orla arbustivo-arbórea en parte del cauce. Los valores de los índices bióticos hallados en este tramo (IBMWP= 71; IASPR= 4,733) encuadraron las aguas de esta estación dentro de una Estado Ecológico "Bueno", lo que permitiría que se cumplieran las exigencias de la DMA.

Río Leza

En este río se seleccionaron dos estaciones de muestreo (0197 en Leza de río Leza y 1347 en Agoncillo). En esta última estación existía un aporte de aguas residuales en la orilla derecha, el cual se evitó en el muestreo tomando la muestra por encima de dicha zona. En la Fig. 42 se representa la evolución del caudal en este río a lo largo del periodo de muestreo. No se produjeron aumentos bruscos del caudal que pudieran haber afectado a la representatividad de la muestra. En la Tabla XXXI se muestran los resultados encontrados en las estaciones analizadas en este río. Ambas estaciones cumplieron las exigencias de la

Fig. 42. Caudales (mínimo, medio y máximo) registrados en el río Leza en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
0197	Leza de río Leza	07/08/07	4,485	148	I	Muy Bueno
1347	Agoncillo	26/06/07	4,304	99	II-I	Bueno – Muy Bueno

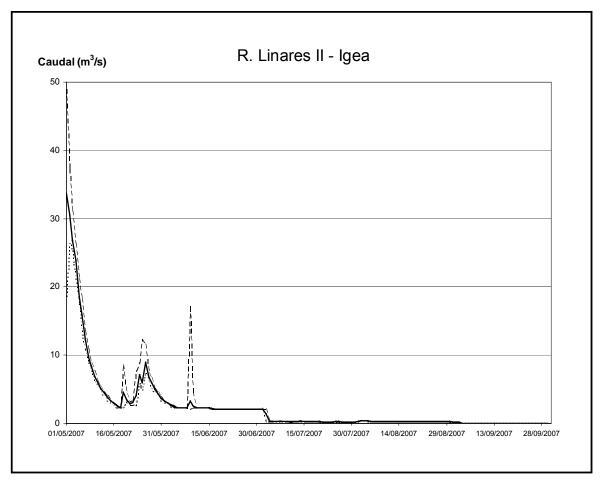
Tabla XXXI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Leza el año 2007.

DMA, alcanzando un Estado Ecológico *"Muy Bueno"* en la estación superior y un estado intermedio entre *"Bueno"* y *"Muy Bueno"* en el tramo más bajo del río.

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1036	Espronceda	26/06/07	4,214	118	ı	Muy Bueno
1037	Torres del Río	26/06/07	4,333	91	II	Bueno
1038	Mendavia	27/06/07	3,944	71	II	Bueno

Tabla XXXII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Linares I el año 2007.

Río Linares I


Se denomina Linares I al río Linares que nace cerca de la Sierra de Codés (Navarra) y desemboca en Mendavia en la margen izquierda del río Ebro. En este río se seleccionaron tres estaciones de muestreo (1036 en Espronceda, 1037 en Torres del Río y 1038 en Mendavia). La estación 1036 presentaba abundante carrizo en el tramo. Por su parte en la estación 1037 se debe señalar que existe un vertido de aguas residuales en la orilla derecha en la parte inferior del tramo, cuyo efecto se evitó tomando la muestra por encima del punto de vertido. Por su parte la estación 1038 se encuentra en el casco urbano de Mendavia, y presenta escolleras cubiertas de vegetación herbácea en ambas orillas.

Los resultados del análisis de las muestras de macroinvertebrados recogidas se resumen en la Tabla XXXII. El valor del índice IBMWP se redujo a lo largo del recorrido del río, con valores indicativos de un Estado Ecológico "Muy Bueno" en la estación superior y valores indicativos de un Estado Ecológico "Bueno" en las dos restantes estaciones. Con estos datos el río Linares I cumpliría actualmente los requisitos marcados por la DMA, y no parece que exista grave riesgo de que deje de hacerlo, aunque se debe cuidar que no se empeore el estado en el tramo más bajo, que puede ser el más sensible a disminuir su calidad.

Río Linares II

Se denomina Linares II al río Linares que nace en Oncala, Sierra de Alba (Soria), y desemboca en la margen izquierda del río Alhama poco antes de Venta de Baños. En este río se había seleccionado una estación para el análisis de la calidad de sus aguas (1191 en San Pedro Manrique). En la Fig. 43 se representa la evolución del caudal circulante en este río a lo largo del periodo de estudio. No tuvieron lugar en las fechas anteriores al día de muestreo crecidas o aumentos de caudal que pudieran haber afectado a la comunidad de macroinvertebrados. Los resultados de los índices calculados para la muestra recogida (IBMWP= 194; IASPT= 4,850) catalogaron las aguas de este tramo dentro del Estado Ecológico "Muy Bueno", lo que le haría cumplir las exigencias de la DMA.

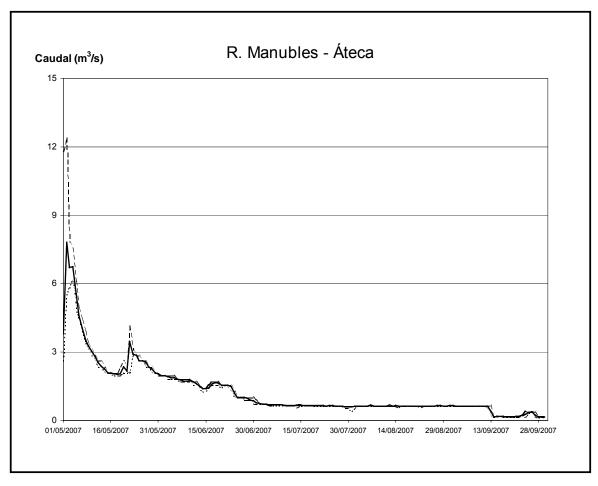
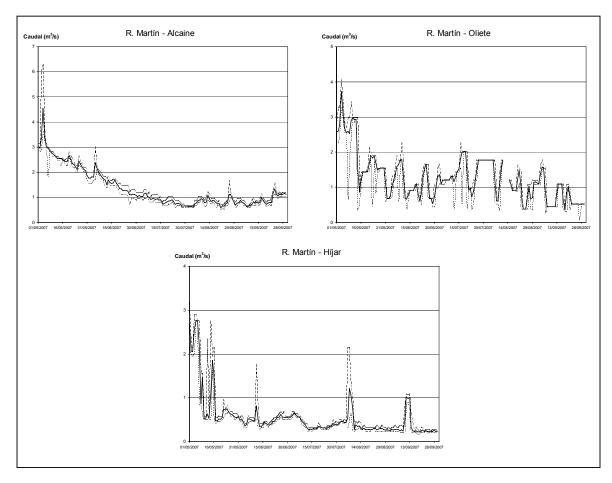


Fig. 43. Caudales (mínimo, medio y máximo) registrados en el río Linares II en el periodo de estudio. (Leyenda como en Fig. 3).

Río Manubles

En este río se escogió una estación de muestreo (0184 en Áteca). En la Fig. 44 se muestra los datos de caudal recogidos en este río en la estación de aforo de Áteca. Se observa que no existieron en los días anteriores a la fecha de muestreo incrementos destacables del caudal que pudieran haber afectado negativamente a la comunidad de macroinvertebrados en esa zona. Los valores de los índices bióticos resultantes del análisis de la muestra (IBMWP= 146; ISPT= 4,294) otorgaron a la estación de muestreo un Estado Ecológico "Muy Bueno", lo que le haría alcanzar los niveles que la DMA demanda.


Fig. 44. Caudales (mínimo, medio y máximo) registrados en el río Manubles en el periodo de estudio. (Leyenda como en Fig. 3).

Río Martín

En esta masa se escogieron 5 estaciones de muestreo para el análisis del estado de sus aguas (1255 en Vivel del Río Martín, 1228 en Martín del Río Martín, 1365 en Montalbán, 0118 en Oliete y 0014 en Hijar). En la estación 1255 se detectó un vertido por debajo de la zona de muestreo. Por su parte la estación 0118 tenía la fecha de muestreo muchos sólidos en suspensión (tal vez por obras en la cercanía del embalse de cueva Foradada o por desembalse de aguas desde dicho embalse). Por último en la estación 0014 son perceptibles los vertidos y además se detectaron grasas superficiales.

En la Fig.45 se representan los caudales existentes en distintos tramos del río Martín a lo largo del periodo de estudio. Se observa que tres días antes de la fecha de muestreo tuvo lugar un incremento de caudal (en el que prácticamente se duplicó el caudal) en el tramo superior del río, posiblemente como consecuencia de tormentas locales. Esta avenida podría haber afectado a los puntos localizados por encima del embalse de Cueva Foradada.

Fig. 45. Caudales (mínimo, medio y máximo) registrados en el río Martín en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1255	Vivel del Río Martín	30/08/07	4,571	128	- 1	Muy Bueno
1228	Martín del Río Martín	29/08/07	4,697	155	- 1	Muy Bueno
1365	Montalbán	29/08/07	4,528	163	- 1	Muy Bueno
0118	Oliete	29/08/07	4,091	90	Ш	Bueno
0014	Hijar	29/08/07	4,200	63	11-111	Bueno – Moderado

Tabla XXXIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Martín el año 2007.

Dicho embalse habría hecho que la crecida no afectara a las estaciones situadas por debajo del mismo.

En la Tabla XXXIII se recogen los resultados hallados tras el análisis de las muestras recogidas. Todas las estaciones localizadas por encima del embalse de Cueva Foradada alcanzaron un Estado Ecológico "Muy Bueno". Respecto a las dos estaciones restantes, la

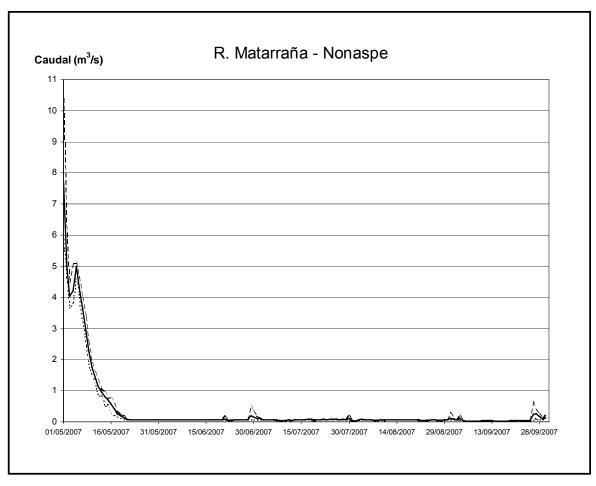
estación 0118 obtuvo una calificación de Estado Ecológico "Bueno", mientras que el punto 0014 sólo alcanzó un estado intermedio entre "Bueno" y "Moderado". Con estos datos, se puede pensar que la mayor parte del río Martín podría alcanzar los niveles de calidad exigidos por la DMA, y que sólo en el tramo bajo estaría en peligro conseguir dicho objetivo.

Río Mascún

En un principio se había previsto analizar una estación en esta masa (2023 en Rodellar), pero dicha estación fue dada de baja de la red de Referencia a la que pertenecía, por lo que finalmente no se tuvo que muestrear.

Río Matarraña

En este río se seleccionaron cinco estaciones de muestreo para el estudio del estado de sus aguas (1240 en Beceite-Parrizal, 2009 Aguas Arriba Beceite, 0706 en Valderrobres, 1471 Aguas Arriba Tastavins y 0176 en Nonaspe). En la Fig. 46 se representa la evolución del caudal en el tramo inferior de este río a lo largo del periodo de muestreo, no existiendo registros que indicaran que en el tramo se hubieran producido crecidas en fechas anteriores al muestreo. En la Tabla XXXIV se recogen los datos obtenidos del análisis de las muestras de macroinvertebrados. En todas las estaciones se encontraron valores muy altos de los índices bióticos, los cuales otorgaron a todas las estaciones un Estado Ecológico "Muy Bueno". Con estos datos se puede afirmar que actualmente el río Matarraña no presenta problemas para cumplir los requisitos de la DMA, y no parece que pueda tener problemas en el futuro para seguir haciéndolo.


Río Mayor

En esta masa se había escogido una estación para el estudio del estado de sus aguas (2002 Aguas Abajo de Villoslada de Cameros). Los resultados hallados tras el análisis de la muestra (IBMWP= 204; IASPT= 5,231) catalogaron sus aguas en un Estado Ecológico "Muy Bueno", lo que le haría alcanzar los niveles exigidos por la DMA.

Río Mesa

Se seleccionó una estación en este río (1264 en Calmarza), cuyos resultados (IBMWP= 189; IASPT= 5,108) otorgaron un Estado Ecológico *"Muy Bueno"* a sus aguas. Esto le haría cumplir los objetivos demandados por la DMA.

Fig. 46. Caudales (mínimo, medio y máximo) registrados en el río Matarraña en el periodo de estudio. (Leyenda como en Fig. 3).

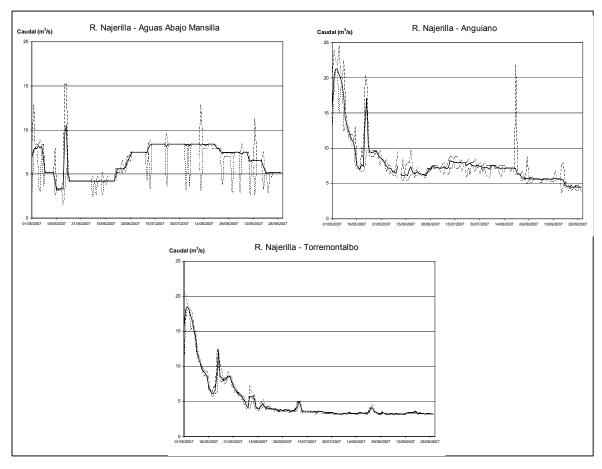

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1240	Beceite - Parrizal	25/08/07	4,923	192	I	Muy Bueno
2009	Aguas Arriba Beceite	25/08/07	4,980	244	1	Muy Bueno
0706	Valderrobres	24/08/07	4,605	175	1	Muy Bueno
1471	Aguas Arriba Tastavins	24/08/07	4,721	203	1	Muy Bueno
0176	Nonaspe	28/08/07	4,969	159	I	Muy Bueno

Tabla XXXIV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Matarraña el año 2007.

Río Najerilla

Para analizar el estado de las aguas en esta masa, se seleccionaron seis estaciones de muestreo (1178 en Villavelayo, 0241 en Anguiano, 0594 en Baños de Río Tobía, 0523 en Nájera, 0574 aguas abajo de Nájera y 0038 en Torremontalbo). Sin embargo, la estación 1178 corresponde en verdad al río Neila, por lo que se comentará más adelante con este

Fig. 47. Caudales (mínimo, medio y máximo) registrados en el río Najerilla en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
0241	Anguiano	10/07/07	5,367	263	I	Muy Bueno
0594	Baños de Río Tobia	10/07/07	4,875	156	- 1	Muy Bueno
0523	Nájera	06/08/07	4,300	129	- 1	Muy Bueno
0574	Aguas Abajo Nájera	07/08/07	4,375	105	1-11	Muy Bueno – Bueno
0038	Torremontalbo	07/08/07	4,296	116	- 1	Muy Bueno

Tabla XXXV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Najerilla el año 2007.

nombre. En la Fig. 47 se muestra el caudal medido durante el periodo de estudio en diferentes estaciones localizadas en este río. No se observa que en las fechas anteriores a los días de muestreo se produjeran avenidas o crecidas de los caudales que pudieran haber afectado negativamente a la fauna de macroinvertebrados. En la Tabla XXXV se resumen los valores encontrados para los índices bióticos calculados para las diferentes muestras recogidas. Se alcanzaron valores altos en los índices bióticos, lo cual otorgaba en general a las aguas del río Najerilla un Estado Ecológico "Muy Bueno", y sólo en la estación localizada

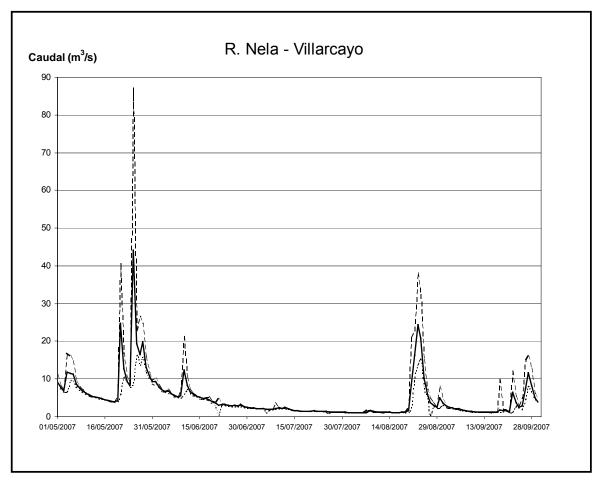
por debajo de la localidad de Nájera el índice descendía hasta un valor correspondiente a un nivel intermedio entre "Muy Bueno" y "Bueno". Con estos datos se puede afirmar que actualmente el río Najerilla cumpliría los requisitos de la DMA, y que posiblemente no tenga graves problemas en el futuro para seguir manteniendo un Estado Ecológico adecuado.

Río Najima

En este río se había seleccionado una estación de muestreo (1354 en Monreal de Ariza). El resultado hallado al calcular los índice bióticos (IBMWP= 129; IASPT= 4,300) calificaron a las aguas de este río dentro del Estado Ecológico "Muy Bueno", indicando que se cumplirían los objetivos planteados por la DMA.

Río Negro (Nere)

Se seleccionó una estación de muestreo (0619 en Vielha) de cara a analizar el estado de las aguas en esta masa. Se trasladó el punto de muestreo de biológicos 1 km aguas arriba, ya que la localización original no presenta acceso al río para su muestreo. Los valores hallados en los índices bióticos (IBMWP= 131; IASPT= 5,696) encuadraron las aguas de este río en un Estado Ecológico "Muy Bueno", lo que haría que actualmente se estuviera ya cumpliendo la DMA.


Río Neila

En este río se estudió el estado de las aguas en una estación (1178 en Villavelayo), la cual inicialmente estaba asignada al río Najerilla. Dicha estación se localizaba por debajo del municipio de Neila. Los valores de los índices bióticos calculados en la muestra tomada (IBMWP= 202; IASPT= 5,611) otorgaron a este tramo un Estado Ecológico "Muy Bueno", haciéndolo alcanzar los niveles que la DMA exige.

Río Nela

Para el análisis del estado de este río se escogieron dos estaciones de muestreo (1004 en Puentedey y 0092 en Trespaderne). Sin embargo no se pudo muestrear la estación 0092 por ser un tramo léntico y profundo, no siendo vadeable. En la Fig. 48 se representan las variaciones de caudal que se registraron en este río durante la época de estudio, observándose que no existieron en las fechas cercanas a la de muestreo variaciones de caudal que pudieran afectar a la comunidad de macroinvertebrados o a la representatividad

Fig. 48. Caudales (mínimo, medio y máximo) registrados en el río Nela en el periodo de estudio. (Leyenda como en Fig. 3).

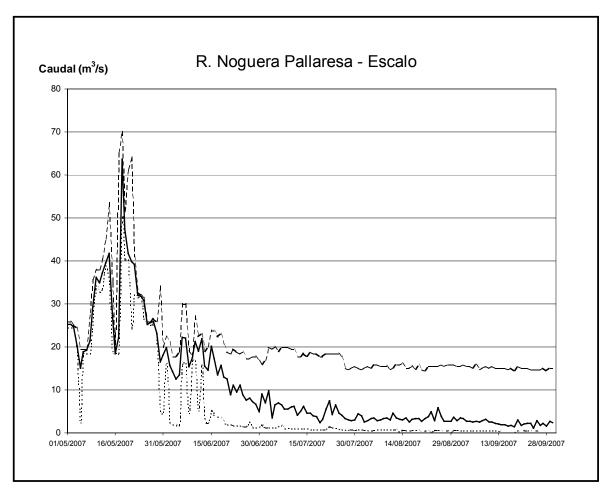
de la muestra tomada. Los resultados obtenidos en la estación analizada (IBMWP= 317; IASPT= 5,981) le otorgaron un Estado Ecológico *"Muy Bueno"*, lo que haría que, al menos la parte superior del río Nela, alcanzara sin dificultad los requerimientos de la DMA.

Río Noguera Cardós

En este río se estudió el estado de las aguas en una estación de muestreo (1294 en Lladorre). Se observó la existencia de un vertido procedente de esta localidad, por lo que el muestreo se realizó por encima de dicho punto, de cara a evitar el efecto del vertido. Los resultados encontrados tras el análisis de la muestra (IBMWP= 153; IASPT= 5,885) concedieron un Estado Ecológico "Muy Bueno" a este tramo del río, lo que le haría cumplir las exigencias de la DMA.

Río Noguera de Tor

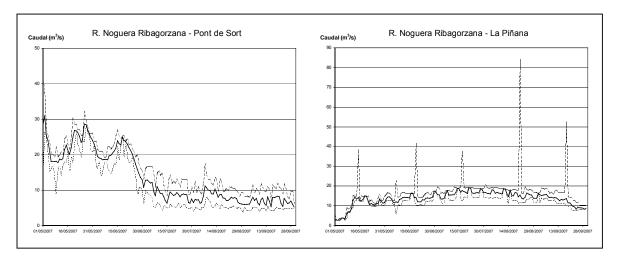
En este río se analizó la situación en una estación de muestreo (1421 en Llesp). Los valores de los índices bióticos encontrados en ella (IBMWP= 145; IASPT= 5,370) le confirieron un Estado Ecológico "Muy Bueno", lo que también le haría alcanzar ya los objetivos que la DMA ordena.


Río Noguera Pallaresa

En este río se habían seleccionado seis estaciones de muestreo de cara a estudiar el estado de sus aguas (1105 en Isil, 1106 en Llavorsí, 1108 en Guerri de la Sal, 0146 en Pobla de Segur, 0608 en Tremp y 2193 en la Cola del embalse de Camarasa). La estación 1105 no se tomó en Isil, sino en la cercana localidad de Borén, localizada por debajo de Isil. En la estación 1106 hubo un error con las coordenadas UTM y el GPS, de manera que no se muestreo el río Noguera Pallaresa, sino el Noguera Vallferrera por encima del camping de Llavorsí. Debido a esto los resultados de esta estación se comentarán más adelante en el epígrafe que se hará de dicho río, el cual inicialmente no se preveía haber estudiado. Debido a esto, también en las hojas de anexos se ha cambiado el nombre del río y se ha marcado con un asterisco el código de la estación, algo que se debe tener en cuenta de cara a la inclusión de estos resultados en la base de datos final. Por su parte la estación 1108 no se pudo muestrear por encontrarse en un momento de alto caudal, lo que hacía que el tramo fuera no vadeable. Tampoco se pudo tomar una muestra en la estación 2193, ya que se trataba de un tramo no vadeable muy ancho y profundo, lo que impedía totalmente el muestreo.

En la Fig. 49 se muestran las variaciones del caudal registradas en la estación de aforo de Escaló, cercana a Llavorsí, a lo largo del periodo de muestreo. Se observa que, salvo en el periodo de altos caudales ocurrido en Primavera, existe una fuerte variación diaria del caudal en el río. Además dicha variación es además bastante regular, con máximos diarios por encima de 15 m³/s y mínimos por debajo de 1 m³/s. Estas fuertes variaciones de caudal serían producto de la presencia de dos presas destinadas a la producción eléctrica aguas arriba de Llavorsí, las presas de Estirri y La Torrasa. Anteriores estudios realizados en diferentes lugares han mostrado que este tipo de variaciones de caudal para producción eléctrica y la regulación de los ríos pueden afectar a la fauna del tramo, modificando la comunidad de macroinvertebrados (Torralva *et al.* 1995, Lauters *et al.* 1996, Malmqvist y Englund 1996, Rader y Belish 1999).

En la Tabla XXXVI se resumen los resultados obtenidos en las diferentes estaciones en cuanto a los índices bióticos calculados. Se observa que los valores hallados en los índices


Fig. 49. Caudales (mínimo, medio y máximo) registrados en el río Noguera Pallaresa en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP C	lase	Estado ecológico
1105	Isil	19/09/07	6,083	146	I	Muy Bueno
0146	Pobla de Segur	19/09/07	6,000	156	1	Muy Bueno
0608	Tremp	20/09/07	5,225	209	I	Muy Bueno

Tabla XXXVI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Noguera Pallaresa el año 2007.

bióticos otorgaban un Estado Ecológico "Muy Bueno", lo que haría que las estaciones analizadas en este río alcanzaran el Estado que la DMA exige. Sin embargo se cree conveniente analizar el estado de las aguas en la estación 1106 en Llavorsí, ya que es la que más directamente sufriría las variaciones de caudal originadas por la actividad eléctrica en la zona.

Fig. 50. Caudales (mínimo, medio y máximo) registrados en el río Noguera Ribagorzana en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
2174	Senet	18/09/07	5,261	121	I	Muy Bueno
1113	Pont de Suert	19/09/07	5,731	149	I	Muy Bueno
1114	Puente Montañana	20/09/07	5,457	191	1	Muy Bueno
0097	Derivación La Piñana	20/09/07	5,409	119	1	Muy Bueno
0625	Alfarrás	20/09/07	4,926	133	1	Muy Bueno
0627	Derivación Corbins	11/09/07	3,750	75	П	Bueno

Tabla XXXVII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Noguera Ribagorzana el año 2007.

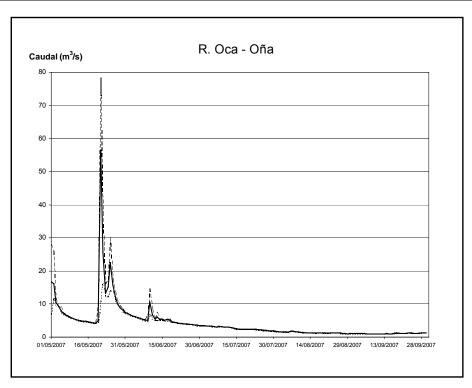
Río Noguera Ribagorzana

Para el estudio del estado de este río se seleccionaron seis estaciones de muestreo (2174 en Senet, 1113 en Pont de Suert, 1114 en Puente de Montañana, 0097 en Derivación La Piñana, 0625 en Alfarrás y 0627 en Derivación Corbins). En la estación 1113, tras terminar el muestreo se observó que el agua se enturbiaba con un color blanco, algo que pudo deberse a la actividad de la gravera en la zona. En la Fig. 50 se muestra la variación de caudal registrada en este río a lo largo del periodo de estudio. Se observa que hay variaciones diarias muy regulares en los caudales mínimo y máximos en la zona de Pont de Suert, posiblemente por el ritmo de sueltas que existan en algunas de las centrales hidroeléctricas que existen aguas arriba de esta zona. En la Tabla XXXVII se resumen los resultados obtenidos del análisis de las muestras tomadas. Todos los puntos estudiados alcanzaron los niveles de calidad exigidos por la DMA, con un Estado Ecológico "Muy

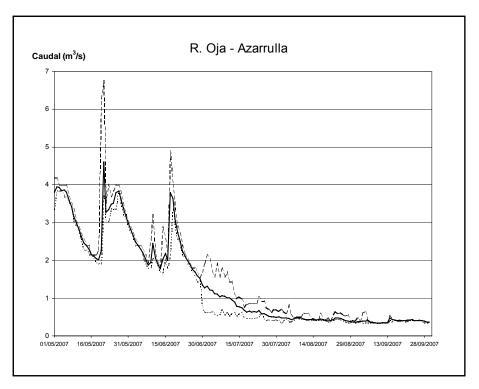
Bueno" hasta la estación de 0625 en Alfarrás, reduciéndose a un Estado Ecológico "Bueno" en la estación más baja.

Río Noguera Valferrera

Como ya se ha dicho antes, se tomó por error una muestra en este río en vez de tomarla en la estación 1106 (Río Noguera Pallaresa en Llavorsí). Los valores de los índices calculados (IBMWP= 201; IASPT= 7,444) fueron muy altos, otorgando por ellos un Estado Ecológico "Muy Bueno" a este tramo.


Río Oca

En este río se escogieron dos estaciones de muestreo (1169 en Villalmondar y 0093 en Oña). No se pudo tomar la muestra en el tramo asignado a la estación 0093 por ser una zona léntica no vadeables, con accesos muy complicados por los taludes y la vegetación existentes. En esta zona se apreció que el agua estaba muy turbia, con un color gris, dando una apariencia de estar contaminada, si bien las riberas aparentaban estar bien conservadas. En la Fig. 51 se muestra la evolución del caudal registrada durante el periodo de estudio en la estación de Oña, localizada en la parte baja del río. Tras las avenidas detectadas en Primavera no se volvieron a registrar en todo el periodo de estudio ninguna crecida en este río. Los valores de los índices bióticos calculados una vez analizadas las muestras (IBMWP= 158; IASPT= 5,097) otorgaron a la estación analizada en la parte alta del río Oca un Estado Ecológico "Muy Bueno". Sería necesario contrastar si en la parte baja se siguen manteniendo los valores de los índices bióticos en niveles adecuados para poder asegurar que la totalidad de este río alcanza en la actualidad los requisitos que la DMA exige.


Río Oja

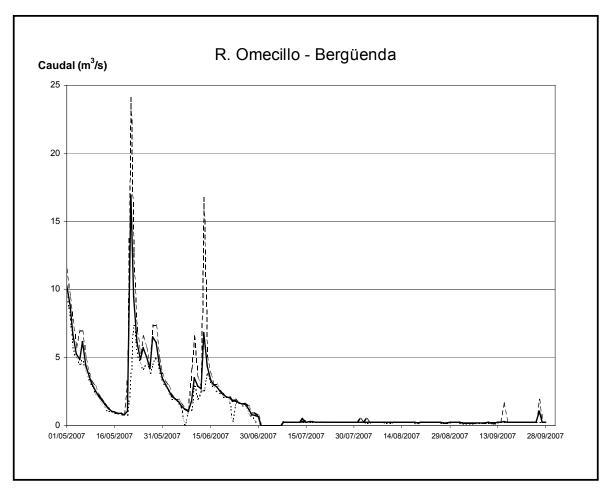
En este río (también denominado antes Glera) se habían seleccionado dos estaciones de muestreo de cara a conocer el estado de sus aguas (0517 en Ezcaray y 1338 en Casalarreina). En la Fig. 52 se muestran los datos registrados en la estación de aforo de Azarrulla, en el tramo alto, durante el periodo de estudio. Puesto que en este río no existen embalses que retengan el agua se puede considerar que los datos en ella recogidos pueden dar una buena aproximación a lo acaecido en todo el río. Se observa que los días previos a la fecha de muestreo se registraron variaciones diarias en el caudal destacables, lo que podría haber afectado de alguna manera a la comunidad de macroinvertebrados.

Fig. 51. Caudales (mínimo, medio y máximo) registrados en el río Oca en el periodo de estudio. (Leyenda como en Fig. 3).

Fig. 52. Caudales (mínimo, medio y máximo) registrados en el río Oja (Glera) en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
0517	Ezcaray	12/07/07	5,031	161	I	Muy Bueno
1338	Casalarreina	14/07/07	4,771	167	1	Muy Bueno

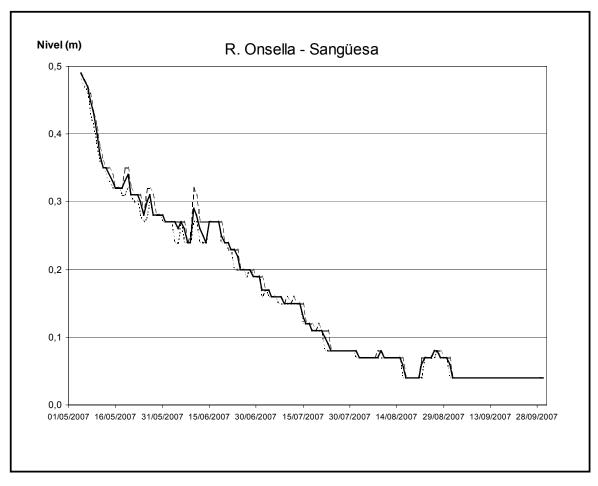
Tabla XXXVIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Oja (Glera) el año 2007.


En la Tabla XXXVIII se recogen los valores encontrados para los índices bióticos de macroinvertebrados en las dos estaciones analizadas. En ambas se alcanzaron valores altos indicativos de un Estado Ecológico "Muy Bueno", lo que indica que en este río se estarían alcanzando ya los requerimientos de la DMA, y que posiblemente no existan problemas en el futuro para seguir cumpliéndolos.

Río Omecillo

En este río se escogieron tres estaciones de muestreo para analizar el estado de las aguas (2011 en Korro, 0701 en Espejo y 1017 en Bergüenda). La estación 2011 se localizaba tras la confluencia de dos arroyos y en él se encontraron algunos organismos muertos. Se observó que uno de arroyos se encontraba lleno de organismos muertos pertenecientes a distintos taxones (Limnephilidae, Ephemeridae, Cordulegasteridae,...), mientras que en el otro arroyo no se observaba ningún organismo muerto. Dicho organismos muertos se encontraban en diferentes estados de descomposición. Esto parecería indicar un vertido de alguna sustancia muy tóxica en fechas cercanas a las del muestreo. Por su parte, la fecha de muestreo de las dos restantes estaciones el agua bajaba turbia y se observaron señales de haberse producido una crecida en el río en fechas recientes. Se sabe que dos-tres días antes de la fecha de muestreo se produjeron en toda la cuenca de este río fuertes e intensas tormentas, las cuales habrían provocado importantes crecidas en el río. Esta circunstancia se ve claramente reflejada en el registro de los caudales circulantes en el río Omecillo en la estación de aforo de Bergüenda durante el periodo de muestreo (Fig. 53), donde se registra un fuerte aumento de caudal en las fechas previas al muestreo.

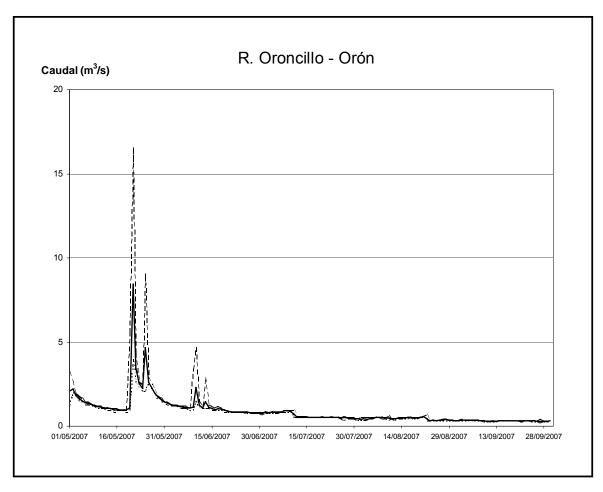
En la Tabla XXXIX se recogen los resultados obtenidos respecto a los índices bióticos determinados en las estaciones analizadas. En todos los puntos se obtuvieron valores altos que calificaron las aguas de este río en un Estado Ecológico "Muy Bueno", y sólo en le tramo inferior se obtuvo un estado intermedio entre "Muy Bueno" y "Bueno". Puede parecer contradictorio que tras la mortandad de macroinvertebrados observada en el punto superior el índice biótico reflejara valores tan altos indicativos de buena calidad. Esto se explicaría


Fig. 53. Caudales (mínimo, medio y máximo) registrados en el río Omecillo en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
2011	Korro	15/07/07	5,351	198	I	Muy Bueno
0701	Espejo	12/06/07	5,043	116	- 1	Muy Bueno
1017	Bergüenda	12/06/07	5,000	105	1-11	Muy Bueno – Bueno

Tabla XXXIX. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Omecillo el año 2007.

porque la muestra fue tomada tras la confluencia de los dos arroyos, y puesto que el segundo no había sufrido ningún vertido y se encontraba en buen estado actuó como una fuente de colonización de macroinvertebrados. Esto indicaría que el vertido habría sido extremadamente grave (por la muerte de tantos organismos), pero puntual tanto en el lugar (uno de los arroyos) como en el tiempo (la fecha de muestreo no se estaría produciendo). Además, si se posibilitaba la recolonización del tramo afectado, sería señal de que el agente


Fig. 54. Nivel (mínimo, medio y máximo) registrado en el río Onsella en el periodo de estudio. (Leyenda como en Fig. 3).

tóxico no se habría quedado retenido en el sedimento (al menos en concentraciones tóxicas para los macroinvertebrados). Respecto a los resultados hallados en las dos restantes estaciones, a pesar de la influencia que pudieran haber tenido las tormentas y las crecidas previas, el valor del índice hallado indicaría que no existen problemas de calidad en ellos. Con estos datos se podría afirmar que el río Omecillo cumpliría los objetivos que la DMA obliga, pero se cree necesario intentar averiguar el origen de la mortandad observada en el tramo superior. También se cree que pudiera ser recomendable realizar muestreos diferentes en los dos arroyos para observar la diferencia que pudiera existir entre ellos.

Río Onsella

En este río se seleccionó una estación de estudio (1309 en Sangüesa). En la Fig. 54 se recoge la variación del nivel de la aguas en este tramo a lo largo del periodo de muestreo, observándose un descenso paulatino del nivel a lo largo de éste. Los valores calculados

Fig. 55. Caudales (mínimo, medio y máximo) registrados en el río Oroncillo en el periodo de estudio. (Leyenda como en Fig. 3).

para los índices bióticos (IBMWP= 122; IASPT= 5,304) otorgaron a esta masa un Estado Ecológico *"Muy Bueno"*, lo que la haría cumplir los criterios exigidos por la DMA.

Río Oroncillo

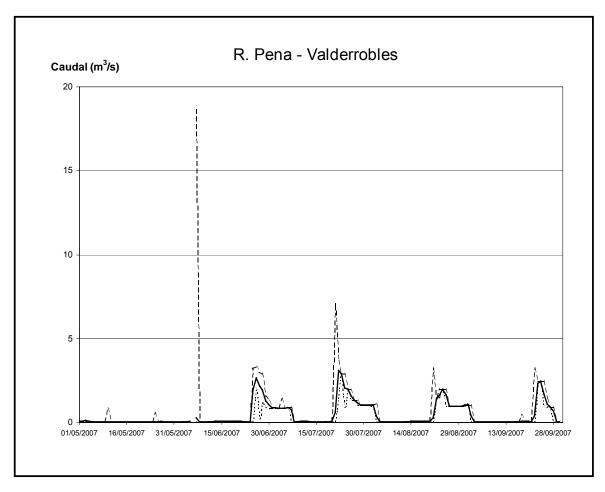
En este río se escogieron dos estaciones de estudio (1332 en Pancorbo y 1342 en Bugedo). En ambos puntos existía una gran abundancia de *Cladophora* que complicaban el muestreo. En la Fig. 55 se muestra la evolución del caudal en este río a lo largo del periodo de muestreo, no registrándose en las fechas previas a la del muestreo incrementos de caudal apreciables. Los resultados encontrados en las estaciones analizadas se muestran en la Tabla XL. Los valores encontrados encuadraron a las estaciones 1332 y 1342 respectivamente en un Estado Ecológico *"Muy Bueno"* y *"Bueno"*. De esta forma se cumplirían actualmente los requisitos de calidad que la DMA demanda.

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1332	Pancorbo	14/07/07	4,625	111	I	Muy Bueno
1342	Bugedo	14/07/07	5,167	93	II	Bueno

Tabla XL. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Oroncillo el año 2007.

Río Oropesa

En esta masa se analizó el estado de las aguas en una estación (0516 en Pradoluengo), obteniéndose valores de los índices bióticos (IBMWP= 171; IASPT= 6,333) indicativos de un Estado Ecológico "Muy Bueno". Se puede considerar que no deberían existir problemas para que esta masa mantenga en el futuro estos valores y cumpla los objetivos de la DMA.


Río Osia

Se seleccionó una estación perteneciente a esta masa para su estudio (2013 en Jasa). La fecha de muestreo se observaron en el tramo marcas indicativas de que se había reducido algo el caudal, posiblemente porque las lluvias acaecidas en la zona durante el día anterior habrían incrementado temporalmente el caudal en el río, volviendo a su nivel anterior en la fecha de muestreo. Sin embargo se considera que el aumento de caudal registrado no habría sido muy intenso, de manera que la fauna se habría visto probablemente poco afectada. Los valores de los índice bióticos hallados (IBMWP= 189; IASPT= 5,727) otorgaron a esta estación un Estado Ecológico "Muy Bueno" que la haría cumplir las exigencias de la DMA.

Río Padurobaso

Esta masa era denominada en un principio como "Padrobaso", pero los guardas del Parque Natural de Gorbeia nos informan que su nombre real es Padurobaso. Se eligió una estación de muestreo (0643 en Zaya) para el estudio del estado de sus aguas. Dicha estación se encontraba por debajo de una presa de captación de agua, existiendo un trecho muy corto muestreable por debajo de dicho azud hasta su confluencia con el Bayas. Los valores hallados en esta estación (IBMWP= 218; IASPT= 6,229) le otorgaron un Estado Ecológico "Muy Bueno", mostrando claramente que esta masa alcanza sin problemas los objetivos de la DMA y no parece que pudiera tener problemas en el futuro para seguir haciéndolo.

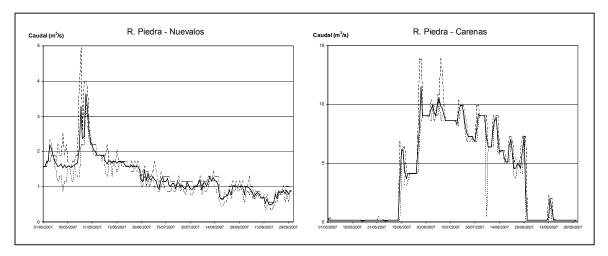


Fig. 56. Caudales (mínimo, medio y máximo) registrados en el río Pena en el periodo de estudio. (Leyenda como en Fig. 3).

Río Pena

En esta masa se escogió una estación de muestreo (1375 Aguas Abajo del Embalse de Pena). Como se puede ver por el registro de los caudales diarios que este río tuvo durante el periodo de estudio (Fig. 56), la fecha de muestreo coincidió con uno de los periodos de desembalse y aumento de caudal en el río, lo que condicionó en gran parte las posibilidades de muestreo, el cual podría no ser representativo. A pesar de estas dificultades, los valores hallados tras el análisis de la muestra (IBMWP= 119; IASPT= 5,174) confirieron a esta estación un Estado Ecológico "Muy Bueno" que la haría cumplir con los requisitos de la DMA.

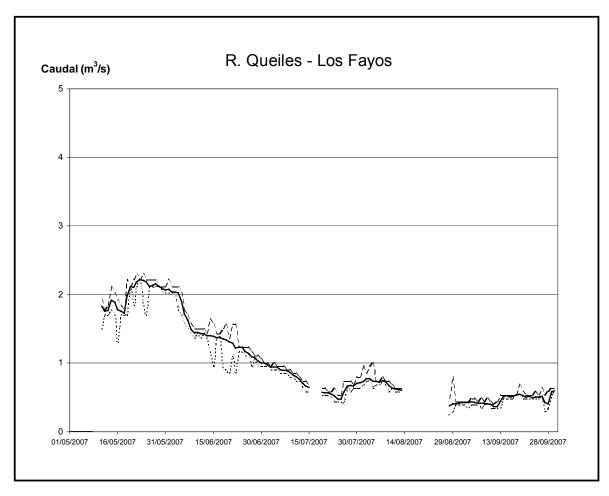
Fig. 57. Caudales (mínimo, medio y máximo) registrados en el río Piedra en el periodo de estudio. (Leyenda como en Fig. 3).

Río Peregiles

Se analizó el estado de este río en una estación (1411 en Puente de la antigua N-II) localizada en su tramo bajo. En esta zona existen numerosas acequias tanto aguas arriba como aguas abajo. En le tramo existe agua, pero aguas arriba se encuentra encharcado y en un momento desaparece, quedando seco y con carrizo, mientras que aguas abajo también se seca por filtraciones y por las extracciones que hay para las acequias de riego. Se detectan en la parte inferior dos vertidos, uno un colector agrícola y otro claramente residual que parece provenir de una fosa séptica cercana. A pesar de esta situación los valores de los índices hallados (IBMWP= 68; IASPT= 3,778) otorgaría un Estado Ecológico "Bueno" a este tramo, haciéndolo cumplir actualmente los objetivos de la DMA. Sin embargo se cree conveniente seguir analizando el estado en este tramo, tanto porque los valores del IBMWP se encuentran cerca del límite inferior del estado "Bueno" como por las peculiares condiciones halladas en cuanto a afloramiento y desaparición del agua.

Río Piedra

Se escogieron dos estaciones en este río para analizar el estado de las aguas (1263 en Cimballa y 1216 en Castejón de las Armas). No se pudo tomar la muestra en las estación 1216 debido a que por el fuerte caudal no era vadeable. Estos caudales eran originados por el desembalse de agua que se realizó a partir de mediados de Junio desde el embalse de La Tranquera (Fig. 57), el cual se realiza para proporcionar agua de riego a los cultivos del valle del río Jalón. Los valores del índice hallados en la estación 1263 (IBMWP= 101; IASPT=


3,885) catalogaron sus aguas en un Estado Ecológico intermedio entre "Muy Bueno" y "Bueno". Se cumpliría por ello los objetivos de la DMA en el tramo alto, pero se debe confirmar que esto también es así en el tramo bajo, para lo cual podría ser conveniente realizar los muestreos antes de la época en que se realizan las sueltas de agua desde el Embalse de La Tranquera.

Río Queiles

Para el estudio del estado de las aguas en este río se seleccionaron cuatro estaciones de muestreo (0090 en el Azud de Alimentación del Embalse de Val, 1251 en Los Fayos, 1252 en Novallas y 3000 en Murchante (Aguas Arriba de Tudela)). La estación 0090 presentaba un acceso muy limitado y difícil por la densa vegetación que rodeaba a la masa en todo el tramo. Sólo se pudo acceder (con mucha dificultad) a un corto tramo debajo del azud de alimentación existente, por encima de un paso formado por tubos de cemento, si bien se debe indicar que la fuerte corriente existente dificultó la realización del muestreo. Respecto a la estación 1252 se debe señalar que bajo el puente se encuentra un colector que vierte las aguas residuales de la localidad de Novallas, por lo que se muestreó por encima de dicho punto para evitar el efecto de este vertido. Finalmente la estación 3000 sólo era muestreable en un corto tramo de unos 30 m alrededor del puente, puesto que el resto de la masa se encuentra totalmente cubierto de zarzas, cañas y carrizo. A pesar de estas dificultades se tomaron muestras en todas las estaciones seleccionadas.

En la Fig. 58 se muestra la evolución del caudal de este río en la estación de aforo situada en la localidad de Los Fayos. No se registraron aparentemente durante el periodo de estudio incrementos bruscos de caudal que pudieran haber afectado a la representatividad de las muestras tomadas. Los resultados hallados del análisis de estas muestras se recogen en la Tabla XLI. A pesar de las dificultades señaladas para el muestreo en la estación 0090 se hallaron valores indicativos de un Estado Ecológico "Muy Bueno", lo que daría idea que en este punto efectivamente la calidad es alta. Este mismo nivel de Estado Ecológico se encontró también en la estación 1251 en los Fayos. Sin embargo en la estación 1252 el valor del índice descendió hasta un nivel intermedio entre "Moderado" y "Bueno", y posteriormente el valor volvía a descender en la estación 3000 hasta un Estado Ecológico "Moderado". Esta pérdida de calidad podría deberse en primer lugar a la influencia de la localidad de Tarazona, cuya EDAR se localiza por encima de la estación 1252. Los posteriores aportes de aguas residuales de las localidades existentes entre Tarazona y Tudela contribuirían a empeorar algo más el estado del río, algo que se ve favorecido por los bajos caudales que suele tener este río en época estival. Con estos datos, no se alcanzarían

Fig. 58. Caudales (mínimo, medio y máximo) registrados en el río Queiles en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
0090	Azud Alim. Emb. de Val	18/07/07	5,000	120	I	Muy Bueno
1251	Los Fayos	18/07/07	5,607	157	I	Muy Bueno
1252	Novallas	18/07/07	4,000	60	III-II	Moderado – Bueno
3000	Murchante	11/07/07	3,400	51	Ш	Moderado

Tabla XLI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Queiles el año 2007.

los objetivos de la DMA en el tramo de río localizado por debajo de la localidad de Tarazana, en el cual deberían analizarse posibles actuaciones a realizar de cara a mejorar su estado ecológico.

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
2003	Tablada de Rudrón	18/07/07	6,395	243	I	Muy Bueno
1341	Valdelateja	18/07/07	5,408	265	1	Muy Bueno

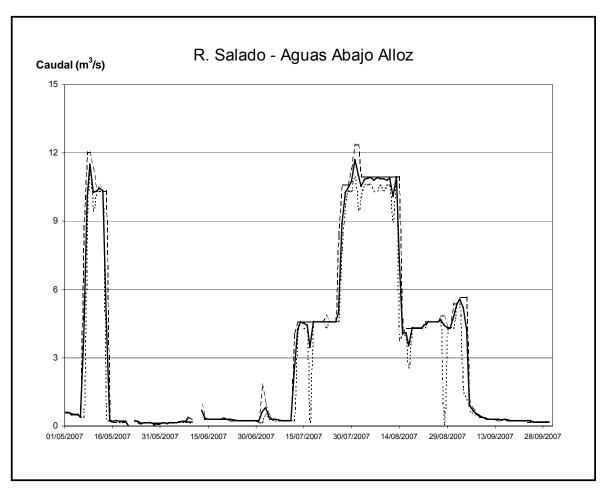
Tabla XLII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Rudrón el año 2007.

Río Regallo

En este río se analizó el estado de las aguas en una estación (2204 en Puigmoreno). Los valores hallados tras el análisis de la muestra (IBMWP= 122; IASPT= 4,357) otorgaron a esta estación un Estado Ecológico "Muy Bueno", lo que le haría cumplir los requisitos que la DMA demanda.

Río Ribera Salada

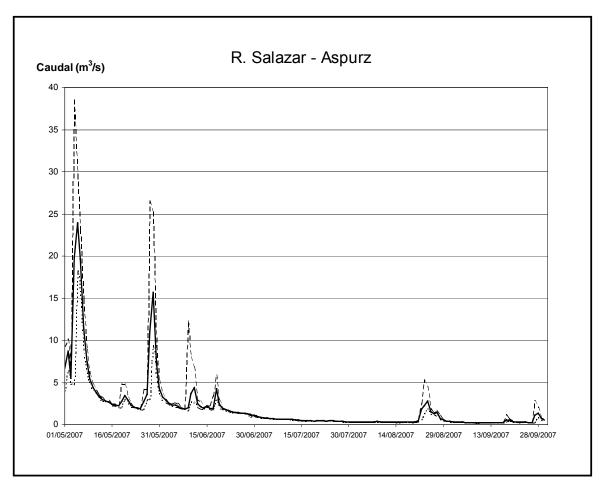
En esta masa se escogió una estación de muestreo (2008 en Altés) de cara a estudiar su estado. Esta estación obtuvo altos valores en los índices bióticos calculados (IBMWP= 214; IASPT= 5,220), lo que le hizo alcanzar un Estado Ecológico "Muy Bueno" que le hacían alcanzar los niveles exigidos por la DMA.


Río Rudrón

Se seleccionaron dos estaciones de muestreo en esta masa (2003 en Tablada de Rudrón y 1341 en Valdelateja). En la Tabla XLII se resumen los resultados obtenidos del análisis de las muestras de macroinvertebrados tomadas. Ambas estaciones tuvieron valores muy elevados en sus índices bióticos, lo que les confería un Estado Ecológico *"Muy Bueno"*. Esto permite que el río Rudrón alcance en la actualidad los objetivos que la DMA marca.

Río Salado

En este río se seleccionaron dos estaciones de muestreo de cara al estudio de su estado (1422 en Estenoz EA y 1314 en Mendigorría). En ambos puntos se observaron señales que indicaban que habría habido un caudal más alto en fechas anteriores a la del muestreo, aunque no parecía que hubieran sido muy intensas. Además se puede señalar que en al estación 1314 el agua bajaba bastante turbia y de color rojizo. En la Fig. 59 se señala la evolución del caudal en este río en el tramo localizado por debajo del embalse de Alloz. Se


Fig. 59. Caudales (mínimo, medio y máximo) registrados en el río Salado en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS Estació	n Fecha	IASPT	IBMWP	Clase	Estado ecológico	
1422 Estenoz	EA 14/06/0	7 2,875	23	IV	Deficiente	
1314 Mendigo	orría 14/06/0	7 4,923	128	I	Muy Bueno	

Tabla XLIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Salado el año 2007.

observa que desde mediados de Julio se registró un fuerte incremento del caudal en el río, posiblemente por desembalses de agua desde Alloz, pero al haberse producido más tarde que la fecha de muestreo no habrían tenido efecto en la representatividad de la muestra tomada en la estación 1314. La Tabla XLIII muestra los resultados hallados del análisis de las muestras recogidas. En el tramo alto se encontraron valores bajos indicativos de una Estado Ecológico "Deficiente", mientras que en el punto inferior se conseguía alcanzar un Estado Ecológico "Muy Bueno". Con estos datos parecería que el río Salado cumpliría los

Fig. 60. Caudales (mínimo, medio y máximo) registrados en el río Salazar en el periodo de estudio. (Leyenda como en Fig. 3).

objetivos que exige la DMA en su tramo bajo, pero no en el tramo superior. Sin embargo, el mal resultado hallado en este tramo de río seguramente es consecuencia de la elevada salinidad de las aguas, la cual sería factor limitante para muchos taxones. Por ello, aunque en principio no se alcanzarían los niveles que la DMA exige, si estos niveles bajos se deben a la salinidad natural y no hay otras fuentes de alteración o polución, no se necesitaría llegar al nivel de calidad exigido por tratarse de una circunstancia especial de origen natural.

Río Salazar

Se estudio el estado de las aguas de este río en una estación de muestreo (1070 en Aspurz). En la Fig. 60 se representa la evolución del caudal registrado en este río en el periodo de muestreo, no observándose en la fechas anteriores a la de muestreo señales de avenidas o crecidas destacables que pudieran haber afectado a la comunidad de macroinvertebrados en el punto. Los altos valores de los índices bióticos encontrados en

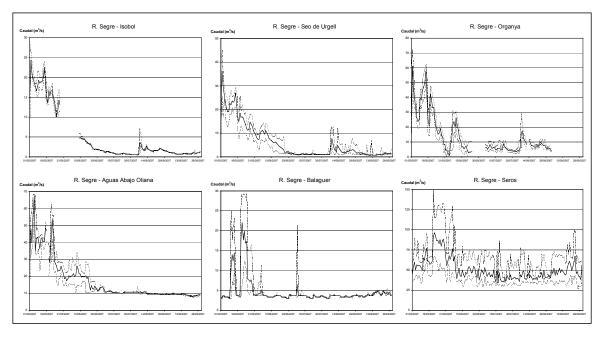
esta estación (IBMWP= 177; IASPT= 5,710) le otorgaron un Estado Ecológico *"Muy Bueno"* que le permitiría cumplir sin problemas los límites exigidos por la DMA.

Río Salón

De cara al estudio del estado de sus aguas, en este río se seleccionó una estación de muestreo (0609 en Villatomil - La Cerca). Esta estación presentaba una proliferación de Cladophora que dificultaban en parte el muestreo. Los valores hallados en los índices bióticos (IBMWP= 173; IASPT= 5,088) encuadraron a esta estación dentro de un Estado Ecológico "Muy Bueno", lo que hace que se cumplan los objetivos que plantea la DMA.

Río Santa Engracia

En este río se eligió una estación de cara analizar el estado de las aguas (0649 en Ollerías (Villarreal de Álava)). Sin embargo el punto donde se localizaba la estación de muestreo correspondía a la cola del embalse de Urrunaga, no siendo muestreable. Por ello se trasladó el punto de muestreo biológico unos 500 m aguas arriba hasta un Parking localizado junto a la carretera, tramo que ya fue analizado en 2006 y resultaba adecuado para el muestreo. Los valores de los índices bióticos hallados (IBMWP= 131; IASPT= 5,458) calificaron las aguas de este tramo dentro del Estado Ecológico "Muy Bueno", por lo que se alcanzarían los niveles exigidos por la DMA.


Río Santurdejo

En este río se había seleccionado en un principio una estación de cara al estudio de su estado (1385 en Pazuengos). Sin embargo este punto fue dado de baja de la red de referencia a la que pertenecía, por lo que finalmente no fue muestreado.

Río Segre

En este río se seleccionaron 13 estaciones de muestreo de cara al estudio del estado de sus aguas (1096 en Llivia, 0023 en la Seu de Urgell, 0206 en Puente de Arfá, 1453 en Organya, 0114 en Puente de Gualter, 0621 en Derivación Canal de Urgell, 1101 en Puente de Alentorn, 0810 en Camarasa, 0096 en Balaguer, 0207 en Vilanova de la Barca, 0024 en Lleida, 0219 en Torres de Segre y 0025 en Serós). No se pudo tomar la muestra en la estación 0024 por tratarse el punto de muestreo de un canal de riego con mucho caudal. En la parte baja de este río, algunos de los puntos analizados están parcialmente

Fig. 61. Caudales (mínimo, medio y máximo) registrados en el río Segre en el periodo de estudio. (Leyenda como en Fig. 3).

condicionados por la importante anchura y profundidad que existe. En la Fig. 61 se muestra la evolución del caudal en distintos puntos del río Segre durante el periodo de estudio. Además de las variaciones de caudal que se registran en la zona de la Seo de Urgell desde aproximadamente un mes antes de la fecha de muestreo, lo más destacable son la variaciones diarias de caudal que se registran en la zona de Serós, tal vez por efecto de los embalses destinados a producción eléctrica cercanos a Serós.

En la Tabla XLIV se resumen los valores de los índices bióticos hallados tras el análisis de las muestras de macroinvertebrados recolectadas. Dichos valores otorgaban un Estado Ecológico "Muy Bueno" en casi todo su recorrido la estación 0096 (Balaguer), exceptuando el Estado Ecológico "Bueno" que se encontró en la estación 0206 (Puente de Arfá). En la estación 0207 (Vilanova de la Barca) el valor de índice biótico descendía hasta un nivel intermedio entre "Moderado" y "Bueno". El valor del índice seguía descendiendo en el siguiente punto (0219 en Torres de Segre) hasta llegar a un Estado Ecológico intermedio entre "Deficiente" y "Moderado", manteniéndose un valor indicativo de Estado Ecológico "Moderado" en la última estación estudiada (0025 en Serós). El descenso en el valor del índice biótico detectado en la estación 0206 podría estar en relación con el efecto que puede tener la localidad de la Seu de Urgell, y si bien no se llegan a niveles por debajo de un estado "Bueno", se debe realizar un seguimiento para comprobar que la calidad se mantenga. El gran empeoramiento que se registra en las dos últimas estaciones podrían

CEMAS	Estación	Fecha	IASPT	IBMWP (Clase	Estado ecológico
1096	Llivia	14/09/07	5,276	153	ı	Muy Bueno
0023	Seu de Urgell	14/09/07	5,857	164	- 1	Muy Bueno
0206	Puente de Arfá	13/09/07	4,250	68	II	Bueno
1453	Organya	13/09/07	5,500	132	I	Muy Bueno
0114	Puente de Gualter	12/09/07	4,800	144	- 1	Muy Bueno
0621	Deriv. Canal de Urgell	12/09/07	4,844	218	I	Muy Bueno
1101	Puente de Alentorn	12/09/07	5,057	177	- 1	Muy Bueno
0810	Camarasa	12/09/07	4,933	148	- 1	Muy Bueno
0096	Balaguer	11/09/07	4,938	158	- 1	Muy Bueno
0207	Vilanova de la Barca	11/09/07	3,933	59	111-11	Moderado – Bueno
0219	Torres de Segre	27/08/07	3,556	32	IV-III	Deficiente – Moderado
0025	Serós	27/08/07	3,750	45	Ш	Moderado

Tabla XLIV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Segre el año 2007.

estar provocadas por el efecto que la localidad del Lleida tiene sobre el río Segre. A este respecto hay que señalar que en la estación 0219 (Terres de Segre) se detectó en la fecha de muestreo un fuerte olor a vertido urbano, siendo patente que el tramo estaba contaminado. Con estos datos se puede considerar que el río Segre cumpliría los objetivos de la DMA en gran parte de su recorrido, pero no lo haría en su tramo más bajo.

Río Sio

Se analizó el estado de las aguas de este río en un punto (1304 en Balaguer EA). La estación de muestreo se localizaba en una zona de acceso complicado con mucho caudal y muy profunda. Se intentó localizar aguas arriba un punto alternativo, y aunque se realizó la toma de la muestra, el muestreo fue muy difícil y estuvo muy limitado. Da la impresión de que la masa es utilizada como riego-canal de riego. A pesar de estas dificultades, los valores de los índices bióticos encontrados en este punto (IBMWP= 71; IASPT= 4,176) otorgaron al tramo un Estado ecológico "Bueno", por lo que se cumplirían los niveles que la DMA exige.

Río Son

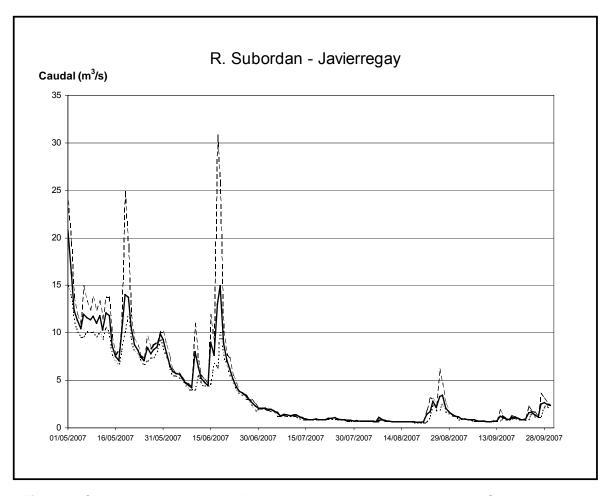
En este río se seleccionó una estación de muestreo para estudiar el estado de la aguas (0638 en Esterri de Aneu). No se pudo acceder al punto que se marcaba originalmente, moviéndose el punto de muestreo biológico unos 400 m aguas abajo. Sin embargo existía

unos 100 m por encima una represa de la que se extraía casi todo el agua para riego, por lo que quedaba muy poco caudal. A pesar de ello, los resultados hallados en los índice bióticos (IBMWP= 100; IASPT= 5,263) conferían a este tramo un Estado Ecológico intermedio entre "Bueno" y "Muy Bueno", por lo que se cumpliría en principio los niveles que la DMA pide.

Río Sosa

Se analizó el estado de las aguas de esta masa en una estación de muestreo (2073 Aguas Arriba de Monzón). Los valores hallados tras el análisis de la muestra tomada (IBMWP= 159; IASPT= 4,543) catalogaron este punto en un Estado Ecológico *"Muy Bueno"*, por lo que se cumplirían los objetivos que la DMA demanda.

Río Subialde (Zayas)


En este río, denominado Subialde o Zayas, se analizó el estado de las aguas en una estación de muestreo (0221 Aguas Arriba de Murua). El análisis de la muestra tomada otorgó a este punto unos altos valores en los índices bióticos calculados (IBMWP= 212; IASPT= 6,424), los cuales denotaban que este tramo poseía un Estado Ecológico "Muy Bueno" que le permitiría cumplir los requerimientos de la DMA.

Río Subordán

En este río se seleccionaron en un principio tres estaciones de muestreo (2029 en la Selva de Oza, 0804 en Hecho y 2024 en Embún). Sin embargo esta última estación fue dada de baja de la red de referencia a la que pertenecía de manera que no se incluyó finalmente en el estudio.

En la Fig. 62 se muestra la evolución del caudal en este río a lo largo del periodo de estudio. Se observa que no existieron en las fechas anteriores a la del muestreo aumentos del caudal circulante que pudieran haber afectado a la comunidad de macroinvertebrados o a la representatividad de la muestra recolectada. Los resultados hallados al analizar las muestras de macroinvertebrados se exponen en la Tabla XLV. Las dos estaciones estudiadas alcanzaron altos valores en los índices bióticos, lo que les confería un Estado Ecológico "Muy Bueno". Esto implica que los dos tramos analizados alcanzarían los niveles de calidad que la DMA impone, y no parece probable que en el futuro pudiera haber problemas para no seguir haciéndolo.

Fig. 62. Caudales (mínimo, medio y máximo) registrados en el río Subordan en el periodo de estudio. (Leyenda como en Fig. 3).

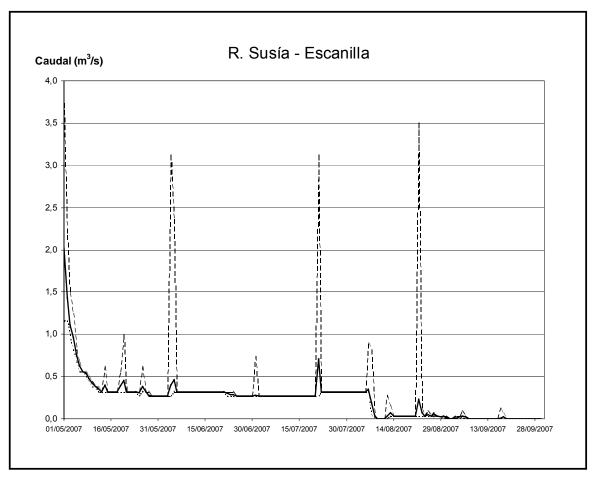
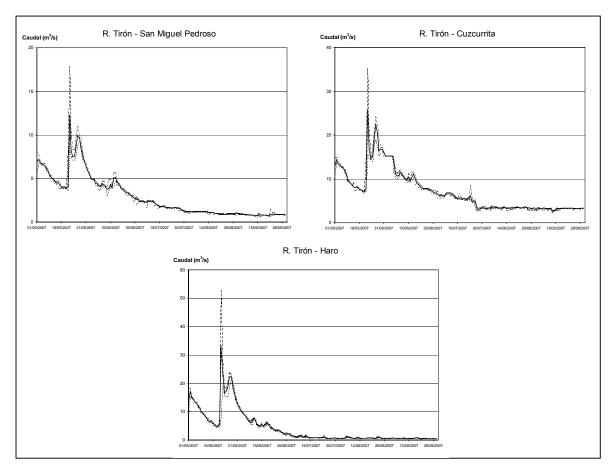

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
2029	Selva de Oza	18/08/07	5,433	163	I	Muy Bueno
0804	Hecho	13/08/07	5,821	163	- 1	Muy Bueno

Tabla XLV. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Subordan el año 2007.

Río Susía

Se analizó el estado de las aguas de esta masa en una estación de muestreo (2015 en Escanilla EA). Se trata de un río que no suele llevar mucho agua, pero que en momentos de tormentas puede multiplicar mucho su caudal. El tramo se localizaba a la altura de la estación de aforo situada cerca de Escanilla. El día anterior a la fecha de muestreo hubo


Fig. 63. Caudales (mínimo, medio y máximo) registrados en el río Susía en el periodo de estudio. (Leyenda como en Fig. 3).

fuertes tormentas en gran parte de los Pirineos, de manera que el caudal circulante aumentó de forma muy brusca y se multiplicó en poco tiempo por diez (Fig. 63), reduciéndose a valores normales en menos de 24 horas. Esta circunstancia podría afectar a la validez de la muestra de macroinvertebrados tomada, si bien la gran anchura que el río Susía posee en la zona de muestreo permitiría minimizar los posibles efectos negativos de la crecida. Los resultados de los índices bióticos hallados en la muestra tomada (IBMWP= 150; IASPT= 5,556) otorgaron a esta estación un Estado Ecológico "Muy Bueno", lo que le haría cumplir los requisitos que la DMA marca.

Río Tirón

En este río se escogieron cinco estaciones de muestreo (1173 Aguas Arriba de Fresneda de la Sierra, 1174 en Belorado, 1175 en Cerezo de Río Tirón, 0050 en Cuzcurrita-Tirgo y 1177 en Haro). Se debe señalar que en la estación 1175 se apreciaron signos de contaminación

Fig. 64. Caudales (mínimo, medio y máximo) registrados en el río Tirón en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1173	Fresneda de la Sierra	12/07/07	6,103	177	I	Muy Bueno
1174	Belorado	13/07/07	5,083	183	- 1	Muy Bueno
1175	Cerezo de Río Tirón	13/07/07	4,875	156	I	Muy Bueno
0050	Cuzcurrita - Tirgo	13/07/07	4,294	73	II	Bueno
1177	Haro	11/07/07	5,286	111	I	Muy Bueno

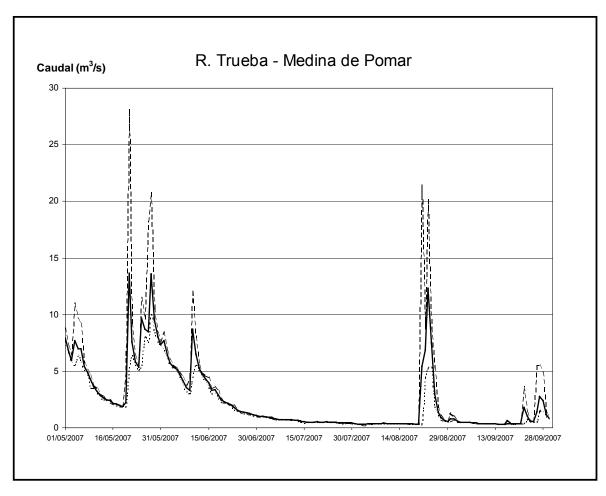
Tabla XLVI. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Tirón el año 2007.

orgánica, mientras que en la estación 0050 existía mucho sedimento fino blanco en el sustrato. En la Fig. 64 se muestra la evolución del caudal de este río a lo largo del periodo de estudio, no existiendo variaciones bruscas de caudal que pudieran afectar a la representatividad de las muestras tomadas. Los resultados hallados tras el análisis de las muestras recogidas se muestra en la Tabla XLVI. En general todos los puntos analizados

alcanzaron valores en los índices indicativos de un Estado Ecológico "Muy Bueno". Sólo en la estación 0050 se redujo el valor del índice hasta niveles que correspondían con un Estado Ecológico "Bueno". Con estos resultados se puede considerar que actualmente se cumplen en este río los niveles de calidad demandados por la DMA.

Río Trema

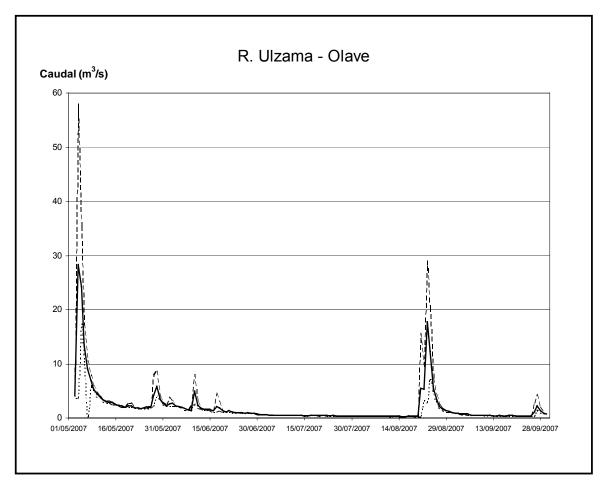
En esta masa se había escogido una estación de muestreo (1396 en Torme) para analizar el estado de sus aguas. En la estación existía pequeñas extracciones de agua para cultivos mediante motobombas. Los resultados encontrados para los índices bióticos analizados (IBMWP= 200; IASPT= 5,714) calificaron las aguas de este tramo dentro de un Estado Ecológico "Muy Bueno", lo que haría que las exigencias de la DMA se estuvieran cumpliendo en este tramo en la actualidad.


Río Trueba

Se había escogido para el estudio de este río dos estaciones de muestreo (1006 en El Vado y 1440 en Villacomparada). Hay que señalar que para la estación 1006 en las fichas de acceso se señala el nombre de Espinosa de los Monteros, pero que la estación se localiza más arriba que esta localidad. Por su parte, se cambió ligeramente la ubicación de la zona de muestreo en la estación 1440, ya que originalmente se situaba junto a la EDAR de Medina de Pomar, trasladándose aguas debajo de dicha zona. En la Fig. 65 se muestra la evolución registrada en el caudal de este río a lo largo del periodo de estudio, no detectándose incrementos bruscos del caudal que hubieran podido afectar a la representatividad de la muestra tomada. Los valores de los índices bióticos hallados en las dos estaciones de muestreo analizadas se recogen en la Tabla XLVII. Ambas estaciones alcanzaron altos valores en los índices bióticos, otorgándoles por ello un Estado Ecológico "Muy Bueno". Con estos datos se alcanzarían en la actualidad y sin problemas los niveles de calidad demandados por la DMA.

Río Ubagua

En este río se escogió una estación de muestreo para el análisis de su estado (1423 en Muez). La fecha de muestreo se anotó que el río bajaba con cierta turbidez y que parecía que había habido en fechas anteriores un caudal algo mayor, posiblemente por las lluvias que tuvieron lugar en la zona. Sin embargo las señales encontradas no hacían pensar que dicho aumento de caudal hubiera sido muy brusco ni intenso, de manera que se cree que la


Fig. 65. Caudales (mínimo, medio y máximo) registrados en el río Trueba en el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1006	El Vado	17/07/07	5,619	236	I	Muy Bueno
1440	Villacomparada	16/07/07	5,119	215	- 1	Muy Bueno

Tabla XLVII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Trueba el año 2007.

posible influencia sobre la comunidad de macroinvertebrados del río en la zona habría sido despreciable. Los resultados de los índices hallados tras el análisis de la muestra tomada (IBMWP= 144; IASPT= 5,143) otorgaron a este tramo un Estado Ecológico "Muy Bueno", lo que le haría cumplir en la actualidad sin dificultad los niveles que marca la DMA.

Fig. 66. Caudales (mínimo, medio y máximo) registrados en el río Ulzama en el periodo de estudio. (Leyenda como en Fig. 3).

Río Ulzama

En este río se seleccionó para el estudio de su estado una estación de muestreo (1315 en Olave EA). Dicha estación se localizaba por debajo de la estación de aforo cercana a la localidad de Olave, siendo una zona utilizada por el ganado para beber, lo que hace que exista un alambre de espino que cierra parcialmente un área de río (si bien dicho alambre no cruza toda la anchura del río sino que sólo cierra entre 1/3 o 1/2 de dicha anchura). En la Fig. 66 se representa la evolución que el caudal tuvo en esta estación de aforo a lo largo del periodo de estudio. No se observa que en fechas cercanas a la de muestreo se produjeran incrementos notables en el caudal que pusieran en peligro la representatividad de la muestra de macroinvertebrados recogida. Los resultados hallados tras el análisis de esta muestra (IBMWP= 156; IASPT= 5,379) otorgaron a esta estación un Estado Ecológico "Muy Bueno", lo que le haría cumplir los objetivos de la DMA.

Río Urbeltza (Urbeltz)

En este río se había seleccionado para el estudio de su estado una estación de muestreo (1446 en la Virgen de las Nieves de Irati), tramo que en un principio por error se había asignado al río Irati. El análisis de la muestra tomada en este tramo reflejó que en él se alcanzaban unos altos valores en los índices bióticos (IBMWP= 236; IASPT= 6,378), lo cual le confería a este río un Estado Ecológico "Muy Bueno" que le permiten alcanzar sin problemas las exigencias de la DMA.

Río Urbión I

Se denomina río Urbión I al río Urbión que nace en la Sierra de San Millán (Sierra de la Demanda, Burgos) y es afluente del río Tirón. En dicho río se seleccionó una estación de muestreo para el estudio del estado de sus aguas (1387 en Santa Cruz del Valle Urbión). Los resultados hallados tras el análisis de la muestra tomada (IBMWP= 145; IASPT= 6,042) calificaron las aguas de este punto en un Estado Ecológico *"Muy Bueno"*, lo que le permite cumplir los objetivos señalados por la DMA.

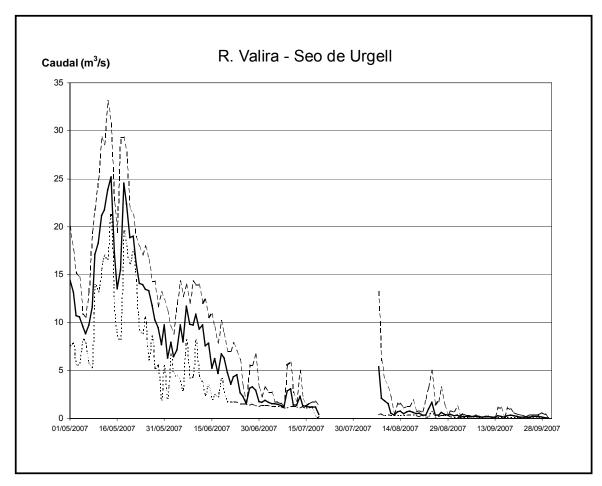
Río Urbión II

Se denomina río Urbión II al río Urbión que nace en los Picos de Urbión (La Rioja) y es afluente del río Najerilla. Se analizó el estado de sus aguas en una estación de muestreo (2001 en Viniegra de Abajo). Del análisis de la muestra tomada (IBMWP= 223; IASPT= 5,439) se desprende que el río posee un Estado Ecológico "Muy Bueno", lo que le permite lograr actualmente los niveles de calidad que la DMA pide.

Río Urederra

En esta masa se seleccionó para el estudio del estado de las aguas una estación de muestreo (0815 en Zudaire). La zona de muestreo se localiza junto a la estación hidroeléctrica de Zudaire y junto a una zona de ocio. El aliviadero de la central eléctrica hace que el muestreo en la parte baja del tramo pueda ser muy difícil. Por su parte, aguas arriba de dicho aliviadero se suele colocar una represa en verano para crear una piscina fluvial, por lo que en le momento que es represa se coloca el muestreo en el tramo se puede ver bastante condicionado. Por ello se recomienda realizar los muestreos biológicos en este punto antes de la colocación de la represa. Los altos valores de los índices calculados a partir de la muestra tomada (IBMWP= 242; IASPT= 5,762) otorgaron a este tramo un Estado Ecológico "Muy Bueno", haciéndole por ello alcanzar sin problemas los niveles de calidad

asignados por la DMA. No parece que en un futuro este tramo pueda llegar a tener problemas para seguir manteniendo estas condiciones.


Río Urrobi

En este río se había seleccionado un punto de muestreo (1065 en Camping de Espinal), el cual se localizó justo aguas arriba de dicho camping, en uno de los ríos que confluyen en esta zona. Los elevados valores de los índices bióticos calculados para esta estación (IBMWP= 278; IASPT= 5,792) le confirieron un Estado Ecológico "Muy Bueno". Ello hace que actualmente se cumplan los criterios impuestos por la DMA, y no parece que el futuro existan demasiados problemas que pudieran impedir que este hecho se siga repitiendo.

Río Val

Se seleccionó un punto de muestreo en este río de cara a analizar el estado de sus aguas (1351 en Ágreda). Se proponían dos posibles localizaciones para realizar el muestreo en este río. La primera de ellas se localizaba por debajo de la localidad de Ágreda y de su EDAR. Sin embargo, dicha zona estaba fuertemente alterada y parecía tener el lecho y las orillas canalizados, además de existir unas obras en la EDAR que estaban alterando el tramo y las aguas, enturbiándolas de manera muy notable. Por ello se decidió no muestrear en esta zona, si bien no se descarta que en el futuro se pudiera volver a visitar para valorar más detenidamente si pudiera ser un tramo más adecuado para el muestreo biológico. La muestra por ello se tomó en el punto donde ya se había tomado en las campañas de 2004 y 2005. En esta zona existen varias alcantarillas de las que se escapa el agua residual, yendo directamente al río. Según conversación con varias personas de la zona dichas alcantarillas llevan dos años atascadas y vierten al río. El río presenta un color gris y un fuerte olor a contaminación orgánica por debajo de las zonas donde el agua residual vierte, siendo evidentes los signos de contaminación existentes. Se intentó tomar la muestra por encima de las alcantarillas que la fecha de muestreo estaban vertiendo, donde el agua no estaba turbia, de cara a evitar en lo posible el efecto de estos vertidos. Los resultados hallados para los índices bióticos en este tramo (IBMWP= 49; IASPT= 3,500) mostraron que en esta estación existe un claro problema de calidad, calificando sus aguas dentro de un Estado Ecológico "Moderado", lo que lleva a pensar que aguas abajo la situación será mucho peor. Con estos resultados no se alcanzarían actualmente los niveles que la DMA exige, requiriéndose realizar actuaciones que lleven a mejorar el estado de este tramo.

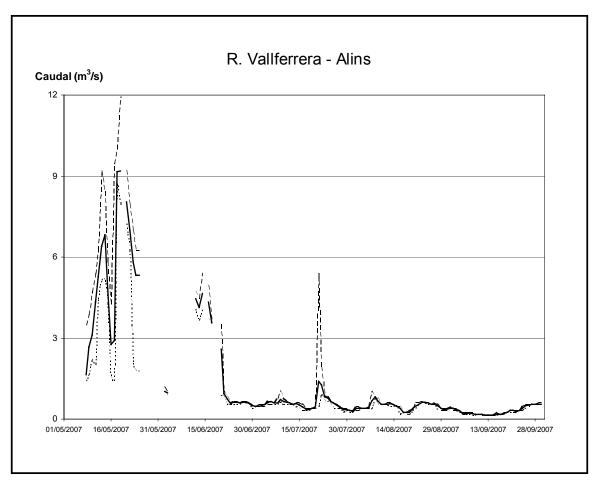
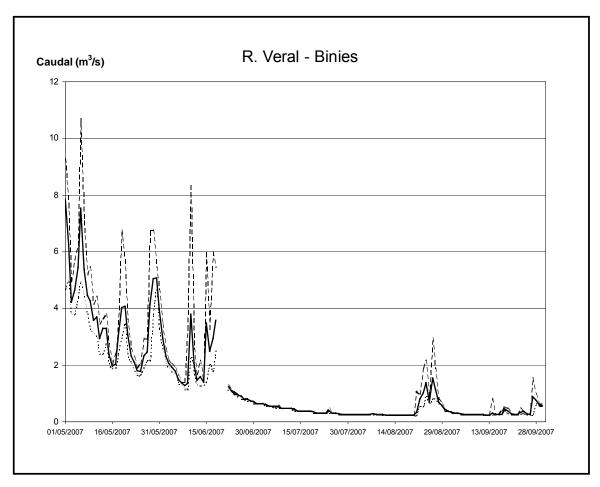


Fig. 67. Caudales (mínimo, medio y máximo) registrados en el río Valira en el periodo de estudio. (Leyenda como en Fig. 3).

Río Valira

Se seleccionó en este río una estación de muestreo (0022 en Anseral). Sin embargo no se encontraron accesos seguros en el tramo designado para el muestreo, localizándose otro acceso alternativo para poder tomar la muestra a unos 500 m aguas abajo. En la Fig. 67 se representa las variaciones de caudal registradas en este río durante el periodo de muestreo. Se observa que entre un mes y dos semanas antes de la fecha de muestreo se registraron algunos incrementos en el caudal circulante, posiblemente por tormentas, pero no se cree que hubieran afectado gravemente a la comunidad de macroinvertebrados en la zona. Los valores hallados para los índices bióticos en el tramo estudiado (IBMWP= 113; IASPT= 5,381) confirieron a esta masa un Estado Ecológico "Muy Bueno", lo que le haría alcanzar los niveles que la DMA plantea.

Fig. 68. Caudales (mínimo, medio y máximo) registrados en el río Vallferrera en el periodo de estudio. (Leyenda como en Fig. 3).


Río Vallferrera

Se seleccionó una estación en esta masa para el estudio del estado de las aguas (1419 en Allins). En la Fig. 68 se muestra la variación de caudal registrada en este río durante el periodo de estudio. No se registraron en las fechas cercanas a la de muestreo variaciones importantes en el caudal que pudieran haber afectado a la comunidad de macroinvertebrados existente. Los resultados hallados para los índices bióticos calculados (IBMWP= 202; IASPT= 6,313) calificaron las aguas de esta estación dentro de un Estado Ecológico "Muy Bueno", de manera que se conseguían cumplir las exigencias de la DMA.

Río Vellós

Se había seleccionado una estación en este río (1128 Aguas abajo del Nacimiento). Sin embargo dicha estación no pudo muestrearse, ya que se encontraba dentro del Parque

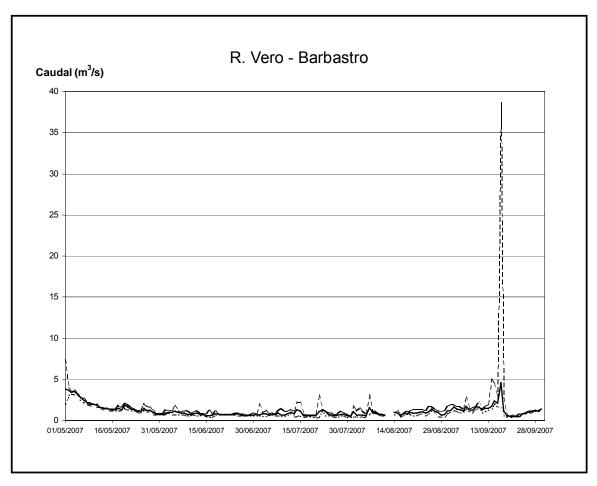
Fig. 69. Caudales (mínimo, medio y máximo) registrados en el río Veral en el periodo de estudio. (Leyenda como en Fig. 3).

Natural de Ordesa-Monte Perdido, para trabajar en el cual se requiere un permiso específico que no se pudo obtener para la fecha de muestreo. Hay que señalar además que la única zona de muestreo en este punto se limita al tramo por encima de la unión de los dos afluentes existentes, pues el resto son pozas y roca madre en una zona encajada, no adecuado para el muestreo y que incluso presenta cierto peligro.

Río Veral

En este río se seleccionaron dos estaciones de muestreo (1448 en Zuriza y 1056 en Binies). Se debe señalar que se ha variado la localización de la estación 1448 respecto a las campañas de 2004 y 2005, desplazándose la zona de muestreo aguas arriba de la zona de vertido de la fosa séptica del camping de Zuriza, de cara a evitar su efecto, el cual puede ser especialmente intenso en época de bajos caudales. En la Fig. 69 se representa la variación del caudal que el río Veral registró a lo largo del periodo de estudio. No existe constancia de

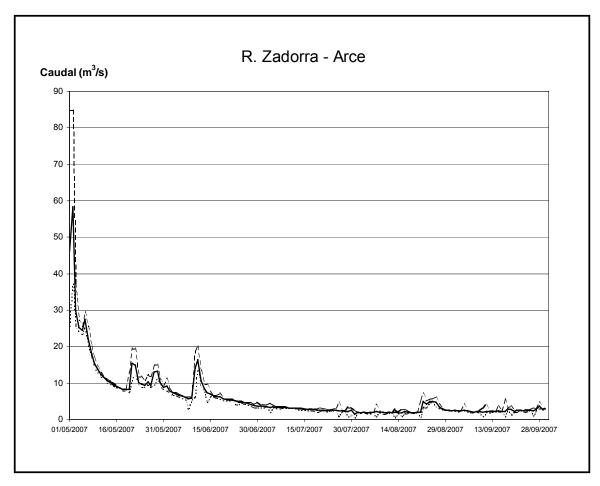
CEMAS	Estación	Fecha	IASPT	IBMWP C	lase	Estado ecológico
1448	Zuriza	13/08/07	5,321	149	I	Muy Bueno
1056	Binies	13/08/07	5,645	175	1	Muy Bueno


Tabla XLVIII. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Veral el año 2007.

que en las fechas previas a la de muestre este río sufriera aumentos de caudal significativos, por lo que se puede considerar que las muestras tomadas serán representativas. En la Tabla XLVIII se recogen los resultados hallados en las estaciones estudiadas del río Veral con respecto a los índices bióticos de macroinvertebrados. Ambas estaciones alcanzaron valores altos que les otorgaban un Estado Ecológico "Muy Bueno", lo que les permitía lograr cumplir los requisitos impuestos por la DMA.

Río Vero

En un principio se habían seleccionado dos estaciones en este río (1281 en Lecina de Bárcabo y 0095 en Barbastro). Sin embargo la estación 1281 fue dada de baja de la red de Referencia, por lo que finalmente no se incluyó en el muestreo. En la Fig. 70 se recogen los datos de caudal registrados en este río a lo largo del periodo de estudio. No parece que en la fechas anteriores al día de muestreo se hubieran producido incrementos bruscos o notables en el caudal circulante que hubieran podido afecta a la comunidad de macroinvertebrados de la zona. La estación 0095 presentó un acceso complicado por lo abrupto de sus orillas y la densa vegetación que crece en la ribera, pero una vez alcanzado el cauce se pudo muestrear sin dificultad. Esta estación presentaba un aspecto muy alterado, con vertederos de restos de construcción y de restos vegetales en sus riberas, existencia de un limo negro en el sustrato del río y percibiéndose un fuerte olor de vertidos orgánicos en el tramo. Esta negativa apariencia del tramo se confirmo con los datos obtenidos en los índices bióticos (IBMWP= 40; IASPT= 3,333), los cuales le otorgaron un Estado Ecológico intermedio entre "Moderado" y "Deficiente". Todo parece indicar que en este punto existe un polución de origen orgánico, posiblemente originados en vertidos del área urbana e industrial de Barbastro. Al igual que se ha observado en otros puntos con similares problemas, los quironómidos y oligoquetos has sido los grupos predominantes, hallándose que más del 99% de los organismos pertenecían a sólo tres familias (Oligochaeta, Chironomidae y Physidae), las cuales se verían favorecidas por el incremento de la materia orgánica existente en el tramo. Con estos datos no se cumplirían los objetivos


Fig. 70. Caudales (mínimo, medio y máximo) registrados en el río Vero en el periodo de estudio. (Leyenda como en Fig. 3).

de calidad que la DMA exige, debiendo estudiarse que posibles medidas se podrían tomar de cara a mejorar el Estado ecológico en este tramo.

Río Zadorra

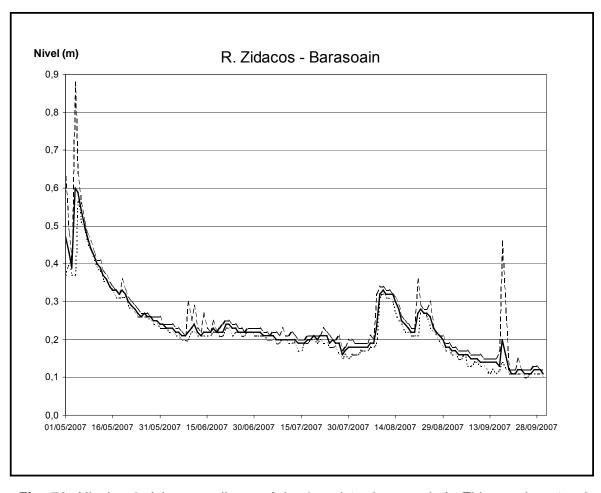
En este río se habían seleccionado siete estaciones de muestreo de cara a analizar el estado de sus aguas (1024 en Zuazu-Salvatierra, 0564 en Heredia, 0180 entre Mendibil y Durana, 1025 en Durana, 0179 en Villodas, 1028 en La Puebla de Arganzón y 0074 em Miranda de Arce). En la estación 1024 existía un colector, por lo que se tomó lo muestra por encima del mismo, evitando su posible efecto. Por su parte la estación 0179, originalmente denominada Trespuentes-Vitoria, no era adecuada para el muestreo biológico por inaccesible y profundo. Se recorrió toda la masa y se observó que gran parte de la misma era totalmente inadecuada, profunda y con presencia de muchas macrofitas que reducen la

Fig. 71. Caudales (mínimo, medio y máximo) registrados en el río Zadorra en el periodo de estudio. (Leyenda como en Fig. 3).

velocidad del agua. Finalmente se pudo localizar una zona muestreable junto a la localidad de Villodas. Por otra parte se debe apuntar que tanto la estación 0180 como la estación 1028 se localizaban por debajo de dos presas. En la Fig. 71 se muestra la evolución del caudal registrada en la parte baja del río Zadorra durante el periodo de estudio. Se observa que en fechas cercanas a las de muestreo el río tuvo un incremento en su caudal, lo cual podría afectar parcialmente a la representatividad de las muestras tomadas en dicha zona baja.

En la Tabla IL se recogen los datos obtenidos del análisis de las muestra respecto a los índices bióticos de macroinvertebrados. Se observa que en gran parte de su recorrido el río Zadorra mantiene valores indicativos de un Estado Ecológico "Muy Bueno" o al menos "Bueno". Sólo en las estaciones 0179 y 1028 los valores de los índices se reducen hasta niveles de Estado Ecológico intermedio entre "Moderado" y "Bueno". Posiblemente esta reducción de la calidad en dicho tramo pueda estar motivada por la influencia del núcleo

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1024	Zuazu - Salvatierra	19/06/07	4,318	95	II-I	Bueno – Muy Bueno
0564	Heredia	19/06/07	4,406	141	- 1	Muy Bueno
0180	Mendibil – Durana	18/06/07	4,261	98	11-1	Bueno – Muy Bueno
1025	Durana	18/06/07	4,448	129	I	Muy Bueno
0179	Villodas	19/06/07	3,706	63	II-III	Bueno – Moderado
1028	La Puebla de Arganzón	12/06/07	3,867	58	111-11	Moderado – Bueno
0074	Miranda de Arce	13/06/07	4,438	71	II	Bueno


Tabla IL. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Zadorra el año 2007.

urbano de Vitoria-Gasteiz y de las localidades cercanas al mismo, así como a la actividad industrial de la zona. Con estos datos no se alcanzarían los niveles marcados por la DMA en el tramo localizado entre Vitoria-Gasteiz y La Puebla de Arganzón.

Río Zidacos

En este río se seleccionaron dos estaciones de muestreo para analizar el estado de las aguas (1307 en Barasoain y 1308 en Olite). Hay que señalar que ambas estaciones de localizan en tramos alterados por la construcción de una estación de aforo, con presencia de escolleras en las orillas. Además junto a las dos estaciones se localizan sendas EDAR, si bien en la estación 1308 la EDAR vierte por debajo de la zona muestreada, y en la estación 1307 la EDAR pertenece a una localidad con un pequeño número de habitantes. Aún así, en la estación 1308 se detectó un olor perceptible a materia orgánica en el río. En la Fig. 72 se muestra la evolución del nivel de agua registrado en este río durante el periodo de muestreo. No se produjeron en las fechas anteriores a la de muestreo variaciones notables en el caudal que pudieran haber afectado a la comunidad de macroinvertebrados. En la Tabla L se recogen los resultados obtenidos tras el análisis de las muestras recolectadas. Los valores hallados otorgaron un Estado Ecológico "Muy Bueno" a la estación 1307 y "Bueno" a la estación 1308. Este descenso en el valor del índice y el Estado Ecológico correspondiente podría estar propiciado por el efecto del área urbana e industrial de Tafalla, si bien esta influencia la fecha de muestreo no estaría alcanzando niveles muy perniciosos. De mantenerse esta situación se cumplirían los niveles exigidos por la DMA.

Fig. 72. Niveles (mínimo, medio y máximo) registrados en el río Zidacos durante el periodo de estudio. (Leyenda como en Fig. 3).

CEMAS	Estación	Fecha	IASPT	IBMWP	Clase	Estado ecológico
1307	Barasoain	05/07/07	4,744	185	ı	Muy Bueno
1308	Olite	28/06/07	4,353	74	II	Bueno

Tabla L. Valores de los índices de macroinvertebrados hallados en las estaciones analizadas en el río Zidacos el año 2007.

ANÁLISIS POR CUENCAS PARCIALES

ANÁLISIS POR CUENCAS PARCIALES

En este apartado se pretende dar una idea del estado de cada una de las cuencas parciales en que se divide el conjunto de la cuenca del río Ebro según las estaciones analizadas en cada una de dichas cuencas parciales. Se ha utilizado la misma subdivisión de cuencas parciales que se había usado previamente en los informes de explotación de la red de macroinvertebrados de los años 2004 y 2005.

Cuenca Alta del Ebro

Esta cuenca comprende al río Ebro y sus afluentes en el tramo desde la cabecera hasta la confluencia del río Oroncillo, a la altura de la localidad de Miranda de Ebro. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Ebro, Híjar, Homino, Jerea, Nela, Oca, Omecillo, Oroncillo, Rudrón, Salón, Trema y Trueba.

En la mayoría de los puntos de esta subcuenca se encontraron en 2007 valores en los índices bióticos indicativos de un Estado Ecológico "Muy Bueno" o "Bueno" (Fig. 73). Sólo la estación 1454 en Trespaderne tuvo un valor menor indicativo de un Estado Ecológico intermedio entre "Bueno" y "Moderado", pero ya se ha indicado que esto pudo estar

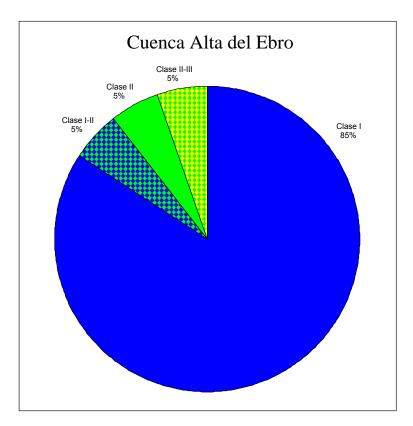


Fig. 73. Estado Ecológico de las aguas en la Cuenca alta del río Ebro.

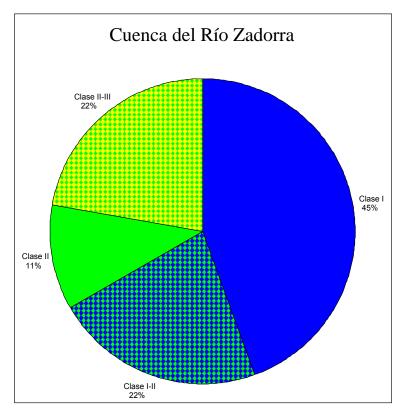


Fig. 74. Estado Ecológico de las aguas en la Cuenca del Río Zadorra.

producido por las limitaciones que el alto caudal impusieron para el muestreo. Aunque se recomienda asegurar que no existen otros problemas que afecten a este tramo de río, se puede pensar que esta zona presenta en su conjunto pocos problemas que afecten de manera grave a la calidad de sus aguas, por lo que no parece que puedan existir grandes impedimentos para cumplir en el futuro los requisitos de la DMA.

Cuenca del Río Zadorra

Esta cuenca comprende al río Zadorra, y para este estudio comprende las estaciones de muestreo analizadas en los ríos Zadorra, Subialde (Zayas) y Santa Engracia.

La mayoría de las estaciones de esta cuenca alcanzaron al menos el Estado Ecológico "Bueno" (Fig. 74), pero un 22% de ellas fueron catalogadas en un estado intermedio entre "Moderado" y "Bueno", por lo que no cumplirían los requisitos de la DMA. Estas estaciones son las que se localizaban en el tramo de río más próximo aguas abajo de Vitoria-Gasteiz, siendo posiblemente el efecto sinérgico de esta área urbana e industrial y de las localidades cercanas el responsable de esta pérdida de calidad de las aguas.

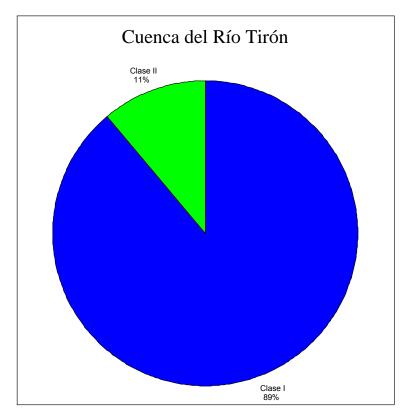


Fig. 75. Estado Ecológico de las aguas en la Cuenca del Río Tirón.

Cuenca del Río Tirón

Esta cuenca comprende al río Tirón y sus afluentes, lo que para este estudio esto comprende las estaciones de muestreo analizadas en los río Tirón, Oja, Oropesa y Urbión I.

Casi todas las estaciones de esta cuenca alcanzaron un Estado Ecológico "Muy Bueno", y sólo una (CEMAS 0050, río Tirón en Cuzcurrita-Tirgo) se quedó en un Estado Ecológico "Bueno" (Fig. 75). Estos resultados indicarían que, en principio, no existirían graves afecciones en esta subcuenca que supusieran un peligro de cara al cumplimiento de las directrices de la DMA.

Cuenca del Río Najerilla

Esta cuenca comprende al río Najerilla y sus afluentes, correspondiendo para este estudio a las estaciones de muestreo analizadas en los ríos Najerilla, Cárdenas y Urbión II.

Todas las estaciones analizadas en esta subcuenca alcanzaron los niveles de calidad demandados por la DMA, encuadrándose además la mayor parte de las estaciones dentro

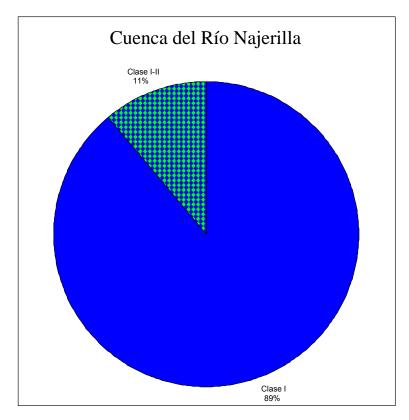


Fig. 76. Estado Ecológico de las aguas en la Cuenca del Río Najerilla.

del Estado Ecológico *"Muy Bueno"* (Fig. 76). Esta situación lleva a pensar que en esta cuenca no parece que vaya a existir peligro de no cumplir los requisitos de la DMA.

Cuenca del Río Iregua

Esta cuenca comprende al río Iregua y sus afluentes lo que en este estudio comprende las estaciones de muestreo analizadas en los ríos Iregua y Mayor.

Las estaciones analizadas en esta cuenca tuvieron altos valores en los índices bióticos calculados, la mayoría correspondientes a un Estado Ecológico "Muy Bueno" (Fig. 77). Sólo en la estación de muestreo localizada en la parte más baja del río (CEMAS 1457, río Iregua en Alberite) el valor del índice descendía ligeramente hasta un nivel intermedio entre los estados "Muy Bueno" y "Bueno". Con estos datos, es lógico pensar que en el futuro no debería haber mayores problemas de cara a poder cumplir los niveles de calidad exigidos por la DMA

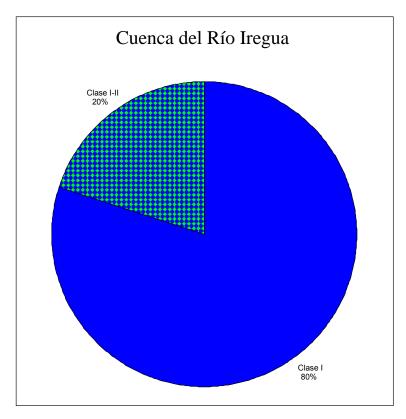


Fig. 77. Estado Ecológico de las aguas en la Cuenca del Río Iregua.

Cuenca del Río Ega

Esta cuenca comprende al río Ega y sus afluentes. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Ega y Urederra.

Todas las estaciones analizadas en esta cuenca alcanzaban los requisitos mínimos exigidos por la DMA, siendo mayoritarias las estaciones con un Estado Ecológico calificado como "Muy Bueno" (Fig. 78). Respecto a las estaciones en las que no se alcanzaba el estado de calidad superior, hay que señalar que sus resultados pudieron estar condicionados por las dificultades halladas en el momento de muestreo. Así la estación CEMAS 0071 (Ega en Zubielki), en la que el estado alcanzado fue "Bueno", tuvo en general un profundidad media elevada que limitaba el acceso y un sustrato predominantemente fino, que no es el más idóneo para muchos grupos de macroinvertebrados. Por su parte en la estación CEMAS 0572 (Ega en Señorío de Arínzano), en la que el estado alcanzado fue intermedio entre "Muy Bueno" y "Bueno", el fuerte caudal existente limitó en parte las posibilidades de muestreo, si bien su localización por debajo de la localidad de Estella podría hacer pensar de que dicho descenso podría estar también motivado por el efecto de dicha área urbana e

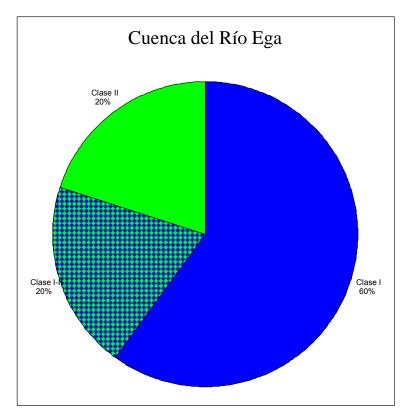


Fig. 78. Estado Ecológico de las aguas en la Cuenca del Río Ega.

industrial. A pesar de esto, los valores de los índices se mantienen en valores suficientemente elevados para pensar que no existen en la cuenca graves afecciones que pudieran llevar a dejar de cumplir los requisitos demandados por la DMA.

Cuenca del Río Cidacos

Esta cuenca comprende al río Cidacos y sus afluentes. En este estudio esto sólo correspondía con estaciones localizadas en el río Cidacos.

Todas las estaciones analizadas en esta cuenca alcanzaron la máxima calificación respecto a su Estado Ecológico, por lo que no parece probable que en el futuro se vayan a tener problemas para seguir cumpliendo con las exigencias de la DMA.

Cuenca del Río Irati

Esta cuenca comprende al río Irati y sus afluentes. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Irati, Areta, Erro, Salazar, Urbeltz y Urrobi.

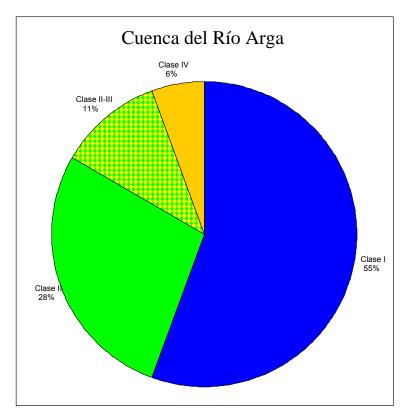


Fig. 79. Estado Ecológico de las aguas en la Cuenca del Río Arga.

Todas las estaciones analizadas en este río alcanzaron valores en los índices bióticos muy elevados, pertenecientes a un Estado Ecológico "Muy Bueno", lo que da clara idea de la alta calidad de las aguas de ese río y lleva a suponer que no se deberían tener problemas en el futuro de seguir cumpliendo los criterios marcados por la DMA.

Cuenca del Río Arga

Esta cuenca comprende al río Arga y sus afluentes, lo que en este estudio comprende las estaciones de muestreo analizadas en los ríos Arga, Alzania, Arakil, Elorz, Larraun, Salado, Ubagua y Ulzama.

La mayor parte de las estaciones analizadas en esta cuenca (más del 80%) alcanzaron valores en los índices bióticos indicativos de un Estado Ecológico "Muy Bueno" o "Bueno" (Fig. 79). De las estaciones que no alcanzarían estos niveles de Estado Ecológico, dos de ellas (CEMAS 1311 Arga en Ororbia y CEMAS 3001 Elorz en Pamplona) sólo alcanzaron un nivel intermedio entre "Moderado" y "Bueno". En el caso de la estación 1311 este descenso de la calidad estaría producido por localizarse por debajo de la EDAR que trata las aguas

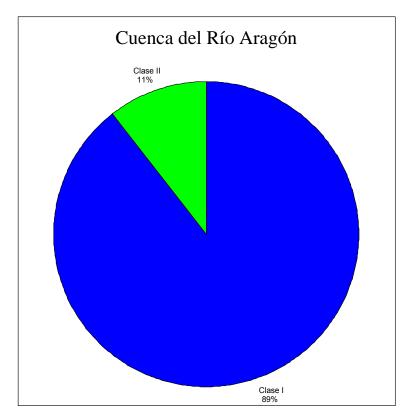


Fig. 80. Estado Ecológico de las aguas en la Cuenca del Río Aragón.

residuales de Pamplona y su Comarca, mientras que en el caso del río Elorz podría estar motivado por las influencias que las distintas localidades (incluyendo a la propia Pamplona) e industrias del entorno pueden tener sobre este río o su afluente el río Sadar. Por su parte, la estación CEMAS 1422 (Salado en EA Estenoz) sólo alcanzó un Estado Ecológico "Deficiente", pero ya se ha dicho que este hecho podría estar motivado en su elevada salinidad natural, lo que supondría un factor muy limitante para el desarrollo de muchos grupos. Así pues, el cumplimiento de los objetivos marcados por la DMA estaría sin terminar de afianzarse en el entorno más próximo a Pamplona, mientras que en el resto de esta cuenca se estarían alcanzando.

Cuenca del Río Aragón

Esta cuenca comprende al río Aragón y sus afluentes, salvo los pertenecientes a las cuencas de los ríos Arga e Irati. Para este estudio comprendería las estaciones de muestreo analizadas en los ríos Aragón, Esca, Estarrún, Onsella, Osia, Subordan, Veral y Zidacos.

Prácticamente en todas las estaciones se alcanzan valores en los índices indicativos de una Estado Ecológico "Muy Bueno" (Fig. 80), y sólo en los tramos inferiores de los ríos Aragón y Zidacos el Estado Ecológico se reduce a "Bueno". En principio con estos datos se cumplirían

los requisitos demandados por la DMA, aunque podría ser conveniente continuar con el control de los tramos bajos de esta cuenca para asegurar que los niveles se mantienen en valores adecuados.

Cuenca del Río Alhama

Esta cuenca comprende al río Alhama y sus afluentes. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Alhama, Neila y Linares II.

Todas las estaciones estudiadas alcanzaron valores en los índices bióticos que les otorgaban un Estado Ecológico "Muy Bueno", por lo que esta cuenca cumpliría actualmente las exigencias de la DMA, y parece que en el futuro no debería tener demasiados problemas para seguir manteniendo estos niveles de calidad.

Cuenca Semialta del Ebro

Esta cuenca comprende el tramo del río Ebro comprendido entre Miranda de Ebro y Castejón y sus afluentes, salvo los citados anteriormente como cuencas parciales. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Ebro, Bayas, Inglares, Leza, Linares I y Padurobaso.

Todas las estaciones analizadas alcanzaron los requisitos, respecto al Estado Ecológico, demandados por la DMA, siendo mayoría las estaciones que alcanzaban el estado "Muy Bueno" (Fig. 81). Con estos datos se cumplirían los criterios de la DMA en esta subcuenca, si bien debido a la importancia de alguna de las localidades y zonas industriales localizadas en ella, se cree conveniente mantener el seguimiento del estado de las aguas en algunos de los puntos de muestreo.

Cuenca del Río Queiles

Esta cuenca comprende al río Queiles y sus afluentes, lo que para este estudio corresponde con las estaciones de muestreo analizadas en los ríos Queiles y Val.

Sólo un 40% de las estaciones analizadas alcanzarían un Estado Ecológico "Muy Bueno" (Fig. 82), y cumplirían con ello las demandas de la DMA, situándose el resto por debajo de la clase "Buena". Esta situación estaría motivada por el mal estado del alcantarillado en la zona de Ágreda (caso de la estación CEMAS 1351) y por la afección que en la parte baja del río Queiles supondrían los vertidos de localidades como Tarazona, Novallas, Monteagudo o Cascante, sin descartar otras fuentes de alteración como las prácticas agrícolas o las

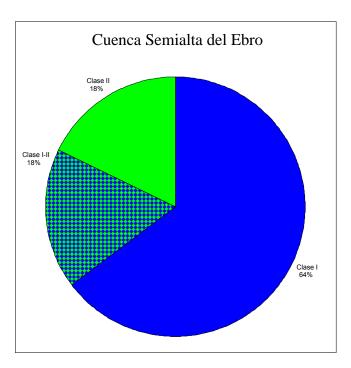


Fig. 81. Estado Ecológico de las aguas en la Cuenca semialta del Río Ebro.

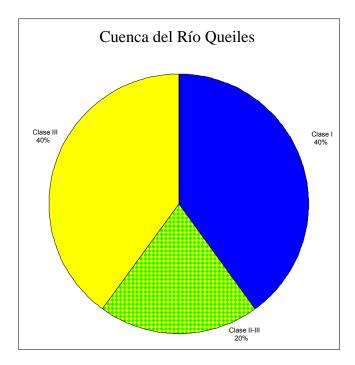


Fig. 82. Estado Ecológico de las aguas en la Cuenca del Río Queiles.

extracciones del agua. Se ve necesaria una mayor actuación en esta zona para mejorar la calidad y el Estado ecológico de las aguas en esta parte de cuenca del río Queiles y el río Val.

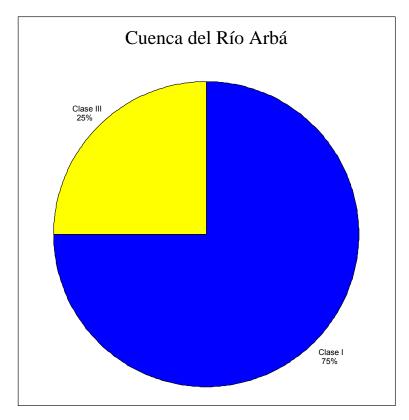


Fig. 83. Estado Ecológico de las aguas en la Cuenca del Río Arbá.

Cuenca del Río Arbá

Esta cuenca comprende al río Arbá de Luesia y sus afluentes, lo que para este estudio comprende las estaciones de muestreo analizadas en los ríos Arbá de Luesia, Arbá de Biel y Arbá de Riquel.

La mayor parte de las estaciones analizadas en el estudio alcanzaron valores correspondientes a un Estado Ecológico "Muy Bueno" (Fig. 83), pero la situación no es adecuada en el tramo inferior del río Arbá de Luesia, donde el estado encontrado fue "Moderado". Los datos recogidos en el estudio y las observaciones realizadas en las fechas de visita de las diferentes zonas llevan a pensar que en esta cuenca puede haber un deterioro que ponga en peligro el cumplimiento de la DMA en el tramo inferior del río, por debajo de la localidad de Ejea de los Caballeros. Se cree necesario el seguir manteniendo un control del estado de las aguas en este tramo bajo, analizando las posibles influencias de las distintas afecciones que el río puede sufrir (vertidos urbanos, industriales, agrícolas, extracciones de agua,...) y su incidencia en el estado de las aguas, con el fin de poder valorar que posibles acciones sería posible llevar a cabo para mejorar y llegar a cumplir las directrices de la DMA.

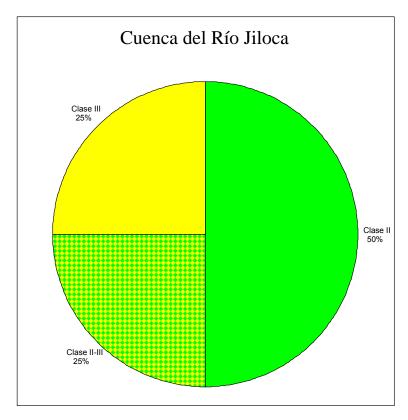


Fig. 84 Estado Ecológico de las aguas en la Cuenca del Río Jiloca.

Cuenca del Río Jiloca

Esta cuenca comprende al río Jiloca y sus afluentes, lo que en este estudio sólo afectaba a las estaciones de muestreo analizadas en el río Jiloca.

Sólo la mitad de las estaciones analizadas alcanzaron un Estado Ecológico "Bueno" (Fig. 84), lo que les haría cumplir con los niveles que la DMA demanda. Las dos restantes estaciones, una localizada en el tramo superior (CEMAS 0042) y la otra en el tramo inferior (CEMAS 1203), obtuvieron respectivamente un Estado Ecológico "Moderado" y un estado intermedio entre "Moderado" y "Bueno". La mala situación detectada en la estación superior parecería estar provocada por los vertidos urbanos detectados, si bien rápidamente el río parece recuperarse, pues se alcanzan niveles correspondientes a un Estado Ecológico "Bueno" en la cercana estación de Calamocha (CEMAS 1358). Por su parte en la parte baja del río, los valores de los índices ya se ha comentado que son llamativos, con pocos taxones pero de en general alta "valencia ecológica". Tal vez la propia temporalidad del río pudiera estar influyendo en los resultados obtenidos, pero se cree conveniente realizar un análisis más exhaustivo de lo que puede estar ocurriendo en este tramo del río Jiloca.

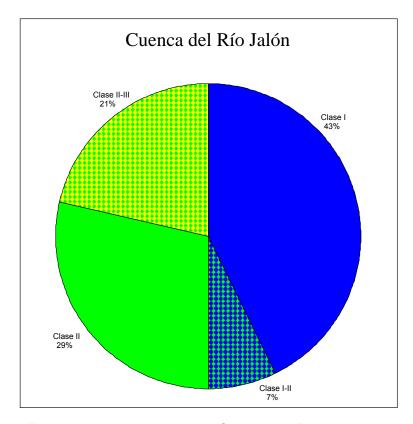


Fig. 85 Estado Ecológico de las aguas en la Cuenca del Río Jalón

Cuenca del Río Jalón

Esta cuenca comprende al río Jalón y sus afluentes lo que en este estudio correspondía a las estaciones de muestreo localizadas en los ríos Jalón, Aranda, Grío, Manubles, Mesa, Najima, Perejiles y Piedra.

La mayoría de las estaciones de esta cuenca alcanzaron valores indicativos de un Estado Ecológico "Bueno" o "Muy Bueno" (Fig. 85), alcanzando los niveles que la DMA demanda. Sólo las estaciones de Santa María de huerta y de la zona de Áteca quedaron en un nivel intermedio entre "Moderado" y "Bueno", si bien en Áteca pudo ser consecuencia de los elevados caudales existentes en el río por el desembalse que se estaba realizando desde el Embalse de la Tranquera. Aunque la situación hallada en esta cuenca no parecería mala, hay que considerar que debido a los caudales hallados las fechas de muestreo no se pudo analizar la situación de una parte importante del río Jalón (entre Calatayud y Alagón-Grisen). Parte de este tramo es el que en campañas anteriores tenía más problemas en sus niveles de calidad, por lo que no se podría asegurar que en él se esté cumpliendo lo exigido por la DMA. Sería necesario seguir controlando el estado en esta zona, procurando realizar los muestreos antes de la época de sueltas de agua para regadío, además de seguir el estudio en el tramo de Santa María de Huerta, donde parece haber vertidos que afectan al río.

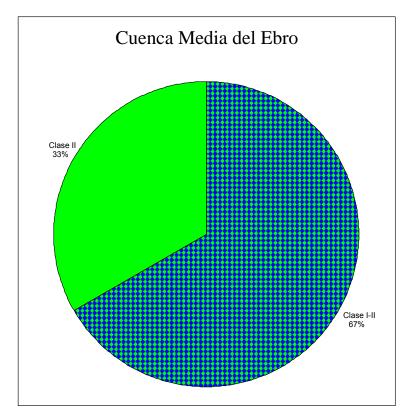


Fig. 86. Estado Ecológico de las aguas en la Cuenca Media del Río Ebro.

Cuenca Media del Ebro

Esta cuenca comprende el tramo del río Ebro entre Castejón y Zaragoza y sus afluentes (salvo los citados antes como cuecas parciales). Para este estudio esto comprendía sólo a estaciones de muestreo analizadas en el río Ebro, ya que las existentes en los afluentes no pudieron ser analizadas.

En todas las estaciones analizadas se cumplirían los criterios marcados por la DMA, pues se alcanzaba al menos un Estado Ecológico *"Bueno"* (Fig. 86).

Cuenca del Río Huerva

Esta cuenca comprende al río Huerva y sus afluentes, comprendiendo en este estudio sólo a estaciones de muestreo analizadas en el río Huerva.

Un 60 % de las estaciones analizadas alcanzaron los niveles de calidad demandados por la DMA (Fig. 87), no alcanzándose al menos el Estado Ecológico *"Bueno"* con seguridad en el tramo más bajo del río (estaciones CEMAS 0570 en Botorrita y CEMAS 0216 en Zaragoza).

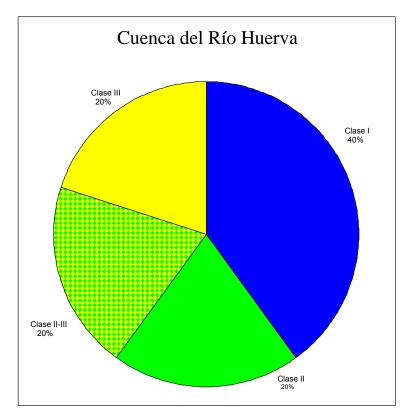


Fig. 87. Estado Ecológico de las aguas en la Cuenca del Río Huerva.

Además, no se pudo analizar el estado de las aguas en la estación CEMAS 0565 (Huerva en Fuente de la Junquera), estación que en pasadas campañas tuvo valores indicativos de niveles de calidad muy bajos, por hallarse en acceso cerrado por obras. Por ello se puede considerar que la parte baja del río Huerva presentaría todavía problemas para alcanzar los objetivos que la DMA pide, posiblemente por todas las afecciones (urbanas e industriales) que el río recibe en este tramo. Se ve necesario mantener el control sobre el estado de las aguas de este río, especialmente en su parte más baja, para evaluar las afecciones existentes y el grado de mejora que se produzca al aplicar las diferentes medidas correctoras que se realicen.

Cuenca del Río Gállego

Esta cuenca comprende al río Gállego y sus afluentes, lo que para este estudio correspondía a las estaciones de muestreo analizadas en los ríos Gállego, Fontobal, Guarga y el Barranco de La Violada.

Fig. 88. Estado Ecológico de las aguas en la Cuenca del Río Gállego.

La mayor parte de las estaciones analizadas en esta cuenca alcanzaron valores en los índices bióticos indicativos de un Estado Ecológico "Bueno" o "Muy Bueno" (Fig. 88). Sólo en el tramo más bajo del río Gállego (CEMAS 0089 en Santa Isabel - Zaragoza) los valores de los índices calculados se redujeron hasta un Estado Ecológico intermedio entre "Deficiente" y "Moderado", lo que implicaría que en esta parte baja no se estarían cumpliendo los objetivos marcados por la DMA. Esta mala situación de la calidad en la parte baja del río Gállego sería debida a los efectos negativos provocados por las distintas localidades e industrias localizadas en el tramo bajo de este río. En cambio el tramo medio del río, con un notable impacto potencial por la actividad hidroeléctrica, aparentemente mantendría los valores de calidad dentro de niveles acordes con lo exigido por la DMA.

Cuenca del Río Martín

Esta cuenca comprende al río Martín y sus afluentes, lo que en este estudio abarca sólo a las estaciones de muestreo analizadas en el río Martín.

La mayor parte de las estaciones analizadas en este río alcanzaron valores indicativos de un Estado ecológico "Muy Bueno" o al menos "Bueno" (Fig. 89). Sólo en la estación más baja

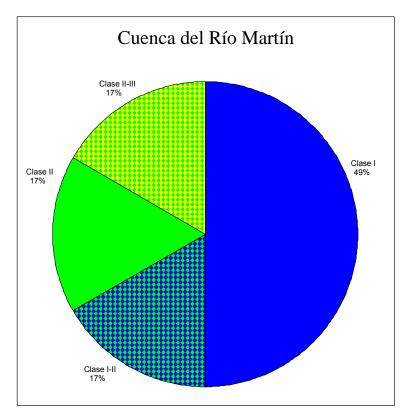


Fig. 89. Estado Ecológico de las aguas en la Cuenca del Río Martín.

del río (CEMAS 0014 en Híjar) el estado hallado fue intermedio entre "Moderado" y "Bueno". Se puede pensar que la mayor parte del río cumpliría por ello las exigencias de la DMA, pero se debe asegurar que el río Martín se mantiene en niveles de calidad adecuados en la parte más baja, tanto en la zona de Híjar como por debajo de dicha localidad.

Cuenca del Río Guadalope

Esta cuenca comprende al río Guadalope y sus afluentes, lo que para este estudio comprende las estaciones de muestreo analizadas en los ríos Guadalope y Bergantes.

Los resultados hallados de análisis de las muestras tomadas en esta subcuenca implicarían, en principio, que se cumplirían los objetivos demandados por la DMA, ya que todas las estaciones alcanzarían al menos el Estado Ecológico "Bueno", siendo mayoritaria las que alcanzan el estado "Muy Bueno" (Fig. 90). Sin embargo este resultado es engañoso, ya que no se pudo tomar la muestra en la estación más baja (CEMAS 1376 en Palanca-Caspe), que era el punto donde en anteriores campañas se obtuvo la peor valoración respecto a su

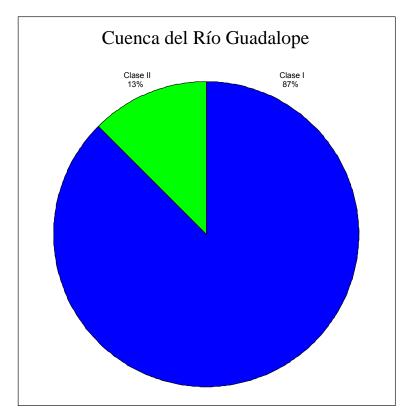


Fig. 90. Estado Ecológico de las aguas en la Cuenca del Río Guadalope.

Estado Ecológico. Aunque no se pudo tomar la muestra, si que se puede apuntar que el agua provenía del vertido de la EDAR, lo que lleva a creer que el estado de las aguas sería pésimo, y no se cumplirían los objetivos que la DMA plantea. Por otra parte, si bien el Estado Ecológico hallado en la estación localizada por debajo de Alcañiz (CEMAS 1238) fue "Bueno", el valor del índice se sitúa relativamente cerca del límite con un estado "Moderado", lo que le podría colocar en riesgo de no cumplir los niveles mínimos exigidos por la DMA. Así pues se cree necesario, por una parte seguir realizando controles en el tramo cercano a Alcañiz que confirmen si el estado de las aguas se mantiene en niveles adecuados, y por otra parte continuar el seguimiento del estado de las aguas en el tramo más bajo de Caspe, analizando las causas que podrían provocar el deterioro de sus aguas y las posibles medidas que pudieran tomarse de cara a mejorar su estado.

Cuenca Semibaja del Ebro

Esta cuenca comprende al tramo del río Ebro comprendido entre Zaragoza y el Embalse de Mequinenza, así como sus afluentes (salvo los citados antes como cuencas parciales). Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Ebro y Regallo.

Fig. 91. Estado Ecológico de las aguas en la Cuenca Semibaja del Río Ebro.

Todas las estaciones analizadas en el año 2007 en esta subcuenca alcanzaron al menos el Estado Ecológico "Bueno" (Fig. 91), por lo que se alcanzarían los objetivos de la DMA en ella. A pesar de alcanzarse valores acordes con lo demandado por la DMA hay que señalar de que dichos valores fueron menores en las estaciones CEMAS 1295 (El Burgo de Ebro) y CEMAS 1296 (Azud de Rueda), el primero tal vez por la influencia que todavía exista del entorno de Zaragoza y las confluencias de los río Gállego y Huerva, y el segundo tal vez por influencia de alguna de las industrias existentes en la zona. Se cree necesario mantener el seguimiento en estas estaciones para asegurar que los niveles de calidad se mantienen en niveles adecuados.

Cuenca del Río Noguera Pallaresa

Esta cuenca comprende al río Noguera Pallaresa y sus afluentes. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Noguera Pallaresa, Flamisell, Noguera Cardós, Son y Vallferrera.

Casi la totalidad de las estaciones de esta subcuenca alcanzaron valores en los índices indicativos de un Estado Ecológico "Muy Bueno" (Fig. 92), cumpliendo todos los tramos

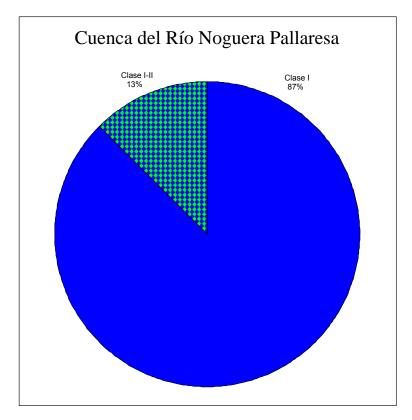


Fig. 92. Estado Ecológico de las aguas en la Cuenca del Río Noguera Pallaresa.

analizados con los requisitos que la DMA plantea. No parece por ello que en esta cuenca existan graves problemas que pudieran afectar al estado de las aguas y pusieran en peligro la consecución de los objetivos de la DMA.

Cuenca del Río Noguera Ribagorzana

Esta cuenca comprende al río Noguera Ribagorzana y sus afluentes, lo que para este estudio corresponde con las estaciones de muestreo analizadas en los ríos Noguera Ribagorzana y Noguera de Tor.

Todas la estaciones analizadas en este río cumplieron los niveles de Estado Ecológico que la DMA obliga de acuerdo a los índices de macroinvertebrados calculados, siendo además mayoría las estaciones que alcanzaron un Estado Ecológico "Muy Bueno" (Fig. 93). Con estos resultados, y al igual que lo observado para la subcuenca anterior, no parece que en el futuro vayan a existir problemas que impidan cumplir lo exigido por la DMA.

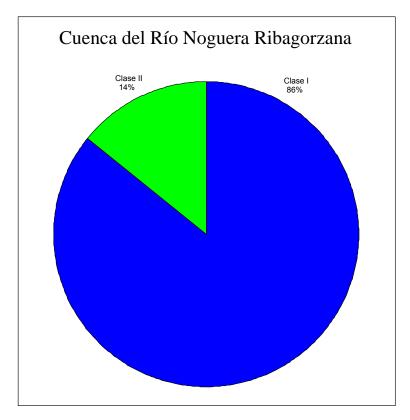


Fig. 93. Estado Ecológico de las aguas en la Cuenca del Río Noguera Ribagorzana.

Cuenca del Río Ésera

Esta cuenca comprende al río Ésera y sus afluentes, comprendiendo en este estudio a las estaciones de muestreo analizadas en los ríos Ésera e Isabena.

Todas las estaciones analizadas en esta subcuenca alcanzaron un Estado Ecológico acorde para poder cumplir los objetivos demandados por la DMA, siendo además mayoritarias las estaciones que alcanzaban el Estado Ecológico "Muy Bueno" (Fig. 94). Con estos datos no parece que en esta cuenca se den tampoco demasiados problemas para poder alcanzar los requisitos de la DMA, si bien se debe estudiar el estado en algunos tramos que pueden estar afectados por la intensa actividad hidroeléctrica existente en sus cercanías (caso de la estación CEMAS 1134), si bien no se cree que la afección hidroeléctrica por si sola baste para hacer perder la calidad del agua hasta niveles que pusieran en peligro el cumplimiento de la DMA.

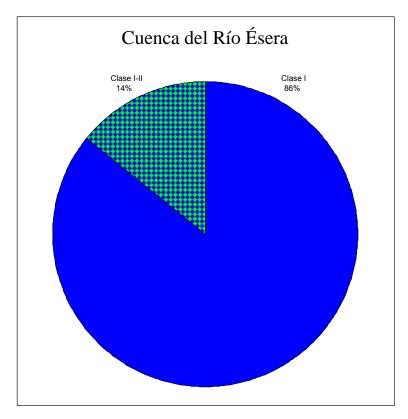


Fig. 94. Estado Ecológico de las aguas en la Cuenca del Río Ésera.

Cuenca del Río Alcanadre

Esta cuenca comprende al río Alcanadre y sus afluentes. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Alcanadre, Flumen, Guatizalema, Isuala (o Balces) e Isuela II.

La mayoría de las estaciones analizadas en esta subcuenca alcanzaron una calificación de Estado Ecológico "Muy Bueno" o "Bueno" (Fig. 95), por lo que se estarían cumpliendo los requisitos que la DMA marca en la mayor parte de esta subcuenca. Sólo en la estación CEMAS 0218 (Isuela II en Pompenillo) el valor del los índice bióticos hallados calificaron el estado de las aguas en un estado intermedio entre "Deficiente" y "Moderado", por debajo de los límites marcados por la DMA. Este mal estado de las aguas estaría seguramente condicionado por el efecto que el área urbana e industrial de Huesca tendría sobre este río, por lo que sería necesario continuar analizando la situación en la masa y evaluar la efectividad de las medidas que se puedan tomar de cara a mejorar el Estado Ecológico y poder cumplir los requisitos de la DMA.

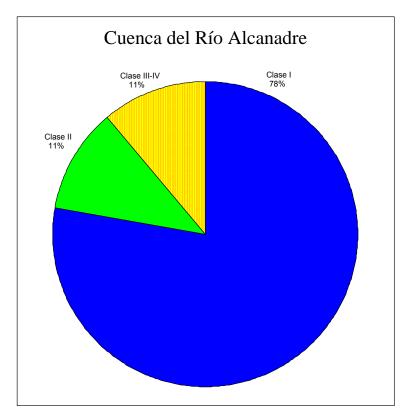


Fig. 95. Estado Ecológico de las aguas en la Cuenca del Río Alcanadre.

Cuenca del Río Cinca

Esta cuenca comprende al río Cinca y sus afluentes (salvo los citados antes como cuencas parciales), lo que para este estudio comprende las estaciones de muestreo analizadas en los ríos Cinca, Ara, Barrosa, Cinqueta, Sosa, Susía y Vero.

La gran mayoría de las estaciones de muestreo analizadas en esta subcuenca alcanzaron un Estado Ecológico "Muy Bueno" (Fig. 96), lo que les haría alcanzar los criterios de calidad impuestos por la DMA. Sólo una estación (CEMAS 0095 Vero en Barbastro) tuvo valores de los índices bióticos que la catalogarían en un estado ecológico intermedio entre "Deficiente" y "Moderado". Esta estación estaría probablemente negativamente afectada por vertidos procedentes del área urbana e industrial de Barbastro, que serían los que no le permitirían alcanzar los niveles de calidad demandados por la citada DMA. Aunque la situación respecto a anteriores años en la parte baja del Cinca parece haber mejorado, hay que considerar que no se pude muestrear en algún tramo que tradicionalmente no ha alcanzado niveles adecuados, como por ejemplo la estación CEMAS 0225 (Clamor Amarga Aguas Abajo de Zaidín). Así pues parece necesario seguir realizando un control del estado de las

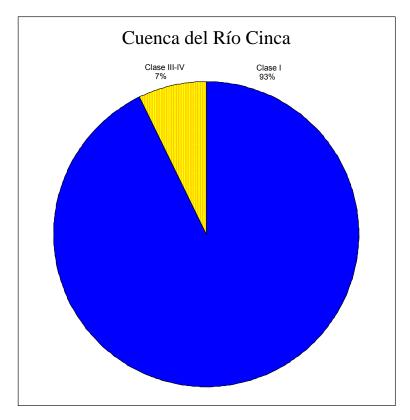


Fig. 96. Estado Ecológico de las aguas en la Cuenca del Río Cinca.

aguas en los tramos que actualmente no alcanzarían los requisitos establecidos, realizando actuaciones tendentes a paliar esta situación, así como continuar con el seguimiento en aquellos tramos (como la parte baja del río Cinca) donde en anteriores campañas se detectaron niveles de calidad menores.

Cuenca del Río Segre

Esta cuenca comprende al río Segre y sus afluentes (salvo los mencionados anteriormente como cuencas parcuiales). Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Segre, Carol, Corb, Ribera Salada, Sio y Valira.

Más de un 75% de las estaciones de muestreo analizadas en el año 2007 alcanzaron al menos un Estado Ecológico "Bueno", lo que les haría cumplir los requisitos exigidos por la DMA (Fig. 97). Sin embargo las estaciones del río Segre localizadas por debajo de la localidad de Balaguer y la estación analizada en el río Corb no alcanzarían dicho estado, por lo que no cumplirían los objetivos que la DMA marca. Si bien los altos caudales que se encontraron en este último río pudieran ser en parte responsables del bajo valor en el índice

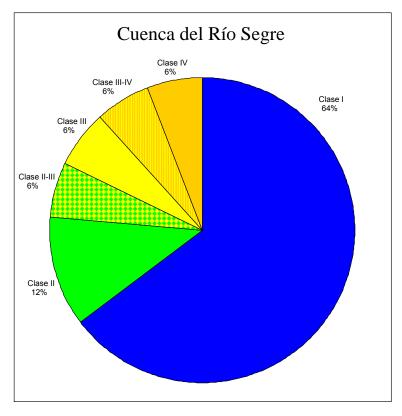


Fig. 97. Estado Ecológico de las aguas en la Cuenca del Río Segre.

biótico hallado en 2007, el hecho de que en anteriores campañas también los resultados hallados eran indicativos de un mal estado de las aguas hace sospechar que en este río pueda haber un problema respecto al estado de sus aguas, de manera que no se darían actualmente las condiciones para cumplir los requisitos de la DMA. También la parte baja del río Segre no alcanzaría actualmente los valores de los índices bióticos necesarios para cumplir lo dispuesto por la DMA. Así en la estación CEMAS 0207 (Vilanova de la Barca) se tendría un Estado Ecológico intermedio entre "Moderado" y "Bueno", tal vez como influencia del entorno urbano e industrial de Balaguer, o las localidades cercanas. Aguas abajo de la mencionada estación de muestreo, y a pesar de la confluencia del río Noguera Ribagorzana que aportaría aguas de mejor calidad, los valores de los índices empeoran, alejándose más de la posibilidad de poder cumplir los requisitos de la DMA. Esta circunstancia estaría provocada por el impacto negativo que el área urbana e industrial de Lleida y su entorno tendría sobre la calidad del agua en el río Segre. Se ve necesario el continuar realizando acciones encaminadas a mejorar el estado del agua en este tramo bajo del Segre y el Corb, manteniendo también el seguimiento sobre el estado de sus aguas.

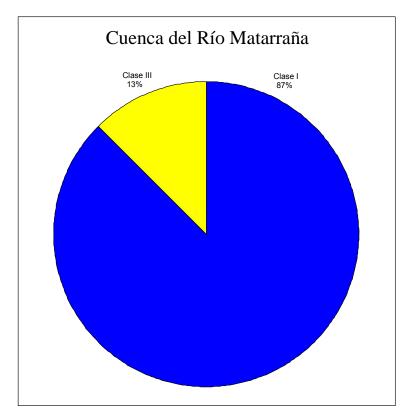


Fig. 98. Estado Ecológico de las aguas en la Cuenca del Río Matarraña.

Cuenca del Río Matarraña

Esta cuenca comprende al río Matarraña y sus afluentes, lo que en este estudio comprende las estaciones de muestreo analizadas en los ríos Matarraña, Algas y Pena.

La práctica total de las estaciones analizadas alcanzaron valores en los índices bióticos que catalogaron sus aguas en un Estado Ecológico "Muy Bueno" (Fig. 98), y sólo la estación CEMAS 1464 (Algas en Maella-Batea) tuvo un estado "Moderado" que le impedía cumplir los niveles que la DMA pide. Sin embargo esta situación puede no ser real, ya que como se ha explicado anteriormente, la muestra tomada en esta estación del río Algas podría no ser adecuada, por estar el río conformado de charcos no conectados y pozas, lo cual no sería un hábitat apropiado para evaluar la calidad de las aguas mediante los índices usados. Ese mal resultado sería simplemente un reflejo del estado de estiaje extremo que se estaría dando en este río, cosa por otra parte normal en masa temporales de la zona mediterránea. Así pues, tal vez si se pudiera considerar que el estado de esta cuenca sería adecuado y cumpliría los niveles que la DMA demanda, pero se cree conveniente asegurar el estado en que se encuentran las aguas en la parte baja del río Algas mediante el estudio de esta zona en una época de mayor caudal.

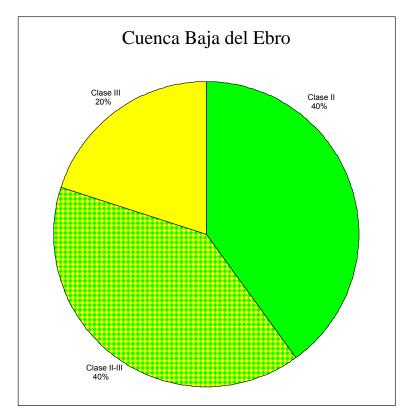


Fig. 99. Estado Ecológico de las aguas en la Cuenca Baja del Río Ebro.

Cuenca Baja del Ebro

Esta subcuenca comprende el tramo del río Ebro aguas abajo del embalse de Mequinenza hasta llegar a su desembocadura en el Mar Mediterráneo y sus afluentes (salvo los mencionados antes como cuencas parciales). Para este estudio esto comprende las estaciones de muestreo analizadas en la parte baja del río Ebro.

Sólo un 40% de las estaciones analizadas alcanzaron al menos un Estado Ecológico "Bueno" que les permitiera cumplir los niveles demandados por la DMA (Fig. 99). El resto de las estaciones analizadas tuvieron un Estado Ecológico "Moderado" o intermedio entre "Moderado" y "Bueno". Sin embargo, parte de estos malos resultados podrían haber estado provocados por la poca disponibilidad de zona adecuada de muestreo que existía en estas estaciones, aunque el relativamente bajo valor hallado en el índice ASPT también nos indicaría que habría un déficit de taxones con mayores requerimientos de calidad en el agua. Se cree conveniente el mantener un seguimiento del estado de las aguas en el tramo bajo del Ebro que pueda confirmar el grado de cumplimiento de los niveles que la DMA pide.

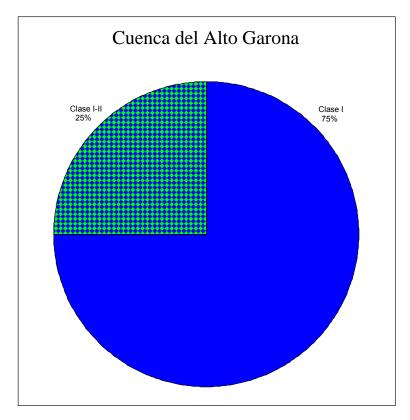


Fig. 100. Estado Ecológico de las aguas en la Cuenca del Alto Garona.

Cuenca del Alto Garona

Esta cuenca comprende al tramo del río Garona que discurre en el Valle de Arán hasta penetrar en territorio francés y a sus afluentes en dicha zona. Para este estudio esto comprende las estaciones de muestreo analizadas en los ríos Garona y Negro.

Los resultados hallados en esta subcuenca otorgaron a casi todas las estaciones un Estado Ecológico "Muy Bueno" (Fig. 100), y sólo la estación CEMAS 1299 (Garona en Bossots) tuvo una calificación algo menor, intermedia entre "Muy Bueno" y "Bueno", a pesar de lo cual se cumplirían totalmente los niveles exigidos por la DMA. Además, y puesto que el valor ligeramente menor encontrado en esta estación podría estar motivado por las dificultades que se encontraron para realizar el muestreo debido a los altos caudales existentes, se puede pensar que no deberían existir en esta subcuenca grandes problemas para alcanzar los niveles de calidad que la DMA exige.

ANÁLISIS POR REDES

ANÁLISIS POR REDES

En este capítulo se hace referencia al estado general hallado en las estaciones de muestreo analizadas en el año 2007 agrupándoles según a cual o cuales de las tres redes de la red CEMAS pertenecían (Red de Vigilancia, Red de Control Operativo o Red de Referencia).

Red de Vigilancia (Control de Vigilancia)

La red de Vigilancia (o control de vigilancia) se encuadra, junto a la red de Control operativo y a la de control de Investigación, en el programa de seguimiento del estado de las aguas que la DMA exige que se debe hacer. La red de Vigilancia tiene por objeto proporcionar información para completar y aprobar la evaluación de la susceptibilidad del estado de las aguas superficiales de las masas de aguas respecto a las presiones identificadas previamente, para concebir de forma más eficaz y efectiva los programas de control, para evaluar los cambios a largo plazo en las condiciones naturales y para evaluar los cambios a largo plazo derivados de la actividad humana. Este control debe efectuarse en masas de agua superficial suficientes para constituir una evaluación del estado de las aguas superficiales en general en el interior de cada zona de captación en cada demarcación hidrográfica.

En el presente estudio se habían seleccionado inicialmente las 270 estaciones de esta Red, de las cuales se analizaron finalmente 232, no pudiendo haberse analizado las restantes por diferentes motivos (encontrarse secas, ser tramos inaccesibles, no ser zonas apropiadas para el muestreo biológico o existir elevados caudales que impedían el acceso y muestreo). De estas estaciones 69 pertenecían también a la red de Control Operativo y 29 pertenecían también a la red de Referencia.

En la Fig. 101 se representa el porcentaje de estaciones de muestreo analizadas en esta red según el resultado hallado sobre el Estado Ecológico de sus aguas. El 90% de las estaciones de muestreo estudiadas en el año 2007 en esta red de seguimiento alcanzaron al menos el Estado Ecológico "Bueno", con lo que actualmente se cumplirían las exigencias de la DMA en una parte muy extensa de la Cuenca del río Ebro. En la Tabla LI se muestran las 24 estaciones de la red de Vigilancia que no alcanzaron el nivel de calidad mínimo exigido por la DMA. Sin embargo no todas estas estaciones podrían estar incumpliendo la DMA, pues además de causas claras de alteración, existían otras causas que podrían explicar el mal resultado hallado y no implicar que se estuvieran infringiendo las disposiciones marcadas por la DMA en cuanto al Estado Ecológico. A continuación se intenta hacer un comentario de lo que puede estar sucediendo o haber ocurrido en cada una de las estaciones mencionadas en la Tabla LI.

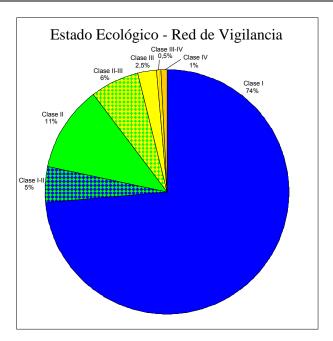


Fig. 101. Estado Ecológico de las aguas en las estaciones de la Red de Vigilancia.

CEMAS	Río	Estación	IBMWP	Clase	Estado ecológico
1464	Algas	Maella-Batea	48	Ш	Moderado
0060	Arba de Luesia	Tauste	53	Ш	Moderado
0217	Arga	Ororbia	65	11-111	Bueno - Moderado
1119	Corb	Vilanova de la Barca	22	IV	Deficiente
1454	Ebro	Trespaderne	65	11-111	Bueno - Moderado
1297	Ebro	Flix	62	11-111	Bueno - Moderado
0027	Ebro	Tortosa	56	11-111	Bueno - Moderado
3001	Elorz	Pamplona	58	11-111	Bueno - Moderado
0570	Huerva	Botorrita	54	Ш	Moderado
0216	Huerva	Zaragoza	62	-	Bueno - Moderado
0218	Isuela II	Pompenillo	33	III-IV	Moderado - Deficiente
1207	Jalón	Santa María de Huerta	65	-	Bueno - Moderado
0126	Jalón	Áteca Ag. Arr.	56	-	Bueno - Moderado
1208	Jalón	Áteca	60	-	Bueno - Moderado
0042	Jiloca	Calamocha Ag. Arr.	55	-	Bueno - Moderado
1203	Jiloca	Morata de Jiloca	63	-	Bueno - Moderado
0014	Martín	Híjar	63	-	Bueno - Moderado
1252	Queiles	Novallas	60	11-111	Bueno - Moderado
3000	Queiles	Murchante	51	Ш	Moderado
1422	Saladò	EA Estenoz	23	IV	Deficiente
0207	Segre	Vilanova de la Barca	59	11-111	Bueno - Moderado
0025	Segre	Serós	45	Ш	Moderado
1351	Val	Ágreda	49	Ш	Moderado
0179	Zadorra	Villodas	63	11-111	Bueno - Moderado

Tabla LI. Estaciones de la Red de Vigilancia que no alcanzaron el Estado Ecológico demandado por la DMA.

- ➤CEMAS 1464. Río Algas en Maella-Batea. El estado de las aguas en este tramo, reflejado en que esta estación el valor del índice biótico sólo alcanza para otorgar un Estado Ecológico "Moderado", seguramente fue debido a que la muestra tomada habría sido adecuada para el análisis del estado de las aguas. Ya se ha comentado antes que la fecha de muestreo el río estaba compuesto de charcos no conectados y pozas, lo cual no es un hábitat apropiado para evaluar la calidad de las aguas mediante los índices usados. Así, el mal resultado hallado estarían reflejando simplemente un estado de estrés por estiaje extremo, situación no anómala en una masa temporal de la zona mediterránea como el río Algas y que ya se había encontrado en la campaña de 2005, en la que el río se encontró también seco. Para asegurar cual sería el estado real de las aguas en este tramo se debe plantear el muestreo de la masa en las épocas en las que todavía exista suficiente caudal circulante.
- Ecológico "Moderado". Aunque ya se han comentado que hubo ciertas limitaciones en el muestreo por la relativamente baja disponibilidad de sustrato adecuado accesible, lo cual podría influir en obtener una menor calidad, no parece ilógico pensar que en este tramos se estén produciendo una serie de alteraciones conjuntas que puedan estar afectando a su comunidad de macroinvertebrados, sobre todo por el aspecto que presentaba el río y habida cuenta de los malos resultados que en campañas pasadas se han observado en la misma estación. Entre estas alteraciones podrían citarse los vertidos de la EDAR de Tauste, vertidos agrícolas y ganaderos o las variaciones en el caudal existentes. Se considera que este punto debe seguirse analizándose en el futuro, si bien posiblemente sea más conveniente muestrear en el tramo junto a la Estación de Aforo, donde el acceso parece más adecuado.
- ➤CEMAS 0217. Río Arga en Ororbia. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". Esta reducción en el Estado Ecológico de las aguas estaría provocada seguramente por la cercanía de la EDAR de Arazuri, que es la que trata las agua residuales de toda la comarca de Pamplona, incluyendo también a esta capital de provincia. Aunque el valor hallado en este índice es mejor que en los calculados e pasadas campañas, lo cual sería un dato positivo, se debe seguir manteniendo el control sobre este tramo para comprobar si se afianza la mejoría y se llegan a alcanzar valores acordes con lo demandado por la DMA.
- ➤ CEMAS 1119. Río Corb en Vilanova de la Barca. Esta estación presentó un Estado de sus aguas calificado como "Deficiente". Aunque las condiciones de caudal halladas en el río la fecha de muestreo pudieron condicionar el mismo, afectando por ello al valor

del índice de la muestra, el estado hallado en el río en pasadas campañas, así como los comentarios de lugareños, permiten cuando menos plantearse si efectivamente en este tramo no existirá una reducción de la calidad debido a polución orgánica y vertidos. Se cree necesario mantener el control del estado de las aguas en este tramo para confirmar estos supuestos.

- ▶CEMAS 1454. Río Ebro en Trespaderne. Esta estación presentó un Estado Ecológico intermedio entre "Bueno" y "Moderado". Sin embargo, los altos caudales y las restricciones de zonas a muestrear podrían ser responsables de esta situación. Daba la impresión de que en el tramo estaba habiendo un desembalse de agua, lo que haría que se accediera a una parte del cauce que pocas fechas antes sería orilla sin agua, lo que no sería un hábitat propicio para el muestreo. Por ello se piensa que el resultado encontrado para esta estación sería debido a haberse tomado una muestra no representativa o válida, la cual no reflejaría el estado de las aguas en si, sino una alteración por el alto caudal. A pesar de ello se recomendaría analizar en el futuro este tramo para comprobobar el estado real de la masa.
- ▶CEMAS 1297. Río Ebro en Flix. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". Esta estación, localizada por debajo del pantano de Flix, parece haber alcanzado un resultado algo mejor que el de pasadas campañas, pero todavía se debería seguir analizando en el futuro de cara a asegurar la consecución de los requisitos de la DMA. El mal estado hallado podría ser consecuencia de problemas asociados a vertidos de empresas cercanas, aunque también la localización de tres grandes pantanos aguas arriba (Mequinenza, Ribarroja y Flix) puede influir, pues embalses localizados en tramos bajos de ríos pueden provocar reducción de la biodiversidad (Ward y Stanford 1995).
- ➤CEMAS 0027. Río Ebro en Tortosa. Esta estación presentó un Estado intermedio "Bueno" y "Moderado". Sin embargo este resultado pudo estar condicionado por las condiciones de caudal y acceso al cauce, que limitaron en parte el muestreo realizado. Así pues se debería continuarse con el seguimiento en este punto para poder asegurar si se cumplen o no las condiciones marcadas por la DMA.
- ➤CEMAS 3001. Río Elorz en Pamplona. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". En esta estación eran evidentes las señales de que existen en esta masa aportes orgánicos que afectan a la calidad de sus aguas y el Estado Ecológico. Tanto este río como su afluente principal, el río Sadar, recogerían las influencias de una parte notable de las localidades e industrias de la zona sur y sudeste de la Cuenca de Pamplona, por lo que se puede entender que en su parte

más baja presente unos valores no adecuados para alcanzar los requisitos de la DMA. Se debería seguir analizando la evolución de esta estación, incentivando además posibles medidas que ayuden a mejorar el estado de sus aguas.

- ➤CEMAS 0570. Río Huerva en Botorrita. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". A pesar de que el valor del índice hallado en 2007 es mayor y mejor que la mayoría de los valores hallados en anteriores campañas, sin embargo la estación no ha conseguido afianzar todavía el estado de sus aguas en un nivel adecuado para cumplir las exigencias de la DMA. Se debe seguir la evolución futura de esta estación, valorando las posibles medidas que se puedan haber tomado para reducir el impacto de las presiones.
- ➤CEMAS 0216. Río Huerva en Zaragoza. Esta estación presentó un Estado de las aguas calificado como "Moderado". Este tramo de río recibiría las influencias negativas tanto de Zaragoza como de algunas localidades cercanas del Bajo Huerva, lo que le harían reducir aún más el estado de sus aguas. Se considera esencial continuar realizando el seguimiento del estado en este tramo de río, analizando si las actuaciones que el presente año se estaban realizando en el entorno de la Fuente de la Junquera ayudarán a mejorar en estado de las aguas del tramo Bajo del río Huerva.
- ➤CEMAS 0218. Río Isuela II en Pompenillo. Esta estación presentó un Estado de las aguas entre "Moderado" y "Deficiente". En esta estación se estarían recibiendo los vertidos del área urbana e industrial de Huesca, que serían los responsables del deterioro de la calidad en este tramo. Se requiere seguir realizando controles del estado del agua en este tramo, así como evaluar la eficacia de las posibles medidas correctoras que se puedan haber tomado.
- ➤CEMAS 1207. Río Jalón en Santa María de Huerta. Esta estación presentó un Estado de las aguas intermedio entre "Bueno" y "Moderado". En el tramo se localizaron dos vertidos que afectarían a la calidad del agua circulante, lo cual se agravaba por el bajo caudal que el río tenía. Existían además bastantes residuos sólidos y sólidos en suspensión, lo que reafirma que en este tramo existe una afección destacable que debe corregirse de cara a cumplir los requisitos marcados por la DMA. Se deberá seguir analizando el estado de las aguas para asegurar el cumplimiento de dichos requisitos.
- ➤CEMAS 0126. Río Jalón en Áteca (Aguas arriba). Esta estación presentó un Estado entre "Bueno" y "Moderado". Sin embargo los elevados caudales hallados en la fecha de muestreo podrían haber sido los responsables del menor valor de los índices y su calidad asociada, ya que las muestras que se tomaron deberían considerarse como n

representativas. Esto implica que se debería volver a realizar el estudio de estas estaciones en un época de menores caudales para garantizar el estado de las aguas existente en la estación.

- ➤CEMAS 1208. Río Jalón en Áteca. Esta estación presentó un Estado intermedio entre
 "Bueno" y "Moderado". Sin embargo, al igual que lo comentado para el punto anterior,
 los elevados caudales habrían condicionado la representatividad y validez de la
 muestra, y con ello de todos los resultados hallados. Se necesitaría analizar el estado
 de las aguas en un época anterior a la fecha de desembalse.
- ➤CEMAS 0042. Río Jiloca en Calamocha (aguas arriba). Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". Esta situación probablemente estaría condicionada por la presencia de dos vertidos que se detectaron junto al puente en la fecha de muestreo, que le harían empeorar su Estado Ecológico, por lo que se necesitaría continuar analizando en el futuro su estado para valorar si se llegan a alcanzar los requisitos de la DMA.
- ➤CEMAS 1203. Río Jiloca en Morata de Jiloca. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". No está claro que puede estar sucediendo en este tramo, pues el índice IASPT indicaría que los pocos organismos que se encuentran serían taxones con altos requerimientos ecológicos. Se debería analizar con más detenimiento que ocurre en este tramo y que presiones puede estar recibiendo para tener tal alteración de la comunidad y el estado de las aguas.
- ➤CEMAS 0014. Río Martín en Híjar. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". El tramo presentaba claros indicios de existir vertidos y contaminación en sus aguas, lo que le hace no alcanzar el nivel de calidad requerido por la DMA. Se debe seguir realizando el control del estado de las aguas en el futuro para confirmar si se llega a alcanzar y mantener el estado requerido por la DMA.
- ➤CEMAS 1252. Río Queiles en Novallas. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". Se puede pensar que este tramo estaría afectado negativamente por la influencia de la localidad de Tarazona, cuya EDAR queda aguas arriba del tramo analizado, a lo cual además ayuda los bajos caudales que suele tener el río. Se necesita seguir realizando un control en esta estación y así evaluar la eficacia de las medidas tomadas de cara a mejorar el Estado Ecológico en el tramo.
- ➤CEMAS 3000. Río Queiles en Murchante. Esta estación presentó un Estado Ecológico "Moderado". Se puede pensar que este tramo, parcialmente afectado todavía por la influencia de la localidad de Tarazona y los bajos caudales, que hacen que la calidad del río descienda, se vería más afectado aún por los vertidos que el río recibiría en als

diferentes localidades que se sitúan en el recorrido del río (Novallas, monteagudo, Cascante,...). En este punto también se ve necesario seguir realizando un control del estado de sus aguas, evaluando la potencial mejora que se pueda dar tras aplicar medidas correctoras.

- ▶CEMAS 1422. Río Salado en EA Estenoz. Esta estación presentó un Estado Ecológico "Deficiente", de acuerdo a los índices calculados. Sin embargo ya se ha comentado que esta situación estaría provocada por la fuerte salinidad que de forma natural posee el río en esta zona, la cual actuaría como un factor limitante para el desarrollo de la comunidad de macroinvertebrados. Sin embargo al tratarse de una circunstancia natural que hace inviable alcanzar los objetivos que a priori se consideraban para ese tipo de masa, no se infringiría la DMA, si bien también se podría plantear la posibilidad de que esta masa concreta, por su alto contenido en sales, pudiera tratarse como un tipo fluvial diferente.
- ➤CEMAS 0207. Río Segre en Vilanova de la Barca. Esta estación presentó un Estado ecológico intermedio entre "Bueno" y "Moderado", tal vez como resultado de la influencia del área urbana e industrial de Balaguer sobre las aguas del río Segre. Se necesitaría por ello continuar realizando un seguimiento del estado de las aguas en el tramo.
- ▶CEMAS 0025. Río Segre en Serós. Esta estación presentó un Estado ecológico "Moderado". Esta situación parece que habría estado sobre todo motivada por el efecto que los vertidos urbanos e industriales de Lleida tendrían sobre las aguas de este río en su parte baja, lo que le haría perder calidad y consiguientemente le haría reducir su Estado Ecológico por debajo de los límites permitidos por la DMA. Se ve necesario continuar el control sobre el estado del agua en este tramo.
- ➤CEMAS 1251. Río Val en Ágreda. Esta estación presentó un Estado Ecológico "Moderado", como resultado de los aportes de aguas residuales que el río recibe del deteriorado alcantarillado de la zona. A pesar de haberse muestreado en la zona que menos impacto parecía haber sufrido, y donde la fecha de muestreo no eran perceptibles aportes de aguas residuales, evitando en todo momento el tramo donde fluían las aguas residuales, el mal resultado obtenido indicaría que ente río recibe de forma bastante continua o constante aguas residuales en distintos puntos, lo que le hace no alcanzar los requisitos de la DMA, pareciendo a día de hoy un objetivo difícil de cumplir. Se requiere continuar el estudio del tramo mediante un control que permita analiza la situación y valorar las posibles mejoras que se puedan realizar en el punto o el tramo.

➤CEMAS 0179. Río Zadorra en Villodas. Esta estación presentó un Estado Ecológico intermedio entre "Bueno" y "Moderado", existiendo en el río indicios evidentes de que existía un incremento de materia orgánica. Esta situación posiblemente estaría provocada por el efecto que los vertidos del área de Vitoria-Gasteiz tendrían sobre el río Zadorra, necesitando todavía un mayor esfuerzo para lograr alcanzar los niveles que la DMA exige. Por ello se ve necesario continuar el control sobre el estado de las aguas en este tramo.

Red de Control Operativo

Esta red se compone de estaciones localizadas en todas las masas de agua en las que se considere, bien basándose en la evaluación de impacto de las presiones identificadas o bien basándose en el control de vigilancia, que pueden no cumplir los objetivos medioambientales (buen estado de las aguas o buen potencial ecológico y buen estado químico, según corresponda) y sobre las masas de aguas sobre las que se viertan sustancias incluidas en la lista de sustancias prioritarias. Su objetivo es, por una parte determinar el estado de las masas que se considere que pueden no cumplir sus objetivos medioambientales, y por otra evaluar los cambios que se produzcan en el estado de esas masas como resultado del programa de medidas realizado.

En este estudio se habían seleccionado inicialmente las 126 estaciones de esta Red, de las cuales se analizaron finalmente 104, no pudiendo haberse analizado las restantes por distintos motivos (encontrarse secas, ser tramos inaccesibles, no ser zonas apropiadas para el muestreo biológico o existir elevados caudales que impedían el acceso y muestreo). De estas estaciones 69 pertenecían también a la red de Vigilancia.

En la Fig. 102 se representa el porcentaje de estaciones de muestreo analizadas en esta red según el resultado hallado sobre el Estado Ecológico de sus aguas. Más del 80% de las estaciones de esta red obtuvieron al un valor en sus índices bióticos que denotaba un Estado Ecológico al menos "Bueno", lo que les haría cumplir en el año 2007 los requisitos que la DMA exige. La Tabla LII recoge la relación de estaciones de muestreo pertenecientes a esta red que no cumplieron los niveles de calidad que la DMA indica, así como el Estado Ecológico hallado en el análisis realizado en el año 2007. A continuación se intenta hacer un comentario de lo que puede estar sucediendo o haber ocurrido en cada una de las estaciones mencionadas en la Tabla LII para no alcanzar el Estado —ecológico adecuado. Algunas de las estaciones son también pertenecientes a la red de Vigilancia, por lo que se hace referencia a ver el comentario realizado en el apartado anterior.

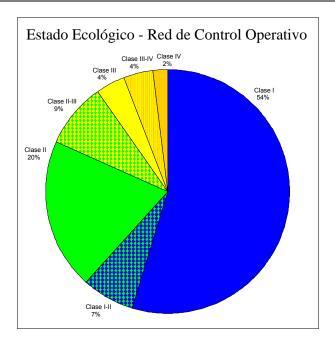


Fig. 102. Estado Ecológico hallado en las estaciones de la Red de Control Operativo.

CEMAS	Río	Estación	IBMWP	Clase	Estado ecológico
0060	Arba de Luesia	Tauste	53	Ш	Moderado
0217	Arga	Ororbia	65	11-111	Bueno – Moderado
1119	Corb	Vilanova de la Barca	22	IV	Deficiente
0163	Ebro	Ascó	50	Ш	Moderado
0027	Ebro	Tortosa	56	11-111	Bueno – Moderado
0089	Gállego	Sta. Isabel - Zaragoza	33	III-IV	Moderado - Deficiente
0218	Isuela II	Pompenillo	33	III-IV	Moderado - Deficiente
0126	Jalón	Áteca Ag. Arr.	56	11-111	Bueno – Moderado
1203	Jiloca	Morata de Jiloca	63	11-111	Bueno – Moderado
0014	Martín	Híjar	63	11-111	Bueno – Moderado
1252	Queiles	Novallas	60	11-111	Bueno – Moderado
1422	Saladò	EA Estenoz	23	IV	Deficiente
0207	Segre	Vilanova de la Barca	59	11-111	Bueno – Moderado
0219	Segre	Torres de Segre	32	IV	Deficiente
0025	Segre	Serós	45	Ш	Moderado
1351	Val	Ágreda	49	Ш	Moderado
0095	Vero	Barbastro	40	III-IV	Moderado – Deficiente
0179	Zadorra	Villodas	63	11-111	Bueno – Moderado
1028	Zadorra	La Puebla de Arganzón	58	II-III	Bueno – Moderado

Tabla LII. Estaciones de la Red de Control Operativo que no alcanzaron el Estado Ecológico demandado por la DMA.

- ➤CEMAS 0060. Río Arbá de Luesia en Tauste. Esta estación presentó un Estado Ecológico "Moderado". Puesto que dicho punto también pertenece a la red de Vigilancia, para ver el comentario de esta estación véase lo apuntado en tal epígrafe.
- ➤CEMAS 0217. Río Arga en Ororbia. Esta estación presentó un Estado intermedio entre "Bueno" y "Moderado". Puesto que esta estación también pertenecía a la red de Vigilancia, para ver el comentario de esta estación véase lo apuntado en tal epígrafe.
- ➤ CEMAS 1119. Río Corb en Vilanova de la Barca. Esta estación presentó un Estado de sus aguas calificado como "Deficiente". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0163. Río Ebro en Ascó. Esta estación presentó un Estado Ecológico "Moderado". Sin embargo este resultado pudo estar también en parte influido por el hecho de que el tramo no resultaba vadeable y sólo se pudo realizar el muestreo en una pequeña área de orilla con carrizo y vegetación acuática. De cara a conocer la situación real de esta zona se debería seguir controlando en el futuro, pero o bien se muestrea en una época con menor caudal que permita una mayor operatividad del muestreador o bien se localiza en las cercanías una zona del río con mayor disponibilidad de áreas accesibles y muestreables.
- ➤ CEMAS 0027. Río Ebro en Tortosa. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0089. Río Gállego en Santa Isabel Zaragoza. Esta estación presentó en el año 2007 un Estado Ecológico intermedio entre "Deficiente" y "Moderado". A pesar de que en el 2007 se ha vuelto a alcanzar el valor máximo en el índice IBMWP de los hallados hasta ahora en el conjunto de campañas realizadas en este tramo, dicho valor no es suficiente para alcanzar los niveles exigidos por la DMA. Todo parece indicar que en este tramo bajo del río Gállego se está sufriendo un grave deterioro de la calidad de las aguas por los vertidos orgánicos que recibe, tanto vertidos de origen urbano como de origen industrial. Entre éstos últimos se puede destacar la presencia de una industria papelera en Montañana, posiblemente responsable de una parte importante del deterioro que el río sufre, a tenor de los observado en anteriores campañas. Se debe seguir manteniendo el control sobre este tramo de río, intentando además continuar realizando acciones destinadas a intentar mejorar el estado del río Gállego en su tramo bajo.
- ➤ CEMAS 0218. Río Isuela II en Pompenillo. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Deficiente". Puesto que esta estación también

- formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0126. Río Jalón en Áteca (Aguas Arriba). Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤ CEMAS 1203. Río Jiloca en Morata de Jiloca. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0014. Río Martín en Híjar. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤ CEMAS 1252. Río Queiles en Novallas. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 1422. Río Salado en EA Esténoz. Esta estación presentó un Estado de sus aguas "Deficiente". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0207. Río Segre en Vilanova de la Barca. Esta estación presentó un Estado de sus aguas intermedio entre "Moderado" y "Bueno". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0219. Río Segre en Torres de Segre. Esta estación presentó un Estado Ecológico en sus aguas "Deficiente". Esto le haría no cumplir actualmente los requisitos marcados por la DMA. El tramo presentaba signos evidentes de la existencia de una polución orgánica, principalmente por vertidos urbanos. El deterioro de las aguas en este tramo posiblemente esté motivado por los vertidos procedentes del área urbana de Lleida y de las actividades industriales, agrícolas y ganaderas de su entorno. Se requiere tomar medidas en este tramo de cara a paliar este mal estado y seguir realizando controles periódicos en esta estación para comprobar su eficacia y el estado de las aguas.

- ➤ CEMAS 0025. Río Segre en Serós. Esta estación presentó un Estado Ecológico "Moderado". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤ CEMAS 1351. Río Val en Ágreda. Esta estación presentó un Estado Ecológico "Moderado". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 0095. Río Vero en Barbastro. Esta estación presentó un Estado Ecológico intermedio entre "Deficiente" y "Moderado". El mal estado de las aguas en este tramo parece tener su origen en los vertidos que existirían de la zona de Barbastro, vertidos que incrementarían la carga orgánica existente en las aguas hasta niveles perjudiciales para la comunidad de macroinvertebrados que potencialmente debiera presentar el río. Pese a que el valor hallado en la campaña de 2007 es mejor que el hallado en los años 2004 y 2005, lo que podría ser considerado como un indicador positivo, la mejora no ha sido suficiente como para alcanzar los niveles exigidos por la DMA. Se debe seguir analizando la evolución del estado de las aguas en este tramo de cara a confirmar si se sigue produciendo la mejora de la calidad y se pueden llegar a alcanzar de forma estable los requisitos marcados por dicha directiva.
- ➤ CEMAS 0179. Río Zadorra en Villodas. Esta estación presentó un Estado Ecológico intermedio entre "Bueno" y "Moderado". Puesto que esta estación también formaba parte de la red de Vigilancia, para ver su comentario véase lo apuntado en tal epígrafe.
- ➤CEMAS 1028. Río Zadorra en La Puebla de Arganzón. Esta estación presentó un Estado Ecológico intermedio entre "Bueno" y "Moderado", lo que le haría no cumplir las exigencias de la DMA. Parece que en esta zona se padecerían los efectos de las localidades e industrias existentes por debajo de Vitoria-Gasteiz, como Nanclares de la Oca. Este efecto negativo que se vería potenciado por el hecho de que el estado del agua del río Zadorra en este tramo estaría todavía afectada por los vertidos urbanos e industriales de la zona de Vitoria-Gasteiz. Se debe seguir analizando en el futuro el estado de las aguas en este tramo, pero se debe considerar que para lograr mejorar la calidad aquí, lo principal es lograr mejorarla en el tramo inmediatamente superior, el cual está afectado por el área de Vitoria-Gasteiz.

Red de Referencia

La red de Referencia se compone de una serie de puntos localizados en cada ecotipo fluvial en los que basarse para establecer las condiciones de referencia biológica específicas de cada tipo de masa. En esta red debe haber un número suficiente de puntos en muy buen

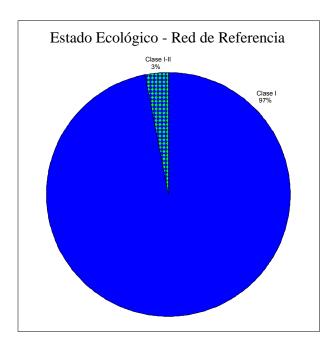


Fig. 103. Estado Ecológico hallado en las estaciones de la Red de Referencia.

estado con el objeto de proporcionar un nivel de confianza suficiente sobre los valores correspondientes a las condiciones de referencia, en función de la variabilidad de los valores de los indicadores de calidad que corresponden a un muy buen estado ecológico para este tipo de masa de agua superficial.

En este estudio se habían seleccionado inicialmente las 49 estaciones pertenecientes a esta Red. Una vez comenzados los muestreos se dieron de baja de esta red 9 estaciones, y finalmente se analizaron 34 puntos de muestreo, no pudiendo analizar las restantes estaciones por diferentes motivos (encontrarse secas, ser tramos inaccesibles, no ser zonas apropiadas para el muestreo biológico o existir elevados caudales que impedían el acceso y muestreo). De todas estas estaciones 29 pertenecían también a la red de Vigilancia.

En la Fig. 103 se representa el porcentaje de estaciones de muestreo analizadas en esta red según el resultado hallado sobre el Estado Ecológico de sus aguas. La práctica totalidad de las estaciones analizadas alcanzaron valores en los índices indicativos de un Estado Ecológico "Muy Bueno", lo cual es algo lógico y de esperar, ya que se trata de estaciones de referencia escogidas a priori. Sólo la estación CEMAS 0638 (Río Son en Esterri de Aneu) no alcanzó dicho estado, sino que sólo alcanzó un Estado Ecológico intermedio entre "Bueno" y "Muy Bueno". Esta circunstancia podría estar motivada porque el tramo donde se pudo muestrear no tenía mucho caudal, ya que se había represado unos 100 m aguas arriba y se extraía la mayor parte del caudal. Este hecho podría motivar que el punto no fuera representativo como zona de referencia, ya que se habría extraído la mayor parte del caudal

habitual, lo cual sería una presión. Si se quiere mantener una estación de referencia en esta masa se debería localizar un tramo accesible y muestreable por encima de la zona de extracción de las aguas. Por otra parte, también se podría analizar, a pesar de haberse obtenido un Estado Ecológico "Muy Bueno", la situación de la estación CEMAS 0540 (Río Fontobal en Ayerbe), pues como ya se ha señalado, el punto original de muestreo aguas arriba parecía estar seco, y no se tiene clara la procedencia del aqua de la zona donde se realizó muestreo. Se debería aclarar de donde proviene esta agua (de afluentes secundarios, sobrantes e extracciones realizadas por encima,...), pues según su origen también se podría argumentar que la estación no debiera ser considerada adecuada como punto de Referencia. También podría tener que asegurarse si el emplazamiento para muestreos biológicos actual de la CEMAS 1398 (Río Guatizalema en Nocito) sería totalmente adecuado como punto en la red de Referencia, habida cuenta de que parecían existir en el tramo señales de cierto enriquecimiento orgánico. Se debería cuantificar si dicho enriquecimiento sería de tal magnitud que invalide esa localización como lugar apropiado, lo que implicaría que se debería localizar un tramo alternativo aguas arriba de la localidad de Nocito, lo cual podría ser factible, si bien los bajos caudales podrían dificultar la toma de la muestra. También se ha señalado el problema detectado en la estación CEMAS 2011 (Río Omecillo en Corro), en el que parecía haber existido un episodio de contaminación y mortandad masiva en uno de los afluentes. Aunque, seguramente debido a la existencia del otro afluente, el tramo alcanzaba valores indicativos de Estado Ecológico "Muy Bueno", no se puede afirmar con seguridad que para la fecha de muestreo el río hubiera recuperado su estado normal. Aunque por los altos valores del índice se podría pensar que esto era así, se debería confirmar con posteriores análisis, en los que se compruebe que no ha habido nuevos vertidos, cual sería la composición habitual y los valores de los índices bióticos en este tramo.

BIBLIOGRAFÍA

BIBLIOGRAFÍA

- ALBA-TERCEDOR J., JÁIMEZ-CUÉLLAR P., ÁLVAREZ M., AVILÉS J., BONADA N., CASAS J., MELLADO A., ORTEGA M., PARDO I., PRAT N., RIERADEVALL M., ROBLES S., SÁINZ-CANTERO C.E., SÁNCHEZ-ORTEGA A., SUÁREZ M.L., TORO M., VIDAL-ABARCA M.R., VIVAS S. y C. ZAMORA-MUÑOZ. 2002. Caracterización del estado ecológico de ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP'). *Limnetica*, 21(3-4): 175-185.
- ALBA-TERCEDOR J. y A. SÁNCHEZ-ORTEGA. 1988. Un método rápido y simple para evaluar la calidad biológica de las aguas corrientes basado en el de Hellawell (1978). *Limnetica*, 4: 51-56.
- BARBOUR M.T., GERRITSEN J., SNYDER B.D. y J.B. STRIBLING. 1999. *Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish.* Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington D.C. 339 pp.
- BONADA N., RIERADEVALL M. y N. PRAT. 2000. Temporalidad y contaminación como claves para interpretar la biodiversidad de macroinvertebrados en un arroyo mediterráneo (Riera de Sant Cugat, Barcelona). *Limnetica*, 18: 81-90.
- CORTES R.M.V., FERREIRA M.T., OLIVEIRA S.V. y. D. OLIVEIRA. 1998. Contrasting impact of small dams on the macroinvertebrates of two Iberian mountain rivers. *Hydrobiologia*, 389: 51-61.
- CUMMINS K.W. 1974. Structure and function of stream ecosystem. *Bioscience*, 24: 631-641.
- DEL MORAL M., MARTÍNEZ-LÓPEZ F. y A.M. PUJANTE. 1997. Estudio de los pequeños ríos de las Sierras de Espadán (S.O. de Castellón). Macroinvertebrados y calidad de sus aguas. *Ecologia*, 11: 37-61.
- GALLARDO-MAYENCO A., MACIAS S. y J. Toja. 2004. Efectos de la descarga en la calidad del agua a lo largo de un río mediterráneo: el río Guadaira (Sevilla). Limnetica, 23(1-2):65-78.
- GÓMEZ-MOLINER B, MORENO D., ROLÁN E., ARAUJO R. y R.M. ÁLVAREZ. (coords.) 2001. Protección de moluscos en el Catálogo Nacional de Especies Amenazadas. Reseñas Malacológicas, XI. Sociedad Española de Malacología, Madrid.

- GRACA M.A.S., COIMBRA C.N. y L.M. SANTOS. 1995. Identification level and comparison of biological indicators in biomonitoring programs. *Cienc. Biol. Ecol. Syst.*, 15 (1/2): 9-20.
- GRUBAUGH J.W., WALLACE J.B. y E.S. HOUSTON. 1996. Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. *Can. J. Fish. Aquat. Sci.*, 53: 896-909.
- Jaímez-Cuellar P., Palomino-Morales J.A., Luzón-Ortega J. y J. Alba-Tercedor. 2006. Comparación de metodologías empleadas para la evaluación del estado ecológico de los cursos de agua. *Tecnología del agua*, 278: 42-57.
- JÁIMEZ-CUELLAR P., VIVAS S., BONADA N., ROBLES S., MELLADO A., ÁLVAREZ M., AVILÉS J., CASAS J., ORTEGA M., PARDO I., PRAT N., RIERADEVALL M., SÁINZ-CANTERO C.E., SÁNCHEZ-ORTEGA A., SUÁREZ M.L., TORO M., VIDAL-ABARCA M.R., ZAMORA-MUÑOZ C. y J. ALBA-TERCEDOR. 2002. Protocolo GUADALMED (PRECE). Limnetica, 21(3-4): 187-204.
- JEFFRIES M. y D. MILLS. 1990. *Freshwater ecology. Principles and applications.* John Wiley & Sons, Chichester, 285 pp.
- JOHNSON R.K., WIEDERHOLM T. y D.M. ROSENBERG. 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: *Freshwater biomonitoring and benthic macroinvertebrates*. Rosenberg D.R. y Resh V.H. (Eds.). Chapman & Hall, New York, pp. 40-158.
- LARRAZ M.L., EQUISOAIN J.J., AGORRETA A. y J. OSCOZ. 2007. *Physa acuta* Draparnaud, 1805 (Mollusca Gastropoda) en plantas depuradoras de agua. *Noticiario SEM*, 47: 47-49.
- LAUTERS F., LAVANDER P., LIM P., SABATON C. y A. BELAUD. 1996. Influence of hydropeaking on invertebrates and their relationship with fish feeding habits in a Pyrenean river. *Regulated Rivers: Research & Management*, 12: 563-573
- MALMQVIST B. y G. ENGLUND. 1996. Effets of hydropower-induced flow perturbations on mayfly (Ephemeroptera) richness and abundance in north Swedish river rapids. *Hydrobiologia*, 341: 145-158.
- OLSGARD F., SOMERFIELD P.J. y M.R. CARR. 1998. Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. *Mar. Ecol. Prog. Ser.*, 172: 25-36.

- OSCOZ J., CAMPOS F. y M.C. ESCALA. 2006. Variación de la comunidad de macroinvertebrados bentónicos en relación con la calidad de las aguas. *Limnetica*, 25(3): 683-692.
- OSCOZ J., CAMPOS F., ESCALA M.C., MIRANDA R., LEKUONA J.M., GARCÍA-FRESCA C. y C. DE LA RIVA. 1999. Efecto de una piscifactoría sobre la fauna de macroinvertebrados y peces fluviales del río Urederra (Navarra, España). *Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.)*, 95 (3-4): 109-115.
- OSCOZ J. y C. DURÁN. 2005. Nueva cita de Eubria palustris (Germar, 1818) (Psephenidae, Polyphaga, Coleoptera) en la cuenca del Ebro. *Zoologica Baetica*, 16: 153-154.
- OSCOZ J., DURÁN C., PARDOS M., GIL J. y A. VIAMONTE. En Prensa .Evolución histórica de la calidad biológica del agua en la cuenca del Ebro (España) (1990-2005). *Limnetica*.
- OSCOZ J. y M.C. ESCALA. 2006. Efecto de la contaminación y la regulación del caudal sobre la comunidad de macroinvertebrados bentónicos del tramo bajo del río Larraun (Norte de España). *Ecología*, 20: 245-256.
- RADER R.B. y T.A. BELISH. 1999. Influence of mild to severe flow alterations on invertebrates in three mountain streams. *Regulated Rivers: Research & Management*, 15: 353-363.
- RUEDA J., CAMACHO A., MEZQUITA F., HERNÁNDEZ R. y J.R. ROCA. 2002. Effect of episodic and regular sewage discharges on the water chemistry and macroinvertebrate fauna of a Mediterranean stream. *Water, Air, and Soil Pollution*, 140: 425-444.
- STATZNER B., BIS B., DOLÉDEC S. y P. USSEGLIO-POLATERA. 2001. Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. *Basic Appl. Ecol.*, 2: 73-85.
- TACHET H., BOURNAUD M. y P. RICHOUX. 1984. Introduction à l'étude des macroinvertébrés des eaux douces (Systématique élémentaire et aperçu écologique). Université Lyon I. Association Française de Limnologie. Ministère de l'Environment. 2ª Ed.
- TACHET H., RICHOUX P., BOURNAUD M. y P. USSEGLIO-POLATERA. 2000. *Invertébrés d'eau douce: systématique, biologie, écologie.* CNRS éditions, Paris. 588 p.

- TORRALVA M.M., OLIVA F.J., UBERO-PASCUAL N.A., MALO J. y M.A. PUIG. 1995. Efectos de la regulación sobre los macroinvertebrados del río Segura (S.E. España). *Limnetica*, 11(2): 49-56.
- VALLANIA A. y M. CORIGLIANO. 2007. The effect of regulation caused by a dam on the distribution of the functional feeding groups of the benthos in the sub basin of the Grande river (San Luis, Argentina). *Environmental Monitoring and Assessment*, 124 (1-3): 201-209.
- VANNOTE R.L., MINSHALL G.W., CUMMINS K.W., SEDELL J.R. y C.E. CUSHING. 1980. The river continuum concept. *Can. J. Fish. Aquat. Sci.*, 37(1): 130-137.
- VIVAS S., CASAS J., PARDO I., ROBLES S., BONADA N., MELLADO A., PRAT N., ALBA-TERCEDOR J., ÁLVAREZ M., BAYO M.M., JÁIMEZ-CUÉLLAR P., SUÁREZ M.L., TORO M., VIDAL-ABARCA M.R., ZAMORA-MUÑOZ C. y G. MOYÁ. 2002. Aproximación multivariante en la exploración de la tolerancia ambiental de las familias de macroinvertebrados de los ríos mediterráneos del proyecto GUADALMED. Limnetica, 21(3-4): 149-173.

WARD J.V. y J.A. STANFORD 1995. The serial discontinuity concept: extending the model to floodplain rivers. *Regulated Rivers: research & Management*, 10: 159-168.

ANEXO I

ANEXO I. RELACIÓN DE PUNTOS DE MUESTREO

Cod. CEMAS	Río	Nombre
0001	Ebro	Miranda de Ebro
0002	Ebro	Castejón
0003	Ega	Andosilla
0004	Arga	Funes
0005	Aragón	Caparroso
0009	Jalón	Huérmeda
0013	Ésera	Graus
0014	Martín	Hijar
0015	Guadalope	Der. Acequia vieja de Alcañiz
0017	Cinca	Fraga
0018	Aragón	Jaca
0022	Valira	Anseral
0023	Segre	Seo de Urgel
0024	Segre	Lleida
0025	Segre	Serós
0027	Ebro	Tortosa
0032	Guatizalema	Peralta de Alcofea
0036	Iregua	Islallana
0038	Najerilla	Torremontalbo
0042	Jiloca	Calamocha (aguas arriba, El Poyo del Cid)
0050	Tirón	Cuzcurrita – Tirgo
0060	Arba de Luesia	Tauste
0065	Irati	Liédena
0068	Arakil	Asiain
0069	Arga	Etxauri
0009	Ega	Estella (aguas arriba)
0074	⊑ya Zadorra	Arce - Miranda de Ebro
0074	Jalón	Grisén
0087	Gállego	Zaragoza
0099	Queiles	Azud alimentación Embalse del Val
0090	Nela	
0092	Oca	Trespaderne Oña
0095		
0095	Vero	Balaguer
	Segre	Balaguer Derivación canal de Piñana
0097	Noguera Ribagorzana	Yesa
0101	Aragón	
0106	Guadalope	Santolea - Derivación Ac. Mayor
0114	Segre	Puente de Gualter
0118	Martín	Oliete
0120	Ebro	Lodosa
0123	Gállego	Anzánigo
0126	Jalón Nagyara Ballarasa	Ateca (aguas arriba)
0146	Noguera Pallaresa	Pobla de Segur
0159	Arga	Huarte
0161	Ebro	Cereceda
0162	Ebro	Pignatelli
0163	Ebro	Ascó
0165	Bayas	Miranda de Ebro
0166	Jerea	Palazuelos de Cuesta Urria
0176	Matarraña	Nonaspe
0179	Zadorra	Villodas
0180	Zadorra	Mendibil - Durana
0184	Manubles	Ateca
0197	Leza	Ribafrecha - Leza de Río Leza
0203	Híjar	Espinilla
0205	Aragón	Cáseda

Cod. CEMAS	Río	Nombre
0206	Segre	Plá de San Tirs - Puente de Arfá
0207	Segre	Vilanova de la Barca
0208	Ebro	Conchas de Haro
0211	Ebro	Presa Pina
0214	Alhama	Alfaro
0216	Huerva	Zaragoza
0217	Arga	Ororbia
0218	Isuela II	Pompenillo
0219	Segre	Torres de Segre
0221	Subialde - Zayas	Aguas Arriba de Murua
0225	Clamor Amarga	Aguas abajo de Zaidín
0226	Alcanadre	Ontiñena
0227	Flumen	Sariñena
0228	Cinca	Monzón (aguas arriba)
0241	Najerilla	Anguiano
0242	Cidacos	Autol
0243	Alhama	Venta de Baños de Fitero
0244	Jiloca	Luco de Jiloca
0247	Gállego	Villanueva
0504	Ebro	Rincón de Soto
0505	Ebro	Alfaro
0506	Ebro	Tudela
0508	Ebro Ebro	Gallur
0511		Benifallet Xerta
0512 0516	Ebro	
0517	Oropesa Oja	Pradoluengo Ezcaray
0517	Najerilla	Nájera
0528	Jubera	Murillo de Río Leza
0529	Aragón	Castiello de Jaca
0530	Aragón	Milagro
0534	Alzania	Embalse de Urdalur
0537	Arba de Biel	Luna
0538	Aguas Limpias	Embalse de Sarra
0539	Aurin	Isín
0540	Fontobal	Ayerbe
0541	Huecha	Bulbuente
0549	Cinca	Ballobar
0551	Flumen	Tierz
0561	Gállego	Jabarrella
0562	Cinca	Conchel
0564	Zadorra	Salvatierra
0565	Huerva	Fuente de la Junquera
0569	Arakil	Alsasua
0570	Huerva 	Muel
0571	Ebro	Logroño - Varea
0572	Ega	Arinzano
0574	Najerilla	Nájera, Aguas abajo
0577	Arga	Puentelarreina
0582	Canaleta	Bot
0583	Grío	La Almunia de Doña Godina
0586	Jalón	Saviñán Escatrón
0590 0592	Ebro Ebro	Escatrón Pina de Ebro
0592 0593	Jalón	Terrer
0594	Najerilla	Baños de Río Tobia
0595	Ebro	San Vicente de la Sonsierra
0605	Ebro	Amposta
0608	Noguera Pallaresa	Tremp
0609	Salón	Villatomil - Aguas arriba de La Cerca

Cod. CEMAS	Río	Nombre
0612	Huerva	Villanueva de Huerva
0618	Gállego	Embalse del Gállego
0619	Negro	Vielha
0621	Segre	Derivación Canal Urgell
0623	Algas	Mas de Bañetes
0625	Noguera Ribagorzana	Alfarrás
0627	Noguera Ribagorzana	Derivación Acequia Corbins
0628	Barranco Calvó	Aguas Arriba Benabarre
0638	Son	Esterri de Aneu
0643	Padurobaso	Zaya
0644	Bayas	Aldaroa
0647	Arga	Peralta
0649	Santa Engracia	Villarreal de μlava
0650	Aragón	Marcilla
0657	Ebro	Zaragoza-Almozara
0701	Omecillo	Espejo
0702	Esca	Sigües
0703	Arba de Luesia	Malpica de Arba
0705	Garona	Valle de Arán
0706 0802	Matarraña Cinca	Valderrobres Puente de las Pilas
0802	Subordán	La Peñeta
0806	Bergantes	Aguaviva, Canalillas – Canalillas
0808	Gállego	Santa Eulalia
0810	Segre	Camarasa
0815	Urederra	Zudaire (central eléctrica)
0816	Esca	Burgui
1004	Nela	Puentedey
1006	Trueba	El Vado
1017	Omecillo	Bergüenda
1024	Zadorra	Salvatierra - Zuazo
1025	Zadorra	Durana
1028	Zadorra	La Puebla de Arganzón
1032	Ayuda	Carretera Miranda
1034	Inglares	Peñacerrada
1036	Linares I	Espronceda
1037	Linares I	Torres del Río
1038	Linares I	Mendavia
1039	Ega	Lagran
1045 1047	Aragón	Candanchú - Puente de Santa Cristina Puentelarreina de Jaca
1056	Aragón Veral	Biniés
1062	Irati	Oroz-Betelu
1064	Irati	Lumbier
1065	Urrobi	Puente carretera Garralda – Camping Espinal
1070	Salazar	Aspurz
1072	Arga	Quinto Real
1083	Arba de Luesia	Luesia
1087	Gállego	Formigal
1088	Gállego	Biescas
1089	Gállego	Sabiñánigo
1090	Gállego	Hostal de Ipiés
1092	Gállego	Murillo de Gállego
1096	Segre	Llivia
1101	Segre	Puente de Alentorn
1105	Noguera Pallaresa	Isil
1106*	Noguera Vallfarrera	Llavorsí
1108	Noguera Pallaresa	Guerri de la Sal
1110	Flamisell	Pobleta de Bellvehi
1113	Noguera Ribagorzana	Pont De Suert E.A. 137

Cod. CEMAS	Río	Nombre
1114	Noguera Ribagorzana	Puente de Montañana
1119	Corb	Vilanova de la Barca
1120	Cinca	Salinas
1121	Cinca	Laspuña
1122	Cinca	Ainsa
1123	Cinca	El Grado
1127	Cinqueta	Salinas
1128	Vellós	Aguas Abajo del Nacimiento
1130	Ara	Torla
1132	Ara	Ainsa
1133	Ésera	Castejón de Sos
1134	Ésera	Carretera Ainsa – Campo
1135	Ésera	Perarrua
1137	Isábena	Laspaúles
1139	Isábena	Capella E.A.
1140	Alcanadre	Laguarta - Carretera Boltaña
1141	Alcanadre	Puente a las Cellas
1149	Ebro	Reinosa
1150	Ebro	Aldea de Ebro
1154	Ebro	Aguas arriba Haro
1156	Ebro	Puente de El Ciego
1157	Ebro	Mendavia
1164	Ebro	Alagón
1167	Ebro	Mora de Ebro Villalmondar
1169 1173	Oca Tirón	Aguas arriba Fresneda de la Sierra
1174	Tirón	Belorado
1175	Tirón	Cerezo del Río Tirón
1177	Tirón	Haro
1178	Neila	Villavelayo (aguas arriba)
1183	Iregua	Puente Villoslada de Cameros
1184	Iregua	Puente De Almarza
1191	Linares II	San Pedro Manrique
1193	Alhama	Magaña
1203	Jiloca	Morata de Jiloca
1207	Jalón	Santa María de Huerta
1208	Jalón	Ateca
1210	Jalón	Épila
1216	Piedra	Castejón de las Armas
1219	Huerva	Cerveruela
1225	Aguas Vivas	Blesa
1227	Aguas Vivas	Azaila
1228	Martín	Martín del Río Martín
1234	Guadalope	Aliaga
1235	Guadalope	Mas de las Matas
1238	Guadalope	Alcañiz (aguas abajo)
1239	Guadalope	Caspe E.A.
1240	Matarraña	Beceite, Parrizal
1251	Queiles	Los Fayos
1252	Queiles	Novallas
1253	Guadalope	Ladruñán
1255	Martín	Vivel del Río Martín
1260	Jalón Biodra	Bubierca
1263	Piedra	Cimballa
1264	Mesa	Calmarza
1270	Ésera	Plan de l'Hospital de Benasque
1277	Arba de Riguel	Sádaba Esta
1280	Arba de Biel	Erla Siotamo
1285 1294	Guatizalema Noguera Cardés	Sietamo Lladorre
1294	Noguera Cardós	LIAUUITE

Cod. CEMAS	Río	Nombre
1295	Ebro	El Burgo de Ebro
1296	Ebro	Azud de Rueda
1297	Ebro	Flix (aguas abajo de la presa)
1298	Garona	Arties
1299	Garona	Bossots
1304	Sio	Balaguer E.A. 182
1306	Ebro	Ircio
1307	Zidacos	Barasoain
1308	Zidacos	Olite
1309	Onsella	Sangüesa
1311	Arga	Landaben -Pamplona
1314	Salado	Mendigorria
1315	Ulzama	Olave
1317	Larraun	Urritza
1332	Oroncillo	Pancorvo
1338	Oja	Casalarreina
1341	Rudrón	Valdelateja
1342	Oroncillo	Bugedo
1347	Leza	Agoncillo
1350	Huecha	Mallén
1351	Val	Agreda
1354	Najima	Monreal de Ariza
1358	Jiloca Martín	Calamocha
1365 1368	Martín	Montalban Ariño
1375	Escuriza Pena	
1376	Guadalope	Aguas Abajo embalse Pena Palanca-Caspe
1380	Bergantes	Mare Deu de la Balma
1382	Huerva	Aguas abajo de Villanueva
1387	Urbión I	Santa Cruz del Valle Urbión
1393	Erro	Sorogain
1396	Trema	Torme
1398	Guatizalema	Nocito
1399	Guatizalema	Molinos de Sipán
1400	Isuela I	Cálcena
1403	Aranda	Aranda del Moncayo
1404	Aranda	Brea
1411	Peregiles	Puente Antigua N-II
1417	Barrosa	Parzán
1419	Vallferrera	Alins
1421	Noguera de Tor	Llesp
1422	Salado	Estenoz
1423	Ubagua	Muez
1429	Cárdenas	San Millán de la Cogolla
1430	Cárdenas	Cárdenas
1435	Areta	Rípodas
1440	Trueba	Villacomparada
1446	Urbeltz	Virgen de las Nieves - Irati
1448	Veral	Zuriza
1453	Segre	Organyá
1454	Ebro	Trespaderne
1455	Cidacos	Yanguas E.A. 44.
1457	Iregua	Alberite
1464	Algas	Maella - Batea
1465	Flumen	Sariñena
1471	Matarraña	Aguas arriba de la desembocadura del Tastavins
1476	Ésera	Desembocadura
1492	Gállego	Central de Marracos
1519 1520	Carol	La Tour De Carol, Francia
1520	Arakil	Irañeta

Cod. CEMAS	Río	Nombre
2001	Urbión II	Viniegra de Abajo
2002	Mayor	Aguas Abajo Villoslada de Cameros
2003	Rudrón	Tablada de Rudrón
2005	Isuala	Alberuela de la Liena
2006	Isuala	Las Bellostas
2007	Alcanadre	Casbas
2008	Ribera Salada	Altés
2009	Matarraña	Beceite, aguas arriba
2011	Omecillo	Korro
2012	Estarrón	Aisa
2013	Osia	Jasa
2014	Guarga	Ordovés
2015	Susía	Castejón Sobrarbe
2017	Cámaras	Herrera de los Navarros
2027	Arazas	Torla (pradera Ordesa)
2029	Subordán	Hecho (Selva de Oza)
2055	Arba de Luesia	Ejea
2060	Barranco de la Violada	Zuera (aguas arriba)
2073	Sosa	Aguas arriba de Monzón
2079	Ciurana	Bellmunt del Priorat
2086	Homino	Terminón
2142	Aragón	Santa Cilia
2174	Noguera Ribagorzana	Senet
2193	Noguera Pallaresa	Cola de E. De Camarasa
2204	Regallo	Puigmoreno
3000	Queiles	Murchante
3001	Elorz	Pamplona

1106*: Por error se muestreó el río Noguera Vallferrera en vez del Noguera Pallaresa, donde realmente se localiza la estación CEMAS 1106

ANEXO II

ANEXO II. RESULTADOS DE LOS ÍNDICES IBMWP E IASPT

TT: Taxones Totales

TI: Taxones incluidos en el IBMWP

Cod.	Río	Estación	Fecha	TT	TI	IBMWP	Clase	Estado Ecológico	IASPT
0002	Ebro	Castejón	12/07/07	22	21	96	II-I	Intermedio Bueno - Muy Bueno	4,571
0003	Ega	San Adrian	27/06/07	28	27	135	1	Muy Bueno	5,000
0004	Arga	Funes	28/06/07	17	16	74	II	Bueno	4,625
0005	Aragón	Caparroso	28/06/07	24	24	87	П	Bueno	3,625
0013	Ésera	Graus	21/08/07	19	19	101	1-11	Intermedio Muy Bueno - Bueno	5,316
0014	Martín	Hijar	29/08/07	16	15	63	11-111	Intermedio Bueno - Moderado	4,200
0017	Cinca	Fraga	02/08/07	26	23	106	1	Muy Bueno	4,609
0018	Aragón	Jaca	07/08/07	28	26	149	1	Muy Bueno	5,731
0022	Valira	Seo de Urgel – Anseral	13/09/07	21	21	113	1	Muy Bueno	5,381
0023	Segre	Seo de Urgel	14/09/07	28	28	164	1	Muy Bueno	5,857
0025	Segre	Serós	27/08/07	13	12	45	III	Moderado	3,750
0027	Ebro	Tortosa	26/08/07	17	15	56	III-II	Intermedio Moderado - Bueno	3,733
0036	Iregua	Islallana	06/08/07	26	26	133	1	Muy Bueno	5,115
0038	Najerilla	Torremontalbo	07/08/07	27	27	116	1	Muy Bueno	4,296
0042	Jiloca	Calamocha ag. Arr. Poyo del Cid	30/07/07	11	10	55	III	Moderado	5,500
0050	Tirón	Cuzcurrita - Tirgo	13/07/07	17	17	73	II	Bueno	4,294
0060	Arba de Luesia	Tauste	17/07/07	13	13	53	III	Moderado	4,077
0065	Irati	Liédena	03/07/07	29	27	140	1	Muy Bueno	5,185
0068	Arakil	Asiain	25/06/07	30	28	130	1	Muy Bueno	4,643
0069	Arga	Etxauri	20/06/07	29	27	117	1	Muy Bueno	4,333
0071	Ega	Zubielki	21/06/07	19	18	93	II	Bueno	5,167
0074	Zadorra	Miranda de Arce	13/06/07	17	16	71	II	Bueno	4,438
0087	Jalón	Parque El Caracol – Alagón	19/07/07	18	17	69	II	Bueno	4,059
0089	Gállego	Santa Isabel	23/07/07	11	11	33	IV-III	Intermedio Deficiente - Moderado	3,000
0090	Queiles	Azud alimentación Embalse Val	18/07/07	24	24	120	1	Muy Bueno	5,000
0095	Vero	Barbastro	20/08/07	14	12	40	III-IV	Intermedio Moderado - Deficiente	3,333
0096	Segre	Balaguer	11/09/07	33	32	158	1	Muy Bueno	4,938
0097	Nog. Ribagorzana	Derivación canal de Piñana	20/09/07	22	22	119	1	Muy Bueno	5,409
0101	Aragón	Yesa	14/08/07	27	24	112	1	Muy Bueno	4,667
0106	Guadalope	Santolea - Derivación Ac. Mayor	22/08/07	29	29	153	1	Muy Bueno	5,276
0114	Segre	Puente de Gualter	12/09/07	30	30	144	1	Muy Bueno	4,800
0118	Martín	Oliete	29/08/07	23	22	90	II	Bueno	4,091
0120	Ebro	Mendavia	27/06/07	21	20	107	1	Muy Bueno	5,350
0123	Gállego	Anzánigo	08/08/07	36	35	187	1	Muy Bueno	5,343
0126	Jalón	Ateca (aguas arriba)	01/08/07	13	13	56	III-II	Intermedio Moderado - Bueno	4,308
0146	Nog. Pallaresa	Pobla de Segur	19/09/07	26	26	156	1	Muy Bueno	6,000
0159	Arga	Huarte	02/07/07	24	24	122	1	Muy Bueno	5,083
0162	Ebro	Ribaforada	11/07/07	24	23	121	1	Muy Bueno	5,261
0163	Ebro	Ascó	27/08/07	14	13	50	III	Moderado	3,846
0166	Jerea	Palazuelos de Cuesta Urria	16/07/07	32	31	168	1	Muy Bueno	5,419
0176	Matarraña	Nonaspe	28/08/07	35	32	159	1	Muy Bueno	4,969
0179	Zadorra	Villodas	19/06/07	19	17	63	11-111	Intermedio Bueno - Moderado	3,706
0180	Zadorra	Mendibil	18/06/07	25	23	98	II-I	Intermedio Bueno - Muy Bueno	4,261
0184	Manubles	Ateca	02/08/07	34	34	146	1	Muy Bueno	4,294
0197	Leza	Ribafrecha - Leza de Río Leza	07/08/07	33	33	148	1	Muy Bueno	4,485
0203	Híjar	Espinilla	18/07/07	41	41	241	1	Muy Bueno	5,878
0205	Aragón	Cáseda	14/08/07	29	29	149	1	Muy Bueno	5,138

Cod.	Río	Estación	Fecha	TT	ті	IBMWP	Clase	Estado Ecológico	IASPT
0206	Segre	Plá de San Tirs - Puente de Arfá	13/09/07	16	16	68	II	Bueno	4,250
0207	Segre	Vilanova de la Barca	11/09/07	16	15	59	111-11	Intermedio Moderado - Bueno	3,933
0214	Alhama	Alfaro	12/07/07	25	24	113	1	Muy Bueno	4,708
0216	Huerva	Zaragoza	23/07/2006	17	17	62	11-111	Intermedio Bueno - Moderado	3,647
0217	Arga	Ororbia	25/06/07	19	18	65	11-111	Intermedio Bueno - Moderado	3,611
0218	Isuela II	Pompenillo	30/07/07	11	11	33	IV-III	Intermedio Deficiente - Moderado	3,000
0219	Segre	Torres de Segre	27/08/07	10	9	32	IV-III	Intermedio Deficiente - Moderado	3,556
0221	Subialde - Zayas	Aguas arriba Murua	11/06/07	34	33	212	1	Muy Bueno	6,424
0226	Alcanadre	Ontiñena	02/08/07	22	20	108	1	Muy Bueno	5,400
0241	Najerilla	Anguiano	10/07/07	49	49	263	1	Muy Bueno	5,367
0242	Cidacos	Autol	08/08/07	29	28	127	1	Muy Bueno	4,536
0243	Alhama	Venta de Baños de Fitero	08/08/07	33	31	133	1	Muy Bueno	4,290
0244	Jiloca	Luco de Jiloca	08/08/07	20	20	93	П	Bueno	4,650
0247	Gállego	Villanueva de Gállego	29/08/07	22	20	76	II	Bueno	3,800
0504	Ebro	Rincón de Soto	27/06/07	27	26	135	1	Muy Bueno	5,192
	Ebro	Alfaro	12/07/07	26	26	126	ı	Muy Bueno	4,846
	Ebro	Tudela	11/07/07	22	21	96	II-I	Intermedio Bueno - Muy Bueno	4,571
	Ebro	Gallur	17/07/07	20	18	80	II	Bueno	4,444
0508	Ebro	Benifallet	26/08/07	19	18	76	'' 	Bueno	4,444
0516	Oropesa	Pradoluengo	12/07/07	27	27	171	 I	Muy Bueno	6,333
	•	•	12/07/07	33	32	161	i	•	
0517	•	Ezcaray						Muy Bueno	5,031
	Najerilla	Nájera	06/08/07	30	30	129		Muy Bueno	4,300
0529	Aragón	Castiello de Jaca	07/08/07	22	22	127	I 	Muy Bueno	5,773
	Aragón	Milagro	12/07/07	21	20	89	II .	Bueno	4,450
	Alzania	Urdalur (embalse)	19/08/07	20	20	122	ı	Muy Bueno	6,100
0540	Fontobal	Ayerbe	09/08/07	28	28	134	ı	Muy Bueno	4,786
0551	Flumen	Tierz	30/07/07	22	22	110	ı	Muy Bueno	5,000
0561	Gállego	Jabarrella	08/08/07	40	40	213	I	Muy Bueno	5,325
0562	Cinca	Conchel	16/08/07	24	24	127	I	Muy Bueno	5,292
0564	Zadorra	Heredia	19/06/07	33	32	141	I	Muy Bueno	4,406
0569	Arakil	Iturmendi (Aguas abajo Alsasua)	19/06/07	32	29	123	I	Muy Bueno	4,241
0570	Huerva	Botorrita	25/07/07	14	14	54	Ш	Moderado	3,857
0571	Ebro	Varea - Logroño	26/06/07	29	26	126	1	Muy Bueno	4,846
0572	Ega	Señorío de Arínzano	21/06/07	20	19	101	1-11	Intermedio Muy Bueno - Bueno	5,316
0574	Najerilla	Nájera, Aguas abajo	07/08/07	24	24	105	1-11	Intermedio Muy Bueno - Bueno	4,375
0577	Arga	Puentelarreina	20/06/07	21	20	82	II	Bueno	4,100
0583	Grío	La Almunia de Doña Godina	03/08/07	36	36	166	1	Muy Bueno	4,611
0592	Ebro	Pina de Ebro	26/07/07	29	26	110	1	Muy Bueno	4,231
0593	Jalón	Terrer	02/08/07	17	17	73	П	Bueno	4,294
0594	Najerilla	Baños de Río Tobia	10/07/07	32	32	156	1	Muy Bueno	4,875
0595	Ebro	San Vicente de la Sonsierra	11/07/07	16	14	76	II	Bueno	5,429
0608	Nog. Pallaresa	Tremp	20/09/07	40	40	209	1	Muy Bueno	5,225
0609	Salón	Villatomil - Ag Arr. La Cerca	16/07/07	34	34	173	1	Muy Bueno	5,088
	Huerva	Villanueva de Huerva	25/07/07	31	31	148	ı	Muy Bueno	4,774
	Gállego	Embalse del Gállego	06/08/07	20	19	118	1	Muy Bueno	6,211
	Negro	Viella	18/09/07	23	23	131	ı	Muy Bueno	5,696
0621	-	Derivación Canal Urgell	12/09/07	45	45	218	i	Muy Bueno	4,844
0623	Algas	Mas de Bañetes	25/08/07	32	30	154	i	Muy Bueno	5,133
0625	Nog. Ribagorzana		20/09/07	27	27	133	·	Muy Bueno	4,926
0627		Derivación Acequia Corbins	11/09/07	20	20	75	II	Bueno	3,750
0638		Esterri de Aneu	15/09/07	20	19	100	'' -	Intermedio Bueno - Muy Bueno	5,263
			11/06/07			218	II-I I	•	
	Padurobaso	Zaya		36	35			Muy Bueno	6,229
0644	Bayas	Aldarra	12/06/07	40	40	245	I "	Muy Bueno	6,125
	Arga	Peralta	28/06/07	21	20	88		Bueno	4,400
0649	Santa Engracia	Parking Ollerias	11/06/2006	25	24	131	1	Muy Bueno	5,458

Cod.	Río	Estación	Fecha	тт	ті	IBMWP	Clase	Estado Ecológico	IASPT
0650	Aragón	Marcilla	28/06/07	31	31	155	1	Muy Bueno	5,000
0701	Omecillo	Espejo	12/06/07	24	23	116	I	Muy Bueno	5,043
0702	Esca	Sigües	14/08/07	31	31	176	I	Muy Bueno	5,677
0703	Arba de Luesia	Malpica de Arba	16/07/07	25	25	115	1	Muy Bueno	4,600
0705	Garona	Valle de Arán	17/09/07	23	23	128	1	Muy Bueno	5,565
0706	Matarraña	Valderrobres	24/08/07	38	38	175	1	Muy Bueno	4,605
0802	Cinca	Puente de las Pilas	20/08/07	28	28	148	I	Muy Bueno	5,286
0804	Subordan	Hecho	13/08/07	28	28	163	1	Muy Bueno	5,821
0806	Bergantes	Aguaviva, Canalillas - Canalillas	23/08/07	37	37	189	1	Muy Bueno	5,108
8080	Gállego	Santa Eulalia	09/08/07	30	30	174	1	Muy Bueno	5,800
0810	Segre	Camarasa	12/09/07	31	30	148	1	Muy Bueno	4,933
0815	Urederra	Zudaire	21/06/07	44	42	242	1	Muy Bueno	5,762
0816	Esca	Burgui	14/08/07	26	26	156	1	Muy Bueno	6,000
1004	Nela	Puentedey	17/07/07	53	53	317	1	Muy Bueno	5,981
1006	Trueba	El Vado	17/07/07	42	42	236	1	Muy Bueno	5,619
1017	Omecillo	Bergüenda	12/06/07	21	21	105	I-II	Intermedio Muy Bueno - Bueno	5,000
1024	Zadorra	Zuazo - Salvatierra	19/06/07	23	22	95	II-I	Intermedio Bueno - Muy Bueno	4,318
1025	Zadorra	Durana	18/06/07	32	29	129	1	Muy Bueno	4,448
1028	Zadorra	La Puebla de Arganzón	12/06/07	18	15	58	111-11	Intermedio Moderado - Bueno	3,867
1034	Inglares	Peñacerrada	13/06/07	23	23	115	1	Muy Bueno	5,000
1036	Linares I	Espronceda	26/06/07	28	28	118	1	Muy Bueno	4,214
1037	Linares I	Torres del Río	26/06/07	21	21	91	П	Bueno	4,333
1038	Linares I	Mendavia	27/06/07	18	18	71	II	Bueno	3,944
1039	Ega	Lagrán	21/06/07	26	25	111	1	Muy Bueno	4,440
1045	Aragón	Candanchú - Pte Sta. Cristina	07/08/07	26	25	130	1	Muy Bueno	5,200
1047	Aragón	Puentelarreina de Jaca	14/08/07	27	27	158	1	Muy Bueno	5,852
1056	Veral	Biniés	13/08/07	31	31	175	1	Muy Bueno	5,645
1062	Irati	Oroz-Betelu, aguas arriba	04/07/07	33	32	180	1	Muy Bueno	5,625
1064	Irati	Lumbier	03/07/07	31	30	161	1	Muy Bueno	5,367
1065	Urrobi	Camping Espinal	04/07/07	49	48	278	1	Muy Bueno	5,792
1070	Salazar	Aspurz	03/07/07	31	31	177	1	Muy Bueno	5,710
1072	Arga	Quinto Real	02/07/07	42	41	256	1	Muy Bueno	6,244
1087	Gállego	Formigal	06/08/07	22	21	121	1	Muy Bueno	5,762
1088	Gállego	Biescas	06/08/07	26	25	148	1	Muy Bueno	5,920
1089	Gállego	Sabiñánigo	08/08/07	22	21	90	II	Bueno	4,286
1090	Gállego	Hostal de Ipiés	08/08/07	39	39	206	1	Muy Bueno	5,282
1092	Gállego	Murillo de Gállego	09/08/07	31	31	162	I	Muy Bueno	5,226
1096	Segre	Llivia	14/09/07	29	29	153	I	Muy Bueno	5,276
1101	Segre	Puente de Alentorn	12/09/07	36	35	177	I	Muy Bueno	5,057
1105	Nog. Pallaresa	Isil	16/09/07	24	24	146	I	Muy Bueno	6,083
1106*	Nog. Vallferrera	Llavorsí	15/09/07	27	27	201	I	Muy Bueno	7,444
1110	Flamisell	Pobleta de Bellvehi	19/09/07	34	34	197	I	Muy Bueno	5,794
1113	Nog. Ribagorzana	Pont De Suert E.A. 137	19/09/07	26	26	149	1	Muy Bueno	5,731
1114	Nog. Ribagorzana	Puente de Montañana	20/09/07	35	35	191	1	Muy Bueno	5,457
1119	Corb	Vilanova de la Barca	11/09/07	7	7	22	IV	Deficiente	3,143
1120	Cinca	Salinas	28/08/07	26	26	151	1	Muy Bueno	5,808
1121	Cinca	Laspuña	27/08/07	32	31	166	1	Muy Bueno	5,355
1122	Cinca	Ainsa	23/08/07	23	22	132	1	Muy Bueno	6,000
1123	Cinca	El Grado	20/08/07	22	22	118	1	Muy Bueno	5,364
1127	Cinqueta	Salinas	28/08/07	23	23	141	1	Muy Bueno	6,130
1130	Ara	E. A. Torla	27/08/07	25	25	159	1	Muy Bueno	6,360
1132	Ara	Ainsa	23/08/07	28	27	155	1	Muy Bueno	5,741
1133	Ésera	Castejón de Sos	22/08/07	27	26	140	1	Muy Bueno	5,385
1135	Ésera	Perarrua	21/08/07	21	21	120	1	Muy Bueno	5,714
1137	Isábena	Laspaúles	22/08/07	21	21	125	I	Muy Bueno	5,952

Cod.	Río	Estación	Fecha	TT	TI	IBMWP	Clase	Estado Ecológico	IASPT
1139	Isábena	Capella	21/08/07	23	23	136	1	Muy Bueno	5,913
1140	Alcanadre	Laguarta	01/08/07	28	28	151	I	Muy Bueno	5,393
1149	Ebro	Reinosa	19/07/07	29	28	133	I	Muy Bueno	4,750
1150	Ebro	Aldea de Ebro	19/07/07	23	21	119	1	Muy Bueno	5,667
1157	Ebro	Mendavia	27/06/07	18	18	97	II-I	Intermedio Bueno - Muy Bueno	5,389
1164	Ebro	Alagón	19/07/07	25	24	105	1-11	Intermedio Muy Bueno - Bueno	4,375
1167	Ebro	Mora de Ebro	26/08/07	20	19	67	II	Bueno	3,526
1169	Oca	Villalmondar	13/07/07	31	31	158	1	Muy Bueno	5,097
1173	Tirón	Ag. Arr. Fresneda de la Sierra	12/07/07	29	29	177	1	Muy Bueno	6,103
1174	Tirón	Belorado	13/07/07	37	36	183	I	Muy Bueno	5,083
1175	Tirón	Cerezo del Río Tirón	13/07/07	32	32	156	1	Muy Bueno	4,875
1177	Tirón	Haro	11/07/07	21	21	111	1	Muy Bueno	5,286
1178	Neila	Villavelayo (aguas arriba)	10/07/07	37	36	202	1	Muy Bueno	5,611
1183	Iregua	Pte. Villoslada de Cameros	05/08/07	41	41	235	1	Muy Bueno	5,732
1184	Iregua	Puente De Almarza	06/08/07	30	29	169	1	Muy Bueno	5,828
1191	Linares II	San Pedro Manrique	05/08/07	40	40	194	I	Muy Bueno	4,850
1193	Alhama	Magada o Magaña?	04/08/07	43	43	224	1	Muy Bueno	5,209
1203	Jiloca	Morata de Jiloca	03/08/07	9	9	63	11-111	Intermedio Bueno - Moderado	7,000
1207	Jalón	Santa María de Huerta	01/08/07	14	14	65	11-111	Intermedio Bueno - Moderado	4,643
1208	Jalón	Ateca	02/08/07	15	15	60	111-11	Intermedio Moderado - Bueno	4,000
1219	Huerva	Cerveruela	25/07/07	28	28	154	1	Muy Bueno	5,500
1228	Martín	Martín del Río Martín	29/08/07	33	33	155	1	Muy Bueno	4,697
1234	Guadalope	Aliaga	22/08/07	41	41	209	1	Muy Bueno	5,098
1235	Guadalope	Mas de las Matas	23/08/07	39	39	196	1	Muy Bueno	5,026
1238	Guadalope	Alcañiz (aguas abajo)	24/08/07	18	17	68	II	Bueno	4,000
1239	Guadalope	Caspe E.A.	28/08/07	23	23	106	1	Muy Bueno	4,609
1240	Matarraña	Beceite, Parrizal	25/08/07	41	39	192	1	Muy Bueno	4,923
1251	Queiles	Los Fayos	18/07/07	28	28	157	1	Muy Bueno	5,607
1252	Queiles	Novallas	18/07/07	15	15	60	III-II	Intermedio Moderado - Bueno	4,000
1253	Guadalope	Ladruñán	22/08/07	30	30	148	1	Muy Bueno	4,933
1255	Martín	Vivel del Río Martín	30/08/07	28	28	128	1	Muy Bueno	4,571
1260	Jalón	Bubierca	01/08/07	19	18	87	Ш	Bueno	4,833
1263	Piedra	Cimballa	31/07/07	27	26	101	I-II	Intermedio Muy Bueno - Bueno	3,885
1264	Mesa	Calmarza	31/07/07	37	37	189	1	Muy Bueno	5,108
1270	Ésera	Plan de l'Hospital de Benasque	22/08/07	26	26	177	1	Muy Bueno	6,808
1277	Arba de Riguel	Sádaba	16/07/07	35	32	139	1	Muy Bueno	4,344
1280	Arba de Biel	Erla	17/07/07	34	31	139	1	Muy Bueno	4,484
1285	Guatizalema	Sietamo	30/07/07	17	17	85	II	Bueno	5,000
1294	Noguera Cardós	Lladorre	15/09/07	26	26	153	I	Muy Bueno	5,885
1295	Ebro	El Burgo de Ebro	26/07/07	15	15	70	II	Bueno	4,667
1296	Ebro	Azud de Rueda	24/07/07	20	18	74	II	Bueno	4,111
1297	Ebro	Flix (aguas abajo de la presa)	27/08/07	18	16	62	II-III	Intermedio Bueno - Moderado	3,875
1298	Garona	Arties	17/09/07	23	23	135	1	Muy Bueno	5,870
1299	Garona	Bossots	17/09/07	18	18	99	II-I	Intermedio Bueno - Muy Bueno	5,500
1304	Sio	Balaguer E.A. 182	11/09/07	17	17	71	II	Bueno	4,176
1306	Ebro	Ircio	13/06/07	24	23	115	1	Muy Bueno	5,000
1307	Zidacos	Barasoain	05/07/07	41	39	185	1	Muy Bueno	4,744
1308	Zidacos	E.A. Olite	28/06/07	18	17	74	II	Bueno	4,353
1309	Onsella	Sangüesa	03/07/07	23	23	122	1	Muy Bueno	5,304
1311	Arga	Pamplona - Landaben	25/06/07	23	20	85	II	Bueno	4,250
1314	Salado	Mendigorría	14/06/07	26	26	128	1	Muy Bueno	4,923
1315	Ulzama	E.A. Olave	02/07/07	31	29	156	1	Muy Bueno	5,379
1317	Larraun	Urritza	20/06/07	16	15	71	II	Bueno	4,733
1332	Oroncillo	Pancorvo	14/07/07	24	24	111	1	Muy Bueno	4,625
1338	Oja	Casalarreina	14/07/07	38	35	167	1	Muy Bueno	4,771

Cod.	Río	Estación	Fecha	TT	TI	IBMWP	Clase	Estado Ecológico	IASPT
1341	Rudrón	Valdelateja	18/07/07	49	49	265	1	Muy Bueno	5,408
1342	Oroncillo	Bugedo	14/07/07	19	18	93	П	Bueno	5,167
1347	Leza	Leza / Agoncillo	26/06/07	23	23	99	II-I	Intermedio Bueno - Muy Bueno	4,304
1351	Val	Agreda	18/07/07	16	14	49	III	Moderado	3,500
1354	Najima	Monreal de Ariza	01/08/07	31	30	129	1	Muy Bueno	4,300
1358	Jiloca	Calamocha	31/07/07	21	20	92	П	Bueno	4,600
1365	Martín	Montalban	29/08/07	36	36	163	1	Muy Bueno	4,528
1368	Escuriza	Ariño	29/08/07	25	24	101	1-11	Intermedio Muy Bueno - Bueno	4,208
1375	Pena	Aguas Abajo embalse Pena	24/08/07	23	23	119	1	Muy Bueno	5,174
1380	Bergantes	Mare Deu de la Balma	23/08/07	39	39	183	1	Muy Bueno	4,692
1382	Huerva	Aguas abajo de Villanueva	25/07/07	23	22	80	П	Bueno	3,636
1387	Urbión I	Santa Cruz del Valle Urbión	12/07/07	24	24	145	1	Muy Bueno	6,042
1393	Erro	Sorogain	04/07/07	40	39	241	1	Muy Bueno	6,179
1396	Trema	Torme	17/07/07	36	35	200	1	Muy Bueno	5,714
1398	Guatizalema	Nocito	01/08/07	33	31	155	1	Muy Bueno	5,000
1399	Guatizalema	Molinos de Sipán	30/07/07	31	30	160	1	Muy Bueno	5,333
	Aranda	Aranda del Moncayo	04/08/07	32	32	133		Muy Bueno	4,156
	Aranda	Brea	04/08/07	31	31	112	' 	Muy Bueno	3,613
1411		Puente Antiqua N-II	02/08/07	18	18	68	' 	Bueno	3,778
	•	G	28/08/07						
	Barrosa	Parzán		26	26	156		Muy Bueno	6,000
1419	Vallferrera	Alins	15/09/07	32	32	202		Muy Bueno	6,313
1421	Noguera de Tor	Llesp	18/09/07	27	27	145	1	Muy Bueno	5,370
	Salado	E.A. Estenoz	14/06/07	8	8	23	IV	Deficiente	2,875
1423	Ubagua	Muez	14/06/07	29	28	144	1	Muy Bueno	5,143
1429	Cárdenas	San Millán de la Cogolla	11/07/07	39	39	223	ı	Muy Bueno	5,718
1430	Cárdenas	Cárdenas	06/08/07	29	28	126	I	Muy Bueno	4,500
1435	Areta	Rípodas	03/07/07	32	32	164	1	Muy Bueno	5,125
1440	Trueba	Villacomparada	16/07/07	44	42	215	1	Muy Bueno	5,119
1446	Urbeltz	Virgen de las Nieves - Irati	05/07/07	37	37	236	1	Muy Bueno	6,378
1448	Veral	Zuriza	13/08/07	28	28	149	1	Muy Bueno	5,321
1453	Segre	Organyá	13/09/07	24	24	132	1	Muy Bueno	5,500
1454	Ebro	Trespaderne	15/07/07	15	15	65	II-III	Intermedio Bueno - Moderado	4,333
1455	Cidacos	Yanguas E.A. 44.	05/08/07	38	36	182	1	Muy Bueno	5,056
1457	Iregua	Alberite	07/08/07	21	20	105	1-11	Intermedio Muy Bueno - Bueno	5,250
1464	Algas	Maella - Batea	28/08/07	13	12	48	Ш	Moderado	4,000
1471	Matarraña	Ag. Arr. Desemb. Tastavins	24/08/07	43	43	203	1	Muy Bueno	4,721
1476	Esera	Desembocadura	20/08/07	31	30	161	1	Muy Bueno	5,367
1519	Carol	La Tour De Carol. Francia	14/09/07	27	27	155	1	Muy Bueno	5,741
1520	Arakil	Irañeta	20/06/07	29	27	131	1	Muy Bueno	4,852
2001	Urbión II	Viniegra de Abajo	10/07/07	42	41	223	1	Muy Bueno	5,439
2002	Mayor	Ag. Ab. Villoslada de Cameros	05/08/07	40	39	204	1	Muy Bueno	5,231
	Rudrón	Tablada de Rudrón	18/07/07	38	38	243	1	Muy Bueno	6,395
	Isuala	Alberuela de la Liena	31/07/07	26	26	147	1	Muy Bueno	5,654
	Bco. Balces	Las Bellostas	01/08/07	28	28	154	1	Muy Bueno	5,500
	Ribera Salada	Altés	13/09/07	43	41	214	·	Muy Bueno	5,220
	Matarraña	Beceite, aguas arriba	25/08/07	49	49	214	· I	Muy Bueno	4,980
	Omecillo	Korro	15/07/07	37	37	198	' 	Muy Bueno	5,351
		Aisa	07/08/07			190	' 		
	Estarrún			32	32			Muy Bueno	5,969
2013		Jasa	07/08/07	33	33	189		Muy Bueno	5,727
	Guarga	Ordovés	01/08/07	28	28	155		Muy Bueno	5,536
	Susía	E.A. Escanilla	23/08/07	27	27	150		Muy Bueno	5,556
	Subordan	Selva de Oza	13/08/07	30	30	163	I	Muy Bueno	5,433
2060	Bco. La Violada	E.A. Aguas Arriba Zuera	29/08/07	21	20	87	II	Bueno	4,350
2073	Sosa	Aguas arriba de Monzón	16/08/07	36	35	159	I	Muy Bueno	4,543
2086	Homino	Terminón	14/07/07	27	27	133	- 1	Muy Bueno	4,926

Cod.	Río	Estación	Fecha	TT	TI	IBMWP	Clase	Estado Ecológico	IASPT
2142	Aragón	Santa Cilia	13/08/07	32	32	177	1	Muy Bueno	5,531
2174	Nog. Ribagorzana	Senet	18/09/07	24	23	121	1	Muy Bueno	5,261
2204	Regallo	Puigmoreno	28/08/07	29	28	122	1	Muy Bueno	4,357
3000	Queiles	Murchante	11/07/07	16	15	51	Ш	Moderado	3,400
3001	Elorz	Pamplona	25/06/07	16	15	58	111-11	Intermedio Moderado - Bueno	3,867

1106*: Por error se muestreó el río Noguera Vallferrera en vez del Noguera Pallaresa, donde realmente se localiza la estación CEMAS 1106

ANEXO III

ANEXO III. ABUNDANCIAS RELATIVAS DE LOS DISTINTOS TAXONES POR MUESTRA

Estaciones con datos de Abundancias relativas (%)

Estaciones	COH	uau		e AL	unu	ancı	as i	ciali	vas	(70)										
Taxón \ Código CEMAS	0002	0003	0004	0005	0013	0017	0018	0060	0065	0068	0069	0071	0074	0087	0089	0090	0095	0101	0120	0123
Dryopidae Dytiscidae	0,054	0,009	0,000	0,000	0,000	0,007	0,000	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,022	0,000 0,017
Elmidae	0,000	0,000	0,000	0,478	3,537	0,007	4,390	0,000	0,935	0,541	0,000	23,175	0,000	0,000	0,000	8,178	0,004	0,000	0,022	4,957
Gyrinidae	0,000	0,000	0,000	0,000	0,024	0,510	0,000	0,014	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,008	0,000	0,000	0,000	0,000
Haliplidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Helodidae / Scirtidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydraenidae Hydrophilidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000
Psephenidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Asellidae	0,018	0,000	0,087	0,850	0,000	0,000	0,000	0,000	0,000	0,000	0,024	0,000	0,049	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Atydae Gammaridae	0,054 3,676	0,271 0,197	0,000 13,810	0,000 1,221	0,000	0,000	0,000	0,000 2,302	0,000 31,719	0,063 4,410	0,095	0,000 16,726	0,000	0,000 60,291	0,000	0,000 44,207	0,000	0,186 3,423	0,287	0,000
Ostracoda	0,018	0,009	0,488	0,106	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,170
Athericidae	0,000	0,000	0,000	0,000	0,000	0,000	1,725	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,034
Blephariceridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ceratopogonidae Chironomidae	0,000 16,015	0,000 18,018	0,000 11,020	0,000 58,577	0,000 17,000	0,000 11,782	0,000 3,898	0,000 8,207	0,000 13,922	0,000 11,858	0,000 41,451	0,000 11,127	1,005 23,916	0,000 6,468	0,000 67,698	0,161 11,801	0,000 24,652	0,781 31,734	0,000 8,111	0,000 12,802
Culicidae	0,000	0,000	0,000	2,124	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dixidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dolichopodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Empididae Ephydridae	0,000	0,000	0,000	0,000	2,024 0,000	0,000	1,348	0,000	0,317	0,264	0,024	0,780	0,000	0,000	0,000	0,000	0,000	0,372	0,000	0,009
Limoniidae	0,000	0,215	0,000	0,000	0,098	0,000	0,000	0,000	0,905	0,013	0,024	0,142	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,681
Muscidae	0,000	0,000	0,000	0,000	0,000	0,000	0,243	0,000	0,000	0,006	0,000	0,000	0,000	0,013	0,000	0,015	0,000	0,037	0,000	0,017
Psychodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,065	0,000	0,000	0,000	0,000	0,000
Rhagionidae Simuliidae	0,000	0,749	0,000	0,000	1,512	0,559	9,273	2,881	0,000	7,089	3,876	0,000	0,000	1,447	0,000	1,697	0,000	0,000	0,000	1,559
Stratiomyidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,038	0,000	0,000	0,000	0,000
Tabanidae	0,000	0,000	0,000	0,000	0,000	0,000	0,140	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,017
Tipulidae Baetidae	0,000 5,972	0,000 43,224	0,000 3,121	0,000	0,000 32,512	0,007 62,902	0,000 34,436	0,000 62,934	0,000 28,989	0,000 37,454	0,000 9,346	0,000 25,301	0,000 18,917	0,000 9,719	0,000	0,000	0,004	0,000 2,641	0,000 54,596	0,000 35,187
Caenidae	6,223	2,265	15,257	8,019	0,049	3,240	0,243	0,000	0,965	1,145	6,730	4,819	27,787	0,672	0,068	0,015	0,009	47,247	0,562	1,371
Ephemerellidae	0,000	0,000	0,000	0,000	0,512	0,000	2,933	0,000	0,679	1,403	0,048	6,875	0,000	0,000	0,000	0,321	0,000	0,000	0,000	1,048
Ephemeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,071	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Heptageniidae Leptophlebiidae	6,510 6,277	5,635 11,297	0,610 12,049	0,000	16,780 0,000	0,007	5,240	0,000	5,173 0,362	0,522	0,024	1,063	0,000	0,000	0,000	0,168	0,000	0,000	1,466 1,565	10,920 0,017
Oligoneuriidae	0,000	0,000	0,000	0,000	2,976	0,000	0,140	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,026
Polymitarcidae	1,435	4,699	7,306	7,860	0,000	0,021	0,000	0,000	0,950	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	10,866	0,000
Potamanthidae Siphlonuridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,030	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,112	0,441	0,034
Corixidae	40,943	0,796	25,266	0,000	0,000	0,007	0,000	0,000	0,000	1,522	1,260	0,000	0,000	0,142	0,003	0,000	0,004	1,190	0,000	1,039
Gerridae	0,090	0,112	0,139	0,159	0,000	0,049	0,024	0,020	0,015	0,013	0,071	0,283	0,025	0,026	0,006	0,000	0,022	0,149	0,055	0,000
Hydrometridae	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,048	0,000	0,000	0,000	0,000	0,000	0,000	0,037	0,000	0,000
Naucoridae Nepidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Notonectidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009
Pleidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Veliidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Erpobdellidae Glossiphoniidae	0,054 1,166	0,000	0,488	1,593 0,106	0,000	0,000	0,000	0,000	0,000	0,019 0,126	0,071	0,000	0,123	0,000	0,000	0,076	0,000	0,000	0,000	0,000
Hirudidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sialidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ancylidae Bithyniidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,014	0,332	0,409	0,238	0,000	0,025	0,019	0,000	0,000	0,000	0,000	0,055	0,528
Ferrissidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,024	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydrobiidae	0,018	0,234	0,000	1,487	0,000	0,000	0,000	0,279	0,015	0,006	0,975	0,071	0,000	5,176	0,003	0,313	0,000	0,074	0,000	0,187
Lymnaeidae	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,090	0,038	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Neritidae Physidae	0,000	0,000	0,000	0,000	0,000	0,000 6,250	0,000	0,000	0,030	0,000	0,000	0,000	0,000	1,338	0,000 4,406	0,000	0,000 9,679	0,000	0,000	0,000
Planorbidae	0,000	0,000	0,000	0,743	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sphaeridae	0,000	0,000	0,000	0,531	0,000	0,000	0,000	0,007	0,045	0,132	0,024	0,000	0,025	0,000	0,000	0,008	0,000	0,037	0,231	0,017
Unionidae Valvatidae	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hidracarina	1,847	0,000	6,330	0,053	0,512	1,124	0,868	0,000	2,459	0,000	0,975	0,921	2,499	0,000	0,000	0,000	0,000	3,832	0,022	0,000
Aeschnidae	0,000	0,000	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Calopterygidae	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Coenagrionidae Cordulegasteridae	0,000	0,000	0,000	0,000	0,000	0,119	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,011	0,000
Gomphidae	0,000	0,009	0,017	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009
Lestidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Libellulidae Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta	3,031	0,000	0,384	3,771	0,780	7,082	0,000	0,000	2,413	2,780	10,273	7,725	24,406	0,414	27,617	0,344	65,133	4,501	0,264	0,000
Chloroperlidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leuctridae Nemouridae	0,000	0,009	0,000	0,000	15,341 0,000	0,000	32,761 0,006	0,000	3,967 0,000	0,258	0,000	0,000	0,049	0,000	0,000	0,000	0,000	0,856	0,011	13,313
Perlidae Perlidae	0,000	0,000	0,000	0,000	2,756	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009
Perlodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Taeniopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dugesiidae Planariidae	0,000	0,000	0,000	0,000	0,000	0,147	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000
Beraeidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Brachycentridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ecnomyidae Glossosomatidae	0,000	0,000	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,459	0,000	0,000	0,000	0,000
Goeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydropsychidae	6,546	11,513	0,697	10,940	1,293	4,072	0,753	21,932	3,348	29,515	24,090	0,000	0,809	12,924	0,000	0,252	0,000	0,074	21,148	12,836
Hydroptilidae	0,000	0,037	0,000	0,000	0,000	0,643	0,121	1,383	0,000	0,126	0,024	0,283	0,000	0,000	0,000	0,008	0,000	0,781	0,000	0,170
Lepidostomatidae Leptoceridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,341
Limnephilidae	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Odontoceridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Philopotamidae Polycentropodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Polycentropodidae Psychomyiidae	0,000	0,000	0,000	0,000	1,220	0,000	0,012	0,000	0,075	0,006	0,000	0,071	0,025	0,000	0,000	0,000	0,000	1,265 0,000	0,000	0,000
Rhyacophilidae	0,000	0,000	0,000	0,000	1,049	0,000	1,136	0,000	1,840	0,000	0,000	0,000	0,049	0,000	0,000	0,069	0,000	0,037	0,000	1,252
Sericostomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,031	0,000	0,000	0,000	0,000
Copepoda	0,018	0,019	2,929 0,000	0,000	0,000	0,279	0,000	0,000	0,000	0,252 0,000	0,000	0,000	0,000	1,040	0,000	0,000	0,009	0,409	0,000	0,000
Anomopoda Pacifastacus	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,037	0,000	0,000
Helophoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nematoda	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,015	0,006	0,024	0,071	0,049	0,000	0,000	0,000	0,000	0,000	0,011	0,009
Procambarus Hydra	0,000	0,000	0,000	0,000	0,000	0,028 0,838	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000
Osmylidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gordius	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	.,	.,	.,	.,	.,,,,,,	.,,,,,,,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,

Taxón \ Código CEMAS	0159	0162	0179	0180	0205	0214	0216	0217	0218	0221	0226	0247	0504	0505	0506	0508	0529	0530	0534	0540
Dryopidae Dytiscidae	0,000	0,649	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,007	0,000 0,722	0,000	0,000	0,000	0,000	0,000 2,117
Elmidae	1,735	0,000	0,007	1,766	0,000	0,000	0,000	0,000	0,000	0,759	0,266	0,000	0,000	0,007	0,000	0,000	3,801	0,000	0,023	0,026
Gyrinidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Haliplidae Helodidae / Scirtidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	5,239	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydraenidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,129	0,000	0,000	0,000	0,000	0,000	0,000	0,185	0,000	0,023	0,555
Hydrophilidae Psephenidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Asellidae	0,000	0,000	7,983	0,000	0,000	0,000	0,013	0,008	0,015	0,000	0,000	0,214	0,022	0,000	0,000	0,000	0,000	0,011	0,000	0,026
Atydae Gammaridae	0,000	0,177 3,894	0,000	0,000 69,529	0,006 2,608	0,000 3,833	0,000	0,000	0,000	0,000 1,888	0,000	0,000	0,324	0,026 39,514	6,447 22,898	1,512 7,752	0,000	0,000 84,464	0,000 1,861	0,000
Ostracoda	0,000	0,000	0,000	0,000	0,000	0,173	4,059	0,316	0,030	0,000	0,027	0,000	0,022	0,000	0,103	0,775	0,000	0,000	0,000	0,026
Athericidae Blephariceridae	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,181	0,000	2,519 0,000	0,000
Ceratopogonidae	0,000	0,000	0,000	0,221	0,006	0,000	0,000	0,000	0,000	0,037	0,292	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Chironomidae	62,348	18,348	10,853 0,000	7,306	26,265	3,243	7,074	21,034	56,834	9,719	12,274	11,266	10,814	5,696	7,581	24,419	1,494	1,317	21,920	15,539
Culicidae Dixidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dolichopodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000
Empididae Ephydridae	0,315	0,619	0,000	0,033	0,006	0,009	0,000	0,000	0,000	1,481 0,000	1,328 0,000	0,000	0,000	0,007	0,000	0,000	0,410	0,000	0,000	0,013
Limoniidae	0,173	0,059	0,000	0,011	0,000	0,000	0,000	0,000	0,000	0,481	0,000	0,010	0,000	0,000	0,000	0,000	0,082	0,005	0,023	0,013
Muscidae Psychodidae	0,000	0,324	0,000	0,000	0,124	0,009	0,013 0,281	0,000	0,303	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,011	0,000	0,013
Rhagionidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,407	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Simuliidae Stratiomyidae	3,501 0,000	0,000	0,471 0,000	6,666 0,000	13,805 0,000	0,616	0,000	0,971	0,000	0,056	2,949 0,000	0,010	0,453	0,000	0,000	0,000	0,415	0,000	25,936 0,000	21,373 0,000
Tabanidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tipulidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,103
Baetidae Caenidae	17,986 0,016	29,115 7,729	5,411 0,927	8,023 0,022	30,885 13,369	69,526 2,992	33,159 0,322	41,926 0,347	0,000	60,496 0,000	45,962 23,114	13,487 63,726	38,053 2,396	31,563 1,733	1,392 12,120	0,116 15,465	55,784 0,427	2,716 1,057	10,098 0,000	47,161 0,000
Ephemerellidae	0,158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,074	0,000	0,000	0,065	0,000	0,000	0,000	5,636	0,000	0,000	0,000
Ephemeridae Heptageniidae	0,000 0,796	0,000 3,982	0,000	0,000	0,000 0,726	0,000 0,278	0,000	0,000	0,000	0,037 4,110	0,000 3,029	0,000	0,000 3,065	0,000 2,719	0,000	0,000	0,000 4,441	0,000 1,214	0,000 2,360	0,000 0,077
Leptophlebiidae	0,000	8,938	0,000	0,000	0,018	0,017	0,000	0,000	0,000	3,758	0,027	0,000	3,691	0,152	17,741	19,419	0,016	1,984	0,499	0,013
Oligoneuriidae Polymitarcidae	0,000	0,000 5,133	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 18,217	0,000 1,899	0,000 9,747	0,000	0,000	0,000 0,884	0,000	0,000
Potamanthidae	0,000	0,029	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,053	0,000	0,475	0,020	0,000	0,000	0,000	0,000	0,000	0,000
Siphlonuridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 1,872	0,000	0,000	0,000	0,000	0,000	0,000
Corixidae Gerridae	0,000	0,000	0,000	0,000 0,044	0,000	0,000 0,043	0,000	0,000	0,015	0,000 0,056	0,000 0,053	0,000	3,043 0,108	0,020	2,940 0,155	20,233 0,155	0,000 0,025	1,480 0,000	0,000	0,000 0,065
Hydrometridae	0,008	0,029	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Naucoridae Nepidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Notonectidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,116
Pleidae Veliidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Erpobdellidae	0,024	0,000	17,677	0,000	0,029	0,087	0,429	0,529	0,000	0,000	0,000	0,041	0,000	0,020	2,940	0,078	0,000	0,179	0,000	0,000
Glossiphoniidae	0,331	0,000	9,373	0,000	0,018	0,000	0,000	0,339	0,015	0,000	0,000	0,132	0,000	0,007	0,155	0,039	0,000	0,000	0,000	0,000
Hirudidae Sialidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ancylidae	0,197	0,118	0,022	1,611	2,413	0,043	1,112	0,024	0,000	0,037	0,000	0,000	0,281	0,542	1,289	0,000	0,000	0,000	0,227	0,813
Bithyniidae Ferrissidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,237	0,026	0,000	0,000	0,000	0,000	0,000	0,000
Hydrobiidae	0,024	0,000	0,000	0,221	0,012	0,260	12,634	0,016	0,000	0,000	0,000	0,000	0,022	0,000	0,000	0,039	0,000	0,000	0,000	0,000
Lymnaeidae Neritidae	0,000	0,000 2,183	0,000	0,011	0,000	0,000 0,199	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,116	0,000	0,000	0,000	0,800
Physidae	0,000	0,000	0,007	0,000	0,006	0,373	21,490	0,039	6,160	0,000	0,000	1,059	0,000	0,033	1,496	0,891	0,000	0,005	0,000	1,820
Planorbidae Sphaeridae	0,000	0,000	0,598 0,448	0,011 0,894	0,118	0,000	0,000 0,054	0,000	0,000	0,000	0,000	0,071 0,010	0,000 1,144	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Unionidae	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Valvatidae Hidracarina	0,000	0,000	0,613	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Aeschnidae	0,000	0,029	0,007 0,000	0,441	1,068 0,000	0,451	1,367 0,000	0,000	0,000	0,000	0,611	0,031	3,475 0,000	0,284	0,206	0,000	1,827 0,000	0,661	0,068	0,013
Calopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Coenagrionidae Cordulegasteridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,022	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gomphidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,027	0,000	0,108	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Lestidae Libellulidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta Chloroperlidae	8,540 0,000	2,389 0,000	29,995 0,000	2,251 0,000	0,726 0,000	0,191	14,402 0,000	23,086 0,000	36,537 0,000	0,093 0,148	0,080	6,998 0,000	0,022	0,946 0,000	9,541 0,000	7,558 0,000	0,004	0,060	1,021 0,000	1,097 0,000
Leuctridae	3,335	0,029	0,000	0,000	5,209	0,009	0,000	0,000	0,000	0,815	0,027	0,000	0,022	0,000	0,000	0,000	23,537	0,000	5,650	0,000
Nemouridae Perlidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,888 0,926	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,103	0,000	0,000	0,310 0,000
Perlodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,426	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Taeniopterygidae Dugesiidae	0,000	0,000	0,000 0,306	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,000 0,027	0,000	0,000 0,043	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Planariidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,759	0,000	0,000	0,043	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Beraeidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Brachycentridae Ecnomyidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Glossosomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,037	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Goeridae Hydropsychidae	0,000 0,118	0,000 16,077	0,000	0,000 0,464	0,000 1,699	0,000 16,148	0,000 2,197	0,000 11,302	0,000	0,000 0,759	0,000 9,352	0,000 1,253	0,000 13,814	0,000 12,027	0,000 0,413	0,000	0,000 0,919	0,000 3,919	0,000 21,852	0,000 5,498
Hydroptilidae	0,000	0,029	0,007	0,000	0,000	1,301	1,380	0,000	0,000	0,019	0,106	1,436	0,000	0,278	0,258	0,000	0,000	0,000	0,000	2,104
Lepidostomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leptoceridae Limnephilidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Odontoceridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Philopotamidae Polycentropodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	4,091 0,056	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 5,514	0,013 0,271
Psychomyiidae	0,000	0,000	0,000	0,000	0,242	0,000	0,000	0,000	0,000	0,019	0,000	0,041	0,000	0,066	0,000	0,000	0,000	0,000	0,000	0,000
Rhyacophilidae Sericostomatidae	0,008	0,000	0,000	0,375	0,118	0,000	0,000	0,000	0,000	0,037	0,000	0,000	0,000	0,000	0,000	0,000	0,690 0,008	0,000	0,272 0,023	0,013
Copepoda	0,000	0,000	15,285	0,000	0,000	0,173	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,774	0,078	0,000	0,005	0,000	0,000
Anomopoda Pacifastacus	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,039	0,000	0,000	0,000	0,000
Pacifastacus Helophoridae	0,000	0,000	0,000	0,033	0,000	0,000	0,000	0,000	0,000	0,130 0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nematoda	0,000	0,029	0,007	0,000	0,000	0,000	0,000	0,016	0,000	0,000	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Procambarus Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,080	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Osmylidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gordius Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,022	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Taxón \ Código CEMAS	0551	0561	0562	0564	0569	0570	0571	0572	0577	0592	0612	0618	0643	0644	0647	0649	0650	0701	0702	0703
Dryopidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,014
Dytiscidae Elmidae	0,000	0,012 20,983	0,000	0,000	0,000	0,000	0,000	0,000 4,994	0,000	0,000	0,010 4,564	0,000	0,000 7,966	0,000 2,940	0,000	0,000 3,478	0,000	0,000 12,952	0,000 9,672	0,101 4,046
Gyrinidae	0,158	0,036	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,111	0,000	0,000	0,008	0,000	0,016	0,605
Haliplidae Helodidae / Scirtidae	0,000	0,000	0,000	1,030	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000 4,182	0,000	0,000	0,000	0,000	0,000	0,000	0,014
Hydraenidae	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,038	1,362	0,083	0,000	0,000	0,000	3,432	0,158	0,000
Hydrophilidae Psephenidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,314	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Asellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Atydae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,055	0,008	0,000	0,000	0,000	0,000	0,011	0,000	0,008	0,000	0,000	0,000
Gammaridae Ostracoda	0,000	0,000	10,062 0,000	0,168 0,153	0,019	63,784 0,000	0,308 0,198	42,838 0,000	0,203	15,691 1,410	9,514 0,000	0,000	0,984	0,028	0,064 0,213	0,069	5,038	2,838	0,000	0,302
Athericidae	0,000	0,036	0,000	0,000	0,000	0,000	0,000	0,749	0,000	0,000	0,000	0,000	0,019	0,610	0,000	0,000	0,000	0,000	0,638	0,000
Blephariceridae Ceratopogonidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 1,007	0,000	0,000
Chironomidae	7,835	14,301	0,784	25,790	24,699	0,721	17,149	18,956	11,727	41,519	9,915	8,674	11,258	10,649	20,885	10,433	7,468	53,318	6,025	5,198
Culicidae Dixidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,014
Dolichopodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Empididae	0,864	0,474	0,257	0,292	0,019	0,328	0,000	0,227	0,000	0,000	1,187	0,254	0,435	1,137	0,000	0,069	0,008	0,503	0,315	0,000
Ephydridae Limoniidae	0,000	0,000 2,382	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,337	0,000	0,000 0,776	0,000 1,325	0,000 1,664	0,000	0,000 2,810	0,000	0,000	0,000 1,260	0,000
Muscidae	0,014	0,012	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,008	0,109	0,254	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Psychodidae Rhagionidae	0,000	0,000	0,000	0,292	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000	0,000	0,008	0,000
Simuliidae	1,224	3,566	1,041	0,321	0,009	0,295	0,000	0,068	11,874	0,008	2,003	43,113	1,722	1,192	0,000	2,372	0,008	1,053	1,276	5,558
Stratiomyidae	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tabanidae Tipulidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,555	0,000	0,000	0,000	0,092	0,024	0,000
Baetidae	54,371	18,543	31,200	57,167	45,423	23,997	46,813	16,595	53,573	15,316	50,445	41,002	29,763	21,159	25,173	55,090	23,684	0,549	29,220	16,775
Caenidae Ephemerellidae	5,084	11,896 0,000	9,316 0,000	1,782 2,227	0,019 0,765	0,442	0,923	0,522 0,545	1,699 0,000	5,126 0,000	0,994	0,000	1,514 0,795	13,089 1,082	5,554 0,000	1,405 9,051	2,940 0,016	0,641 2,014	0,000	3,787 0,000
Ephemeridae Ephemeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,020	0,000	0,795	0,111	0,000	0,000	0,000	0,000	0,000	0,000
Heptageniidae	0,591	8,069	11,617	0,000	0,000	0,000	0,719	0,023	0,037	0,046	4,871	0,534	7,796	3,383	1,500	0,484	6,010	0,137	4,261	18,762
Leptophlebiidae Oligoneuriidae	0,634	0,012	0,643	0,891	0,000	0,000	0,496	0,000	0,000	0,015	0,000	0,000	2,289	3,688	4,277 0,000	3,708 0,000	3,912 0,000	0,000	0,488	8,668 0,000
Polymitarcidae	0,000	0,000	9,779	0,000	0,000	0,000	11,513	0,000	0,849	0,054	0,000	0,000	0,000	0,000	28,343	0,000	31,630	0,000	0,000	0,000
Potamanthidae Siphlonuridae	0,000	0,000	0,013	0,000	0,000	0,000	0,238	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000
Corixidae	0,000	0,036	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,628	0,005	0,000	0,000	0,000	0,660	0,000	0,000	0,000	0,165	0,029
Gerridae	0,014	0,047	0,039	0,000	0,009	0,011	0,020	0,000	0,018	0,046	0,005	0,000	0,038	0,277	0,000	0,023	0,073	0,137	0,095	0,043
Hydrometridae Naucoridae	0,000	0,000 0,047	0,000	0,000	0,009	0,000	0,000	0,000	0,037	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,016 0,000	0,000	0,000	0,000
Nepidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,018	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,014
Notonectidae	0,000	0,000	0,000	0,007	0,019	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pleidae Veliidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Erpobdellidae	0,000	0,000	0,565	0,102	0,019	0,000	0,020	0,000	0,277	0,061	0,307	0,000	0,000	0,000	0,543	0,000	0,178	0,000	0,000	0,000
Glossiphoniidae Hirudidae	0,000	0,000	0,000	0,051	0,047 0,000	0,000	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,083	0,021	0,000	0,024	0,000	0,000	0,000 0,029
Sialidae	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ancylidae	0,302	0,770	0,064	0,445	6,924	0,000	0,233	0,068	0,037	0,046	0,000	0,000	0,000	0,111	0,000	0,138	0,049	0,000	0,087	0,000
Bithyniidae Ferrissidae	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydrobiidae	0,331	0,569	0,771	0,015	2,809	0,027	0,600	0,386	0,000	0,153	3,462	0,000	0,000	0,000	0,000	0,000	0,170	0,046	0,008	0,000
Lymnaeidae Neritidae	0,000	0,012	0,000	0,000	0,009	0,000	0,000	0,000	0,388	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000 0,016	0,000	0,000	0,000
Physidae	0,000	0,237	0,000	0,314	0,065	0,000	0,015	0,000	0,018	2,774	0,005	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000
Planorbidae	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sphaeridae Unionidae	0,000	0,261 0,000	0,000	0,314	4,106 0,000	0,000	0,501	0,000	0,018	0,345	0,000	0,000	0,000	0,000	0,021	0,000	0,211	0,000	0,158	0,000
Valvatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hidracarina Aeschnidae	0,879 0,000	2,879 0,071	0,039	1,490 0,000	1,344 0,000	0,000	0,412	0,045	0,000	0,322	1,592 0,000	0,013	0,378	0,610 0,194	0,234	0,000	0,988	3,341 0,000	3,166 0,008	0,043
Calopterygidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,023	0,000	0,000	0,000	0,000
Coenagrionidae Cordulegasteridae	0,000	0,000	0,000	0,000	0,028	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gomphidae	0,000	0,059	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,055	0,000	0,000	0,000	0,000	0,000	0,000
Lestidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Libellulidae Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta	1,080	0,735	0,373	1,935	11,039	0,022	2,108	3,700	1,514	3,907	1,909	0,000	0,568	3,356	1,724	9,097	0,834	4,760	1,118	0,590
Chloroperlidae Leuctridae	0,000 0,317	0,000 4,514	0,000	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,038 17,673	0,000 28,314	0,000	0,000 1,013	0,000	0,000 10,252	0,000 24,644	0,000 2,333
Nemouridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,280	0,378	0,055	0,000	0,000	0,000	0,000	0,000	0,000
Perlidae Perlodidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	3,167 0,013	5,279 0,000	0,028 0,028	0,000	0,000 0,023	0,000	0,000	0,165	0,000
Taeniopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,028	0,000	0,023	0,000	0,000	0,000	0,000
Dugesiidae	0,000	0,273	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,111	0,000	0,000	0,000	0,000	0,032	0,000
Planariidae Beraeidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,038	0,055	0,000	0,000	0,000	0,000	0,000	0,000
Brachycentridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,028	0,000	0,000	0,000	0,000	0,000	0,000
Ecnomyidae Glossosomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Glossosomatidae Goeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydropsychidae	24,845	4,408	17,078	0,321	0,009	10,238	17,238	9,217	17,599	6,612	7,398	0,051	0,795	0,111	10,448	0,000	16,621	0,366	12,168	32,945
Hydroptilidae Lepidostomatidae	0,720 0,000	2,156 0,000	0,013	3,417 0,000	0,028	0,071	0,000	0,000	0,000	0,008	0,025	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,014
Leptoceridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Limnephilidae	0,000	0,012	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,568	0,721 0,000	0,000	0,000	0,000	0,000	0,000	0,000
Odontoceridae Philopotamidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,057 0,189	0,000	0,000	0,000	0,000	0,000	2,867	0,000
Polycentropodidae	0,000	0,983	0,026	0,183	0,933	0,000	0,000	0,000	0,000	0,000	0,198	0,000	0,076	1,442	0,000	0,046	0,000	0,000	0,488	0,000
Psychomyiidae Rhyacophilidae	0,000	0,972 0,296	4,909 1,311	0,000	0,000	0,000	0,000	0,000 0,499	0,000	0,000	1,093 0,109	0,000	0,000 0,795	0,055 0,083	0,000	0,000	0,008	0,046 2,151	0,347 0,953	0,000
Sericostomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,568	0,638	0,000	0,000	0,000	0,000	0,000	0,000
Copepoda	0,000	0,000	0,000	0,007	0,746	0,000	0,005	0,000	0,000	4,451	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Anomopoda Pacifastacus	0,000	0,000	0,000	0,000	0,000 0,224	0,000	0,000	0,000	0,000	0,766 0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,023	0,000	0,000 0,046	0,000	0,000
Helophoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nematoda Procambarus	0,000	0,000	0,000	0,000	0,037	0,000	0,005	0,023	0,018	0,000	0,000	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Osmylidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gordius Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Taxón \ Código CEMAS	0802	0804	0808	0815	0816	1017	1024	1025	1028	1034	1036	1037	1038	1039	1045	1047	1056	1062	1064	1065
Dryopidae Dytiscidae	0,000	0,000	0,000	0,025	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,014	0,020	0,000	0,000	0,000	0,000	0,000
Elmidae	5,670	16,271	2,144	2,572	10,037	9,937	0,459	0,000	0,000	3,533	0,349	2,364	0,000	0,423	1,985	8,884	12,216	2,755	6,765	23,483
Gyrinidae	0,000	0,000	0,065	0,000	0,000	0,000	0,000	0,014	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,848	0,000	0,012	0,000	0,036
Haliplidae Helodidae / Scirtidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,000
Hydraenidae	0,000	0,619	0,000	0,773	0,000	1,582	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,546	0,000	0,000	1,088
Hydrophilidae Psephenidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,393	0,000	0,000	0,000	0,000	0,000
Asellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,230	0,009	5,898	0,000	0,000	0,033	0,012	0,007	0,000	0,000	0,000	0,012	0,000	0,000
Atydae Gammaridae	0,000 14,575	0,000	0,000 6,572	0,000 2,293	0,000	0,000 1,850	0,000 0,252	0,000 8,617	0,000	0,000 49,899	0,000	0,000 6,599	0,000	0,000	0,000	0,000	0,000	0,000 7,005	0,000 27,325	0,000
Ostracoda	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,655	0,000	0,000	0,017	0,033	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Athericidae Blephariceridae	0,000	2,221	0,000	0,025	3,415 0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,197	0,075	0,045	4,567 0,000
Ceratopogonidae	0,000	0,008	0,008	0,038	0,000	0,657	1,115	0,000	0,000	0,000	0,004	0,000	0,000	0,273	0,432	0,000	0,000	0,000	0,000	0,009
Chironomidae Culicidae	25,601 0,000	15,041 0,000	6,572 0,000	27,426 0,000	11,605 0,000	37,929 0,000	34,270 0,000	17,637 0,000	19,503 0,000	0,976	7,107 0,000	12,311 0,000	22,759 0,000	25,288 0,000	5,937 0,000	15,822 0,000	8,084 0,000	19,968 0,000	39,742 0,000	6,131 0,000
Dixidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,039	0,000	0,000	0,000	0,000	0,009
Dolichopodidae Empididae	0,000 1,742	0,000 1,702	0,000	0,000 0,785	0,000	0,000	0,011	0,000	0,603	0,000	0,004 0,017	0,000	0,234	0,000 0,416	0,020	0,000	0,000	0,000	0,000	0,000
Ephydridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Limoniidae Muscidae	0,022	0,008	0,025	1,039	6,656 0,000	0,597	0,011	0,000	0,000	0,034	0,009	0,361 0,033	0,000	0,020	3,165 0,000	2,313	0,733	0,012	0,579	1,447 0,000
Psychodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,269	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Rhagionidae Simuliidae	0,000 1,591	0,000	0,000	0,000 1,317	0,000	0,000 4,536	0,000	0,000	0,000	0,000	0,000 21,597	0,000 1,773	0,000	0,000 24,251	0,000	0,000	0,000 0,197	0,000	0,000	0,000
Stratiomyidae	0,000	3,250 0,000	0,000	0,291	0,000	0,030	5,828 0,000	56,806 0,000	0,000	6,864 0,000	0,000	0,000	2,642 0,000	0,000	6,074 0,000	0,000	0,000	0,000	3,649 0,000	0,000
Tabanidae	0,000	0,023	0,000	0,025	0,035	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,224	0,000	0,000	0,090
Tipulidae Baetidae	0,011 3,690	0,000 14,120	0,000 15,934	0,013 42,387	0,000 13,208	0,000 5,163	0,000 23,937	0,000 5,073	0,000	0,034 6,528	0,000 28,770	0,033	0,000 51,175	0,020 40,910	0,000	0,000 36,230	0,000 7,557	0,000 50,642	1,469 6,275	0,009 19,114
Caenidae	9,154	0,155	1,809	0,000	0,017	13,817	0,066	1,239	8,281	0,000	0,367	0,066	1,438	0,007	2,359	3,469	0,018	1,059	0,045	0,036
Ephemerellidae Ephemeridae	0,000	1,099	1,007 0,000	1,051 0,127	0,052	5,491 0,000	1,148	0,192	0,000	0,000	0,000	0,000	0,000	5,546 0,000	0,806	0,039	0,009	1,533 0,012	0,979	2,706 0,225
Heptageniidae	0,671	9,006	50,168	0,051	6,203	0,119	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	11,441	13,509	10,571	3,266	0,089	2,535
Leptophlebiidae Oligoneuriidae	0,011	0,000	1,326 1,645	1,799 0,000	0,052	0,000	0,241	0,000	0,000	0,000	0,000	0,000	0,000	0,020	0,000	0,039 1,021	0,563	0,075	0,000	0,189
Polymitarcidae	0,043	0,000	1,661	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,335	0,000
Potamanthidae Siphlonuridae	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,000	0,000	0,000	0,000
Corixidae	0,000	0,000	0,000	0,013	0,035	0,030	0,000	0,954	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,790	0,009	0,773	0,089	0,548
Gerridae Hydrometridae	0,011	0,062	0,065	0,051	0,052	0,000	0,000	0,005	0,000	0,000	0,013	0,886	0,035	0,000	0,000	0,096	0,018	0,037	0,089	0,036
Naucoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,009
Nepidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009
Notonectidae Pleidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Veliidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000
Erpobdellidae Glossiphoniidae	0,000	0,000	0,000	0,025	0,000	0,000	0,011 3,477	0,000	0,000	2,288 0,034	0,026 0,105	0,000	0,000	0,061	0,000	0,000	0,000	0,000	0,000	0,009
Hirudidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sialidae Ancylidae	0,000	0,000	0,000	0,000	0,017 0,000	0,000	0,000	0,098 1,038	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,712	0,054 0,036
Bithyniidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000
Ferrissidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydrobiidae Lymnaeidae	12,811 0,054	0,000	0,982	0,038 0,076	0,017 0,000	0,060	1,115 0,000	0,753	0,000	0,034	36,973 0,000	8,733 0,000	5,178 0,000	0,280 0,853	0,000	0,000	0,009	0,012	0,000	0,000 0,018
Neritidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,131	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,012	0,089	0,000
Physidae Planorbidae	0,022	0,000	0,000	0,000	0,000	0,000	1,586 0,000	0,472 0,005	0,309	0,000	0,022	0,000	0,023	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sphaeridae	0,000	0,008	0,827	0,025	0,000	0,000	0,000	3,755	1,177	2,927	0,013	0,000	0,012	0,409	0,000	0,000	0,000	0,000	0,045	0,360
Unionidae Valvatidae	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hidracarina	9,338	7,133	0,360	1,330	6,743	2,745	0,000	0,285	0,000	1,413	0,096	0,000	0,000	0,000	0,039	3,874	10,213	2,032	0,089	1,447
Aeschnidae Calopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,033	0,000	0,000	0,000	0,000	0,036	0,000	0,000	0,000
Coenagrionidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,018
Cordulegasteridae Gomphidae	0,000	0,000 0,015	0,000 0,016	0,000	0,000 0,261	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,019	0,000 0,125	0,000	0,000	0,000 0,027
Lestidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Libellulidae Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta	1,104	0,936	1,146	3,560	1,167	6,356	25,271	0,743	28,887	1,211	3,842	1,018	1,461	0,832	0,472	0,790	0,215	0,785	3,115	2,355
Chloroperlidae Leuctridae	0,000 2,186	0,000 18,754	0,000 1,981	0,000 10,692	0,000 25,597	0,000 8,207	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 24,808	0,000 2,717	0,000 24,209	0,000 7,765	0,000 2,359	0,000 26,558
Nemouridae	0,000	0,936	0,000	0,025	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	6,035	0,000	0,000	0,000	0,000	0,027
Perlidae Perlodidae	0,000	2,499 0,000	0,008	0,025	0,035	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,059 0,118	0,443	0,411	0,000	0,000	0,018
Taeniopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dugesiidae Planariidae	0,032	0,000	0,000	0,266	0,000	0,000	0,000	0,000	0,941 0,015	0,000 0,168	0,000	0,000	0,000	0,000	0,000 0,432	0,019	0,000	0,000 0,012	0,089	0,000
Beraeidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,034	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009
Brachycentridae Ecnomyidae	0,000	0,015	0,016	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Glossosomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	21,770	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,045
Goeridae	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,740	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,387
Hydropsychidae Hydroptilidae	7,401 2,597	5,632 0,000	3,454 0,679	0,013 0,507	9,810 0,000	0,657 0,030	0,000	0,000	2,089 0,000	0,000	0,183 0,013	1,707 0,361	14,681 0,023	0,007 0,041	1,199 0,000	4,683 2,313	22,983 0,018	0,511	0,935 0,445	0,063
Lepidostomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leptoceridae Limnephilidae	0,000	0,000	0,000	0,000	0,070	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,025	0,045	0,360 0,494
Odontoceridae	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Philopotamidae Polycentropodidae	0,000 1,093	0,000	0,000 0,843	0,000	0,558 2,492	0,000	0,000	0,000	0,000	0,000	0,000 0,087	0,000	0,000	0,000	0,000	0,019 0,385	0,367 0,054	0,037	0,000	0,378 0,072
Psychomyiidae	0,011	0,000	0,491	0,013	1,812	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,542	0,009	0,000	2,670	0,027
Rhyacophilidae Sericostomatidae	0,227	0,371 0,070	0,008	1,039 0,076	0,017 0,000	0,179 0,000	0,000	0,304	0,000	0,000	0,004	0,427	0,000	0,014	0,826	0,058	0,018	0,100	0,623	1,268
Sericostomatidae Copepoda	0,000	0,070	0,000	0,076	0,000	0,000	0,000	0,000	0,000	0,034	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,063 0,000
Anomopoda	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,860	0,059	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pacifastacus Helophoridae	0,000	0,000	0,000	0,000 0,013	0,000	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,020	0,000	0,000	0,000	0,000	0,000
Nematoda	0,000	0,000	0,000	0,013	0,000	0,000	0,875	0,009	0,029	0,000	0,000	0,000	0,000	0,014	0,000	0,000	0,000	0,012	0,045	0,198
Procambarus Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Osmylidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gordius Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Taxón \ Código CEMAS	1070	1072	1087	1088	1089	1090	1092	1120	1121	1122	1123	1127	1130	1132	1133	1135	1137	1139	1140	1157
Dryopidae Dytiscidae	0,000	0,000	0,000	0,000	0,000 0,062	0,009	0,000	0,000 0,158	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 9,446	0,000
Elmidae	2,273	1,789	0,637	4,587	43,389	13,340	8,472	2,043	0,789	2,294	9,845	1,305	0,625	3,865	2,614	2,079	10,306	2,133	1,107	0,000
Gyrinidae	0,000	0,020	0,000	0,000	0,000	0,000	0,005	0,000	0,032	0,000	0,000	0,345	0,000	0,000	0,000	0,017	0,000	0,000	0,000	0,000
Haliplidae Helodidae / Scirtidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydraenidae	0,023	1,581	0,000	0,000	0,000	0,000	0,005	0,000	0,032	0,000	0,000	0,767	0,448	0,000	0,000	0,000	4,240 0,000	0,000	0,000	0,000
Hydrophilidae Psephenidae	0,000	0,000	0,000	0,000	0,021	0,000	0,000	0,000	0,032	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Asellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Atydae Gammaridae	0,045	0,000 14,468	0,000	0,000	0,000	0,000	0,010 9,580	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,111
Ostracoda	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,014	0,000	0,000	0,000	0,000	0,000
Athericidae Blephariceridae	0,955	0,464 0,277	0,000	0,000	0,021	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,448	0,000	0,000	0,000	0,000	0,000	0,037	0,000
Ceratopogonidae	0,000	0,010	0,015	0,000	0,000	0,000	0,005	0,007	0,000	0,000	35,480	0,000	0,000	0,019	0,000	0,000	0,380	0,000	0,111	0,012
Chironomidae Culicidae	6,909 0,000	3,795 0,000	1,378	1,945 0,000	48,962 0,000	16,623 0,000	6,054 0,000	4,633 0,000	2,273 0,000	4,174 0,000	10,774 0,000	9,094 0,000	8,180 0,000	41,602 0,000	29,704 0,000	2,743	1,179 0,000	5,419 0,000	29,004 0,037	24,960 0,000
Dixidae	0,000	0,010	0,015	0,000	0,000	0,000	0,000	0,000	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,074	0,000
Dolichopodidae Empididae	0,000	0,000	0,000	0,000 1,033	0,000 6,375	0,000	0,000	0,000	0,000	0,000	0,000	0,000 3,454	0,000	0,000	0,000	0,000 2,045	0,000	0,000	0,000	0,000
Ephydridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Limoniidae Muscidae	1,023	0,840	1,363	0,024	0,144	1,842	0,010 0,104	0,151	0,032	0,000	0,124	0,038	0,427	0,006	0,014	0,358	0,000	0,058	0,369	0,000
Psychodidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Rhagionidae Simuliidae	0,000 22,364	0,040 25,941	0,000 31,372	0,000 8,429	0,000	0,000 3,164	0,000 11,047	0,000 20,063	0,000 3,663	0,000 8,009	0,000	0,000 21,163	0,000 31,354	0,000 2,265	0,000 3,232	0,000	0,000 6,940	0,000	0,000	0,000
Stratiomyidae	0,000	0,010	0,000	0,000	0,021	0,000	0,000	0,007	0,032	0,000	0,062	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tabanidae Tipulidae	0,023	0,000	0,000	0,024	0,000	0,027	0,005	0,000	0,158	0,038	0,000	0,000	0,000	0,012	0,101 0,043	0,017	0,000	0,019	0,037	0,000
Baetidae	26,409	25,516	53,601	13,521	0,021	35,260	31,513	49,874	56,331	50,141	0,248	32,329	36,678	33,300	4,338	35,883	41,168	38,028	9,631	39,808
Caenidae Ephemerellidae	1,409 1,432	1,196 2,392	0,000	1,201 1,729	0,000	9,556 0,009	2,616 0,229	0,022	0,000	0,019 1,748	5,387 0,000	0,038 1,170	0,010	1,508	2,313 0,086	0,017	1,635 0,399	4,247 0,000	0,037 8,118	3,219 0,000
Ephemeridae	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,148	0,000
Heptageniidae	10,068	5,564 0,800	1,941 0,000	15,442 0,000	0,000	0,939	12,716 0,000	6,201	12,978	10,867 3,384	0,124 9,288	3,127 0,000	13,400	7,582 0,006	3,476 0,014	30,465 0,000	19,091 0,000	15,430 0,019	0,074 6,015	0,543 3,749
Leptophlebiidae Oligoneuriidae	0,000	0,000	0,000	0,000	0,000	0,009	7,874	0,000	0,000	1,297	0,000	0,000	0,000	0,000	0,000	11,194	0,000	3,478	0,000	0,000
Polymitarcidae	0,000	0,000	0,000	0,000	0,000	0,000	0,109	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	13,651
Potamanthidae Siphlonuridae	0,000	0,000	0,000	0,000	0,000	0,000	0,021	0,000	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,114 0,000	0,000	2,331
Corixidae	0,932	0,000	0,000	0,000	0,000	0,027	0,000	0,000	5,052	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,000	0,049
Gerridae Hydrometridae	0,023	0,020	0,000	0,000	0,123	0,091	0,000	0,000	0,410	0,000	0,062	0,000	0,000	0,000	0,086	0,000	0,000	0,077	0,517	0,025
Naucoridae	0,000	0,000	0,000	0,000	0,000	0,036	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nepidae Notonectidae	0,000	0,000	0,000	0,000	0,021	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pleidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Veliidae Erpobdellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 4,392	0,000	0,480	0,000
Glossiphoniidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hirudidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sialidae Ancylidae	0,000 0,114	0,000 0,504	0,000	0,000	0,000	0,036 0,191	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,017	0,000	0,000	0,996	0,000
Bithyniidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ferrissidae Hydrobiidae	0,000	0,000	0,000	0,000	0,000	0,000 0,191	0,000	0,000	0,000	0,000	0,000 1,300	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Lymnaeidae	0,000	0,000	0,015	0,000	0,021	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,006	1,738	0,000	0,000	0,000	0,000	0,000
Neritidae Physidae	0,000	0,000	0,000	0,000	0,000	0,000 3,492	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Planorbidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sphaeridae Unionidae	0,045	0,000	0,000	0,000	0,288	0,729	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,406	0,012
Valvatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hidracarina Aeschnidae	0,045	0,623	0,015	1,513 0,000	0,021	2,042 0,027	0,218	6,798 0,000	3,284 0,000	2,294 0,000	4,458 0,000	1,938 0,000	2,344 0,000	2,625 0,006	26,817 0,000	2,096 0,000	1,179 0,000	0,596 0,000	0,000	0,025
Calopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,058	0,000	0,000
Coenagrionidae Cordulegasteridae	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,000 0,111	0,000
Gomphidae	0,091	0,000	0,000	0,000	0,000	0,046	0,000	0,000	0,000	0,000	0,372	0,000	0,000	0,000	0,000	0,000	0,000	0,653	0,000	0,000
Lestidae Libellulidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta Chloroperlidae	2,318 0,000	1,216 0,395	0,000	0,024	0,021	0,739	0,005	0,014	0,158	1,974 0,000	0,557	0,058 0,403	0,000 0,448	0,267 0,000	2,614 0,000	1,380 0,000	0,019	0,038	1,550 0,000	0,025
Leuctridae	18,227	5,396	0,000	34,174	0,000	1,660	0,322	7,949	10,073	11,393	3,467	4,624	2,344	4,505	14,737	5,538	4,221	0,596	30,590	0,000
Nemouridae Perlidae	0,000	0,198 0,702	1,793 1,823	4,443 1,825	0,000	0,000	0,000	0,151 0,187	0,063 0,410	0,019 0,808	0,000	0,058 5,334	0,844 0,927	0,000	0,000 0,388	0,000 3,800	3,461 1,103	0,000 0,058	0,074 0,000	0,000
Periodidae Perlodidae	0,000	0,702	1,378	0,000	0,000	0,000	0,000	0,187	0,410	0,000	0,000	0,000	0,417	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Taeniopterygidae Dugesiidae	0,000 0,023	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Planariidae	0,000	2,392	0,000	0,288	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Beraeidae Brachycentridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,019	0,000	0,000
Ecnomyidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,681	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Glossosomatidae	0,000	0,069	0,000	0,312	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,767	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Goeridae Hydropsychidae	0,000 3,682	0,010	0,000 2,579	0,000 8,525	0,000	0,000 6,802	0,000 6,382	0,000 0,734	0,000 2,273	0,000 0,451	0,000 4,025	0,000 9,651	0,000 0,844	0,000 1,644	0,000 2,356	0,000	0,000	0,000 26,653	0,000	0,000 11,432
Hydroptilidae	0,023	0,020	0,000	0,000	0,000	0,009	1,878	0,000	0,095	0,000	3,096	2,686	0,000	0,124	0,014	0,000	0,000	0,211	0,000	0,000
Lepidostomatidae Leptoceridae	0,000 0,114	0,000	0,000	0,024	0,000 0,041	0,000	0,000	0,014	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,716 0,000	0,000	0,000	0,000	0,000
Limnephilidae	0,000	0,030	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,014	0,000	0,000	0,000	0,000	0,000
Odontoceridae Philopotamidae	0,000	0,227 2,224	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000 3,220	0,000	0,000	0,000	0,000	0,000	0,095	0,000	0,000	0,000
Polycentropodidae	0,136	0,010	0,000	0,000	0,000	0,374	0,016	0,000	0,063	0,000	6,749	0,000	0,000	0,130	0,000	0,000	0,000	0,000	0,074	0,000
Psychomyiidae Rhyacophilidae	0,023	0,000	0,000 1,023	0,000 0,576	0,000	2,006 0,146	0,005 0,655	0,007 0,158	0,000 0,126	0,000 0,677	0,000	0,000 1,612	0,000	0,124 0,031	0,000	0,000	0,019 0,019	0,000	0,000	0,012
Sericostomatidae	0,000	0,030	0,000	0,144	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,052	0,000	0,014	0,000	0,038	0,000	0,000	0,000
Copepoda Anomopoda	0,000	0,000	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	4,884 0,000	0,000	0,000	0,000	0,000	0,000
Pacifastacus	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Helophoridae Nematoda	0,000	0,000	0,015	0,000	0,021 0,000	0,000	0,000	0,000	0,000 0,032	0,000 0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Procambarus	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Osmylidae Gordius	0,000	0,000	0,000	0,000 0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,006	0,000	0,000	0,000	0,000	0,000	0,000
Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena Spongillidae	0,000 0,000	0,000 0,000	0,000	0,000	0,000	0,000 0,000	0,000 0,000	0,000 0,000	0,000 0,000	0,000 0,000	0,000	0,000 0,000	0,000 0,000	0,000	0,000	0,000 0,000	0,000 0,000	0,000	0,000 0,000	0,000

Taxón \ Código CEMAS	1164	1219	1251	1252	1270	1277	1280	1285	1295	1296	1306	1307	1308	1309	1311	1314	1315	1317	1347	1351
Dryopidae Dytiscidae	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,012	0,000
Elmidae	0,000	13,104	5,956	0,007	0,623	0,025	1,025	1,512	0,000	0,000	0,000	0,210	0,000	0,046	0,000	5,934	0,232	0,585	1,935	0,000
Gyrinidae Haliplidae	0,000	0,000	0,000	0,000	0,000	0,000	0,050	0,056	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Helodidae / Scirtidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydraenidae Hydrophilidae	0,000	0,000	0,000	0,000	0,023	0,012	0,000	0,000	0,000	0,000	0,056	0,010	0,000	0,015	0,000	0,000	0,029	0,000	0,000	0,000 0,181
Psephenidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Asellidae	0,000 1,421	0,000	0,000	0,007	0,000	0,012	0,000	0,000	0,000	0,000 0,014	1,122 0,056	0,000	0,000	0,000	0,022	0,020	0,000	0,000	0,000	0,000
Atydae Gammaridae	12,514	4,321	24,074	50,021	0,000	2,255	0,000	0,000	0,000	0,000	0,000	0,107	0,000	83,328	0,000	35,822	2,138	35,289	6,594	0,000
Ostracoda	0,109	0,000	0,000	0,209	0,000	1,232	0,000	0,000	0,033	1,427	0,000	0,925	0,031	0,000	0,000	0,000	0,010	0,000	0,006	0,000
Athericidae Blephariceridae	0,000	0,163	0,000	0,000	4,162 0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,629	0,000	0,000	0,000
Ceratopogonidae	0,000	0,148	0,000	0,007	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,020	0,000	0,000	0,006	0,000
Chironomidae Culicidae	42,459 0,000	3,110 0,000	1,970 0,000	3,643 0,000	14,345 0,000	20,754 0,000	31,783 0,000	45,633 0,000	19,745 0,000	31,207 0,000	31,257 0,000	18,753 0,000	14,700 0,000	0,944	25,463 0,000	0,438	24,117 0,000	5,096	7,311	2,952 0,000
Dixidae	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dolichopodidae Empididae	0,000	0,000	0,000	0,000	0,000 1,367	0,000	0,000	0,000	0,011	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ephydridae	0,055	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,574	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Limoniidae Muscidae	0,109	0,000	0,000	0,000	0,790	0,025	0,250	0,056	0,066	0,000	0,000 1,684	0,005	0,000	0,460	0,000	0,199	0,029	0,000	0,119	0,000
Psychodidae	0,055	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	4,021
Rhagionidae Simuliidae	0,000	0,000	0,000	0,000	0,000 19,228	0,000 5,226	0,000	0,000	0,000	0,000	0,000	0,000 4,624	0,000 6,841	0,000	0,000	0,000 1,254	0,000 1,799	0,000 8,011	0,000 7,550	0,000
Stratiomyidae	0,000	0,000	0,000	0,000	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tabanidae Tipulidae	0,000	0,000	0,000	0,000	0,000	0,000	0,250 0,563	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Baetidae	0,055	8,480	60,284	29,932	15,986	37,318	28,207	5,263	40,875	17,723	19,978	68,988	53,251	8,148	24,537	30,327	60,443	24,271	52,031	0,036
Caenidae	6,995 0,000	0,177	0,013	0,000	0,000	8,960 0,012	11,328 0,000	2,296	0,813	30,032 0,000	14,927 0,000	0,112	0,740	0,176	3,319	9,916 0,000	0,048	0,000	0,848	0,000
Ephemerellidae Ephemeridae	0,000	0,325	0,000	0,000	1,238	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,011	0,000	0,793	0,000	0,000	0,000
Heptageniidae	4,098	0,044	0,020	0,000	7,321	0,000	0,038	1,176	0,901	0,000	0,112	0,000	0,000	4,151	0,011	1,454	2,554	22,927	4,551	0,000
Leptophlebiidae Oligoneuriidae	7,869 0,000	0,000	0,000	0,000	3,820 0,000	0,000	0,013	4,759 0,000	0,011	0,028	5,443 0,000	0,118	0,031	0,008	0,000	0,000	0,406	0,000	0,000	0,000
Polymitarcidae	1,202	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,176	0,336	15,657	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Potamanthidae Siphlonuridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,842	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Corixidae	7,596	0,000	0,000	0,000	0,000	0,099	0,075	5,095	0,000	0,000	0,000	0,210	0,031	0,153	0,000	0,000	0,019	0,080	0,012	0,000
Gerridae Hydrometridae	0,109	0,037	0,007	0,244	0,000	0,037	0,125 0,025	0,112	0,000	0,000	0,168	0,020	0,647	0,061	0,011	0,060	0,019	0,040	0,018	0,000
Naucoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nepidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Notonectidae Pleidae	0,000	0,000	0,000	0,000	0,000	0,049 0,012	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Veliidae	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Erpobdellidae Glossiphoniidae	0,055 0,328	0,000 0,044	0,013	0,000	0,000	0,000	0,013	0,000	0,077 0,165	0,042 0,028	0,000 0,112	0,010 0,005	0,062	0,000	0,550 0,054	0,020 1,434	0,000	0,000	0,735	0,598 0,054
Hirudidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sialidae Ancylidae	0,000	0,000	0,000 0,007	0,000 0,007	0,000	0,000	0,000	0,224	0,000	0,000	0,000 0,056	0,010	0,000	0,000	0,000 1,325	0,060	0,397 0,252	0,000 0,067	0,006	0,000 0,833
Bithyniidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,056	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ferrissidae Hydrobiidae	0,000	0,000 64,529	0,000 3,855	0,000 13,611	0,000	0,000 5,706	0,000	0,000	0,000	0,000	0,000	0,000 2,764	0,000 3,082	0,000	0,000 0,442	0,000	0,000	0,000	0,000 0,239	0,000 64,101
Lymnaeidae	0,000	0,000	0,000	0,000	0,000	0,012	2,063	0,000	0,000	0,000	0,000	0,823	0,000	0,000	0,000	0,000	0,000	0,000	0,000	16,356
Neritidae	1,585	0,000	0,000	0,042	0,000	0,000	0,000	0,000	0,000	0,014	0,000	0,000	0,000	0,000	0,000	0,418	0,000	0,000	0,000	0,000
Physidae Planorbidae	8,743 0,000	0,000	0,000	0,000	0,000	2,280 0,000	1,525 0,000	0,000	0,000	0,070 0,000	0,056	0,327	0,000	0,000	0,700 0,000	0,000	0,000	0,000	0,000	0,000 1,648
Sphaeridae	0,000	0,148	0,020	0,495	0,000	0,000	0,000	0,000	0,000	0,000	0,056	0,015	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,725
Unionidae Valvatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hidracarina	0,055	0,901	0,007	0,000	3,053	0,776	1,038	0,056	0,000	0,014	1,515	0,419	3,821	0,614	0,668	1,235	0,793	0,027	0,000	0,000
Aeschnidae Calopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Coenagrionidae	0,000	0,000	0,000	0,000	0,000	2,243	0,038	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cordulegasteridae Gomphidae	0,000	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Lestidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Libellulidae Platycnemididae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Oligochaeta	3,169	1,093	0,190	1,616	0,000	1,023	1,750	3,415	14,669	2,602	4,714	0,526	3,236	0,184	22,597	3,007	1,964	0,306	3,004	7,191
Chloroperlidae	0,000	0,000	0,000	0,000	1,678	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leuctridae Nemouridae	0,000 0,000	0,177 0,000	0,000 0,263	0,000	4,283 1,109	0,012 0,000	0,038 0,000	25,364 0,000	0,000	0,000	0,561 0,000	0,015 0,000	0,000	0,330 0,000	0,000	0,000	0,803 0,000	0,000	0,000	0,000
Perlidae Perlodidae	0,000	0,000	0,000	0,000	0,015 16,912	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Taeniopterygidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dugesiidae	0,000	0,000	0,000	0,000	0,000 0,782	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Planariidae Beraeidae	0,000	0,000	0,000	0,000	0,782	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Brachycentridae	0,000	0,000	0,000	0,000	0,000	0,037	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ecnomyidae Glossosomatidae	0,000	0,000	0,000 0,158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Goeridae	0,000	0,000	0,000	0,000	0,152	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydropsychidae Hydroptilidae	0,055	1,972 0,318	1,517 0,000	0,153 0,007	0,463	1,097 7,407	3,813 2,513	0,000 0,056	22,415 0,022	9,288 0,574	1,347 0,000	0,255 0,204	9,800 0,123	0,783 0,184	19,731 0,011	7,248 0,856	0,029	2,688 0,000	14,365 0,000	0,018 0,181
Lepidostomatidae	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leptoceridae Limnephilidae	0,000	0,000 0,015	0,000	0,000	0,000 2,438	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,031	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Odontoceridae	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Philopotamidae Polycentropodidae	0,000	0,000	0,020	0,000	0,000	0,000	0,000	0,000 4,871	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 1,577	0,000 0,013	0,000 0,012	0,000
Polycentropodidae Psychomyiidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,015	0,000	0,100	0,000	0,000	0,012	0,000
Rhyacophilidae	0,000	0,177	0,427	0,000	0,023	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,060	0,039	0,000	0,000	0,000
Sericostomatidae Copepoda	0,000 1,093	0,007 0,000	0,158	0,000	0,167 0,000	0,000 0,493	0,000	0,000	0,000	0,000 0,014	0,000	0,000	0,000 3,082	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Anomopoda	0,000	0,000	0,000	0,000	0,000	2,218	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pacifastacus Helophoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,010 0,005	0,000	0,000	0,011	0,000	0,000	0,027	0,000	0,000
Nematoda	0,000	0,000	0,000	0,000	0,000	0,000	0,500	0,000	0,000	0,000	0,056	0,000	0,000	0,000	0,442	0,000	0,010	0,000	0,000	0,380
Procambarus Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,725
Osmylidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gordius Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 5,693	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Taxón \ Código CEMAS	1382	1393	1398	1399	1417	1422	1423	1435	1446	1448	1476	1520	2005	2006	2012	2013	2014	2015	2029	2060
Dryopidae	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,018	0,000	0,000	0,000	0,000	0,034	0,000	0,450	0,017	0,000	0,026	0,000	0,000
Dytiscidae Elmidae	0,040	0,006 4,883	0,030 0,819	0,000 8,043	1,430 0,102	11,696 0,000	0,000 6,490	0,036 8,222	0,000 6,853	0,012 17,895	0,000 1,515	0,000	0,017 6,203	0,000 6,480	0,000 18,476	0,000 11,401	0,025 9,990	0,000 7,224	0,045 9,300	0,000 0,351
Gyrinidae	0,000	0,012	0,071	0,000	0,000	0,000	0,000	0,018	0,000	0,000	0,000	0,000	0,017	0,000	0,044	0,000	0,000	0,000	0,000	0,000
Haliplidae Helodidae / Scirtidae	0,000	0,000 0,122	0,000	0,297	0,000	0,000	0,000 1,116	0,000	0,000 3,197	0,000 1,968	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,033
Hydraenidae	0,000	1,868	0,000	0,039	0,000	0,011	0,033	0,397	1,836	5,581	0,000	0,170	0,034	0,292	4,804	0,192	0,000	0,000	0,018	0,000
Hydrophilidae Psephenidae	0,013	0,000	0,000	0,000	0,000	1,642 0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,058	0,000	0,000	0,000	0,026	0,000	0,000
Asellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Atydae Gammaridae	0,000	0,000 1,636	0,000	0,000	0,000	0,000	0,000 4,301	0,036	0,000	0,000	1,977 0,021	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 40,154
Ostracoda	0,000	0,000	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,012	0,000	0,008	0,000	0,000	0,000	0,000	0,049	0,000	0,000	1,370
Athericidae Blephariceridae	0,000	0,406	0,202	0,000	0,136	0,000	0,000	0,000	0,067	2,520 0,000	0,000	0,000	0,375	0,058	0,000	0,000	0,049	0,051	2,567 0,000	0,000
Ceratopogonidae	0,000	0,000	0,000	0,000	0,374	0,000	0,005	0,252	0,008	0,012	0,000	0,333	0,017	0,000	0,305	0,008	0,000	0,026	0,009	0,000
Chironomidae Culicidae	18,122 0,000	3,967 0,000	63,591 0,000	8,288 0,000	24,370 0,000	85,679 0,000	19,162 0,000	12,838	4,056 0,000	10,430 0,000	2,125 0,000	35,625 0,000	5,811	15,820 0,000	5,559 0,000	10,364 0,000	2,479 0,000	9,589 0,000	3,618 0,000	10,389 0,000
Dixidae	0,000	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dolichopodidae Empididae	0,000	0,000	0,000 1,224	0,000	0,000 3,744	0,000	0,000	0,000	0,000	0,000	0,000	0,016	0,000	0,000	0,000 0,726	0,000 1,170	0,000	0,000	0,000	0,000 0,017
Ephydridae	0,000	0,000	0,000	0,000	0,000	0,045	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Limoniidae Muscidae	0,000	0,476	0,415	1,291	1,191 0,000	0,000	0,027	0,198	0,200	0,060	0,021	0,000	0,000	1,459 0,000	0,015	0,017	0,049	0,051	0,197	0,000
Psychodidae	0,000	0,000	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000
Rhagionidae Simuliidae	0,000	0,012 6,971	0,000 10,147	0,000 3,124	0,000 2,791	0,000	0,115 9,372	0,000 5,067	0,000 4,365	0,000	0,000 2,398	0,000 1,477	0,000 3,442	0,000 8,698	0,000	0,000	0,000 3,510	0,000	0,000	0,000
Stratiomyidae	0,000	0,012	0,000	0,000	0,000	0,235	0,005	0,000	0,000	0,024	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tabanidae Tipulidae	0,000	0,000	0,010	0,000	0,000	0,000	0,000	0,018	0,192	0,060	0,000	0,000	0,000	0,934	0,015	0,226 0,267	0,074	0,051	0,027	0,000
Baetidae	72,181	35,883	5,099	5,203	36,555	0,000	53,426	42,391	27,435	13,418	5,911	37,760	6,851	18,797	5,414	11,685	24,669	1,851	22,334	4,376
Caenidae Ephemerellidae	1,937 0,000	0,238 5,701	0,020	0,542	0,034	0,000	0,220 1,232	2,218	0,851 5,367	0,012 3,901	18,048 0,000	8,149 0,325	9,577 0,000	2,685 0,000	0,058	0,017 0,226	3,240 0,000	28,432 0,000	0,575	11,742 0,000
Ephemeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,033	0,000	0,000	0,000	0,017	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Heptageniidae Leptophlebiidae	0,000	8,259 2,332	0,000	0,800 1,317	5,174	0,000	2,552 0,005	3,408 1,641	4,691 3,547	5,089 0,264	8,098 8,919	0,008	2,778 2,420	4,145 2,744	14,238 0,044	21,063 11,067	30,854 0,933	6,504 4,447	44,381 0,000	0,000
Oligoneuriidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	3,324	0,000	0,000	0,000	0,000	0,000	0,025	0,000	0,000	0,000
Polymitarcidae Potamanthidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,042	0,000	0,000	0,584	0,000	0,000	0,025	0,000	0,000	0,000
Siphlonuridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009	0,000
Corixidae Gerridae	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,175 0,017	0,024	0,442 0,105	0,008	0,733	1,459 1,051	0,000	0,000	0,025	0,051	0,018	0,000
Hydrometridae	0,000	0,000	0,001	0,000	0,000	0,000	0,022	0,054	0,000	0,000	0,021	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Naucoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,036	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nepidae Notonectidae	0,013	0,000	0,020	0,000	0,000	0,000	0,000	0,018	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pleidae	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Veliidae Erpobdellidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,179	0,000	0,000	0,000	0,000	0,000	0,000	0,009	0,000
Glossiphoniidae	0,013	0,000	1,872	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hirudidae Sialidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ancylidae	0,000	0,012	0,506	0,013	0,000	0,000	0,011	0,000	0,000	0,000	0,000	1,006	0,000	0,000	0,000	0,000	0,000	0,000	0,063	0,017
Bithyniidae Ferrissidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydrobiidae	0,027	0,000	0,000	3,886	0,000	0,000	0,220	0,000	0,000	0,000	0,000	0,000	0,017	0,000	0,000	0,000	0,000	0,000	0,000	15,417
Lymnaeidae Neritidae	0,040	0,000	0,273	3,395 0,000	0,000	0,000	0,000	0,036	0,000	0,000	0,021	0,000	0,000	0,058	0,000	0,000	0,000	0,000	0,000	0,000
Physidae	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,180	0,000	0,000	0,210	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	3,758
Planorbidae Sphaeridae	0,000	0,000	0,000 0,071	0,000 0,052	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Unionidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Valvatidae Hidracarina	0,000	0,000 3,602	0,000	0,000 1,317	0,000 4,833	0,000	0,000 0,445	0,000 1,136	0,000 5,534	0,000 4,609	0,000 0,084	0,000 0,495	0,000 1,040	0,000 2,919	0,000 12,859	0,000 7,063	0,000	0,000 2,879	0,000 2,190	0,000
Aeschnidae	0,000	0,000	0,020	0,077	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,085	0,642	0,000	0,000	0,025	0,026	0,000	0,000
Calopterygidae Coenagrionidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000 0,144	0,000	0,000	0,000	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,384 0,017
Cordulegasteridae	0,000	0,000	0,435	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gomphidae Lestidae	0,000	0,000	0,101 0,010	0,000	0,000	0,000	0,000	0,090	0,000	0,000	0,042	0,008	0,409	1,051 0,000	0,087	0,025	0,393	0,591	0,000	0,000
Libellulidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,021	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Platycnemididae Oligochaeta	0,013 3,224	0,000 0,354	0,000 0,658	0,000	0,000 0,374	0,000	0,000 0,247	0,018	0,000 2,020	0,000 0,264	0,000 1,304	0,016 1,802	0,000	0,992 2,043	0,000 0,044	0,000	0,025	0,000 0,771	0,000 0,557	0,000
Chloroperlidae	0,000	0,012	0,000	0,000	0,068	0,000	0,000	0,000	0,200	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leuctridae Nemouridae	0,000	13,618 2,221	11,674 0,000	45,068 0,000	7,965 2,451	0,000	0,451 0,000	7,753 0,000	22,310 0,192	31,385 0,000	8,898 0,000	0,008	36,861 0,000	19,790 0,000	29,289 0,058	17,611 0,092	12,027 0,025	32,211 0,000	6,939 1,302	0,000
Perlidae	0,000	0,348	0,000	0,000	2,587	0,000	0,011	0,000	0,267	1,344	0,000	0,000	0,000	0,000	1,887	0,242	0,000	0,000	2,370	0,000
Perlodidae Taeniopterygidae	0,000	0,012	0,000	0,000	0,034	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dugesiidae	0,000	0,000	0,000	0,297	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Planariidae Beraeidae	0,000	1,978 0,000	0,000	0,000	0,102	0,000	0,000	0,000	1,377 0,000	0,024	0,000	0,000	0,000	0,000	0,305	0,017	0,000	0,000	0,189	0,000
Brachycentridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ecnomyidae Glossosomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Goeridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,334	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydropsychidae Hydroptilidae	1,725 0,000	1,891 0,000	0,000 0,607	12,703 1,588	4,152 0,000	0,000	0,000 0,126	11,540 0,000	0,409	0,588	32,962 0,000	12,248 0,000	13,224 0,699	6,071 0,000	3,498 0,000	4,221 0,008	10,064 0,000	4,319 0,026	1,131 0,000	10,456 0,351
Lepidostomatidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Leptoceridae Limnephilidae	0,000	0,000 1,717	0,000 0,061	0,039	0,000	0,000	0,000	0,018	0,000	0,000	0,021	0,000	0,000	0,000	0,015 0,029	0,008	0,000	0,000	0,000	0,000
Odontoceridae	0,000	0,122	0,000	0,000	0,000	0,000	0,000	0,000	0,184	0,000	0,000	0,000	0,000	0,000	0,015	0,000	0,000	0,000	0,000	0,000
Philopotamidae Polycentropodidae	0,000	0,360	0,000	0,826 0,568	0,000	0,000	0,000	0,018 0,884	0,050	0,000	1,052 1,557	0,000	8,896 0,000	0,175 0,292	0,174 0,044	0,000	0,025 0,074	0,051 0,026	0,000	0,000
Psychomyiidae	0,000	0,012	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,026	0,000	0,000
Rhyacophilidae Sericostomatidae	0,000	0,400 0,122	0,030	0,000	0,306 0,340	0,000	0,352	0,433	0,275 2,012	0,000 0,072	0,694	0,000	0,000	0,467	0,784	1,312 0,685	0,417	0,000	0,395	0,000
Copepoda	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,016	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,668
Anomopoda Pacifastacus	0,000	0,000	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Helophoridae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nematoda Procambarus	1,327 0,000	0,006	0,850	0,013	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,016	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Hydra	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Osmylidae Gordius	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Corbicula	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dreissena Spongillidae	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	-,000	5,000	5,500	2,000	-,000	,000	-,000	-,000	-,000	5,550	5,550	-,000	-,000	-,000	-,000	-,000	-,000	-,000	2,000	-,000

Taxón \ Código CEMAS	2073	2142	3000	3001
Dryopidae Dytiscidae	0,000	0,000 0,070	0,000	0,000
Elmidae	0,014	5,919	0,000	0,000
Gyrinidae Haliplidae	0,023	0,024	0,000	0,000
Helodidae / Scirtidae	0,005	0,000	0,000	0,000
Hydraenidae Hydrophilidae	0,000 0,102	0,010	0,000	0,000
Psephenidae	0,000	0,000	0,000	0,000
Asellidae Atydae	0,093	0,000	5,761 0,000	0,000
Gammaridae	0,287	0,000	48,227	0,000
Ostracoda Athericidae	0,194 0,000	0,000	0,392	0,000
Blephariceridae	0,000	0,000	0,000	0,000
Ceratopogonidae Chironomidae	0,000 0,671	0,000 3,999	0,000 14,756	0,015 51,609
Culicidae Dixidae	0,000	0,000	0,000	0,000
Dolichopodidae	0,000 0,005	0,000	0,000	0,000
Empididae Ephydridae	0,000	0,140	0,000	0,000
Limoniidae	0,000	0,000	0,000	0,000
Muscidae Psychodidae	0,000	0,003	0,000	0,000
Rhagionidae	0,000	0,000	0,000	0,000
Simuliidae Stratiomyidae	0,301	1,686 0,000	0,039	0,158
Tabanidae	0,005	0,003	0,000	0,000
Tipulidae Baetidae	0,102 61,792	0,000 32,602	0,000 2,371	0,000 21,325
Caenidae	3,741	0,506	0,000	1,515
Ephemerellidae Ephemeridae	0,000	0,003	0,000	0,000
Heptageniidae	0,569	34,985	0,000	0,000
Leptophlebiidae Oligoneuriidae	0,000	0,077 0,687	0,000	0,000
Polymitarcidae	0,000	0,000	0,000	0,000
Potamanthidae Siphlonuridae	0,000	0,000	0,000	0,000
Corixidae	0,000	0,000	0,000	0,000
Gerridae Hydrometridae	0,028	0,049	0,000	0,008
Naucoridae	0,000	0,000	0,000	0,000
Nepidae Notonectidae	0,000	0,000	0,000	0,000
Pleidae	0,000	0,000	0,000	0,000
Veliidae Erpobdellidae	0,000	0,000	0,000	0,000
Glossiphoniidae	0,000	0,000	0,333	0,008
Hirudidae Sialidae	0,000	0,000	0,000	0,000 0,015
Ancylidae	0,005	0,000	0,294	0,000
Bithyniidae Ferrissidae	0,000	0,000	0,000	0,000
Hydrobiidae	18,278	0,003	17,088	0,347
Lymnaeidae Neritidae	0,093 0,000	0,000	0,118	0,000
Physidae Planorbidae	4,000 0,000	0,000	2,195 0,000	0,000
Sphaeridae	0,093	0,000	0,020	0,000
Unionidae Valvatidae	0,000	0,000	0,000	0,000
Hidracarina	0,282	1,403	0,000	0,151
Aeschnidae Calopterygidae	0,009	0,000	0,000	0,000
Coenagrionidae	0,009	0,000	0,000	0,000
Cordulegasteridae Gomphidae	0,000	0,000	0,000	0,000
Lestidae	0,000	0,000	0,000	0,000
Libellulidae Platycnemididae	0,009	0,000	0,000	0,000
Oligochaeta	1,486	0,003	8,132	22,628
Chloroperlidae Leuctridae	0,000	0,000 12,654	0,000	0,000
Nemouridae	0,000	0,000	0,000	0,000
Perlidae Perlodidae	0,000	0,087 0,000	0,000	0,000
Taeniopterygidae	0,000	0,000	0,000	0,000
Dugesiidae Planariidae	0,199 0,000	0,213	0,000	0,000
Beraeidae Brachycentridae	0,000	0,000	0,000	0,000
Ecnomyidae	0,000	0,000	0,000	0,000
Glossosomatidae Goeridae	0,000	0,000	0,000	0,000
Hydropsychidae	7,361	3,916	0,000	2,170
Hydroptilidae Lepidostomatidae	0,102 0,000	0,003	0,000	0,008
Leptoceridae	0,000	0,000	0,000	0,000
Limnephilidae Odontoceridae	0,000	0,000	0,000	0,000
Philopotamidae	0,000	0,007	0,000	0,000
Polycentropodidae Psychomyiidae	0,000	0,073	0,000	0,000
Rhyacophilidae	0,009	0,405	0,000	0,000
Sericostomatidae Copepoda	0,000	0,000	0,000	0,000 0,030
Anomopoda	0,000	0,000	0,000	0,000
Pacifastacus Helophoridae	0,000	0,000	0,000	0,000
Nematoda	0,000	0,000	0,020	0,000
Procambarus Hydra	0,005 0,000	0,000	0,000	0,000
Osmylidae	0,000	0,000	0,000	0,000
Gordius Corbicula	0,000	0,000	0,000	0,000
Dreissena Spongillidae	0,000	0,000	0,000	0,000
Fouldimone	0,000	0,000	0,000	0,000

Estaciones sin datos de Abundancias relativas

Se ofrecen en este caso una abundancia estimada en campo mediante códigos que representan diferentes rangos de individuos.

Los códigos y rangos de abundancia que representan son los siguientes:

Código	Rango individuos
0	Ausencia
1	1-3
2	4-10
3	11-100
4	101-1000
5	>1000

1106*: Por error se muestreó el río Noguera Vallferrera en vez del Noguera Pallaresa, donde realmente se localiza la estación CEMAS 1106

Taxón \ Código CEMAS	0014	0022	0023	0025	0027	0036	0038	0042	0050	0096	0097	0106	0114	0118	0126	0146	0163	0166	0176	0184
Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dryopidae Dytiscidae	0	0	0	0	0	0	0	0	0	1 0	1	0	0	1 0	0	0	1 0	1 0	0 1	1
Elmidae	1	1	3	0	0	3	1	1	3	1	3	3	1	3	1	3	0	3	1	2
Gyrinidae Haliplidae	2	0	0	0	0	0	0	0	1	0	0 1	0 1	0	2	0	0	3	0	0	0
Helophoridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Hydraenidae Hydrochidae	0	0	1 0	0	0	1	0	0	0	0	0	0	1 0	0	0	1	0	0	0	0
Hydrophilidae	0	0	0	0	0	0	1	0	0	1	0	0	2	1	0	0	0	1	2	2
Noteridae Scirtidae / Helodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0
Asellidae	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenasellidae Atydae	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0 4	0	2 3	0
Palaemonidae	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cyrolanidae Gammaridae	0 4	0	0	0	0	0	0	0 4	0	0 4	0 5	0	0	0 4	0	0	0	0	0	0
Niphargidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Ostracoda Copepoda	0	0	0	1 0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0
Anomopoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pacifastacus Procambarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
Athericidae Blephariceridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ceratopogonidae	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
Chironomidae Culicidae	3	3	3	3	1	3 0	3	0	3	2	3	0	2	2	3	3	1	3	3 0	2
Dixidae	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0	0
Dolichopodidae Empididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ephydridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Limoniidae Muscidae	0 2	0	0 1	0	0	0	0	0	1	1	0	1	0 2	1	0	0	0	0 1	0	0
Psychodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ptychopteridae Rhagionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sciomyzidae	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
Simuliidae Stratiomyidae	2	1	2	0	0	3	1	3 0	3	3 0	0	0	3	0	1	2	1	4 0	0	2
Tabanidae	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Tipulidae Baetidae	0	1 4	2	0	0	0	2	0	1	0	1 2	2	3	1	0	0	0	0	1 3	0
Caenidae	2	0	3	2	2	1	3	0	3	3	0	2	3	3	3	1	0	3	3	3
Ephemerellidae Ephemeridae	0	0	0 2	0	0	3 0	0	0	0	0	3	0	2	3	1	0	0	3 0	0	3
Heptageniidae	0	1	2	0	0	3	0	0	0	0	0	1	0	0	0	2	0	1	2	2
Leptophlebiidae Oligoneuriidae	0	0	0	0	0	0	0	0	0	1	0	2	1	0	0	1	0	2	3 0	0
Polymitarcidae	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0
Potamanthidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0
Siphlonuridae Aphelocheiridae	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
Corixidae	0	0	1	2	0 2	0	3 2	0 2	0	4 2	0	3 2	2	0	0	3	3 2	1 3	3 0	3 2
Gerridae Hydrometridae	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	1	1	0	0
Mesoveliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2	0
Naucoridae Nepidae	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	3
Notonectidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Pleidae Veliidae	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
Erpobdellidae Glossiphoniidae	2	3 2	1	0	0	1	1	0	2	1	0	0	2	1	0	0	0	0	0	2
Hirudidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Piscicolidae Sialidae	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ancylidae	1	3	2	0	0	3	2	0	0	1	2	0	0	0	0	0	0	1	2	0
Bithyniidae Ferrissidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrobiidae	3	0	3	0	0	3	1	0	2	3	4	2	2	4	2	2	0	0	1	1
Lymnaeidae Neritidae	0	2	2	0	1 0	1	0	0 2	0	2	1	0	1	0	0	0	0	0	1	2
Physidae	0	0	0	2	2	0	1	0	0	2	0	0	2	0	0	0	0	0	3	1
Planorbidae Sphaeridae	0	0	0 1	0	0	0	0	0	0	0 1	0 1	0	0	0	0	0	0	0	0	0
Unionidae	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0
Corbicula Dreissena	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidracarina	0	3	4	0	2	2	2	0	0	4	1	3	1	1	3	5	1	4	2	3
Aeschnidae Calopterygidae	0	0	0	0	0	0	0	0	0	1 0	0	2	0	0	0	1	0	0	0	0
Coenagrionidae	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0
Cordulegasteridae Gomphidae	0	0	0	0	0	0	0	0 1	0	0	1	0 1	0	0	0	0	0	0 1	0 1	0
Lestidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Libellulidae Platycnemididae	0	0	0	0	0	0	0	0	0	1 0	0	1	0	0	0	0	0	0	3 0	0
Oligochaeta	0	3	3	1	2	2	3	2	2	2	2	2	1	1	1	1	0	2	3	2
Chloroperlidae Leuctridae	0	0	0 1	0	0	0	0	0	0	0	0	0 1	0	0	0	0 4	0	0	0	0
Nemouridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Perlidae Perlodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dugesiidae	0	0	0	0	3	0	0	0	0	0	3	0	2	0	0	0	0	0	3	0
Planariidae Brachycentridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ecnomyidae	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae Goeridae	0	0	1 2	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Hydropsychidae	3	2	3	3	0	3	3	2	3	3	0	2	3	2	2	3	0	2	0	3
Hydroptilidae Lepidostomatidae	3 0	3 0	2	0	0	0	3	0	2	3	1	1	1	0	1	0	0	1	1	0
Leptoceridae	0	0	3	0	0	0	0	0	0	0	2	3	3	0	0	3	0	2	1	1
Limnephilidae Odontoceridae	0	1	0	0	0	3 0	0	0	0	0	1	0	0	0	0	2	0	0	0	0
Philopotamidae	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
Polycentropodidae Psychomyiidae	0	0	0	0	0	3 0	1	0	0	0	0	3	2	0	0	2	0	0	2	0
Rhyacophilidae	0	2	3	0	0	3	0	0	0	0	1	0	0	0	0	1	0	3	0	1
Sericostomatidae Branchiobdellidae	0	1	3	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Nematoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gordius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Taxón \ Código CEMAS	0197	0203	0206	0207	0219	0241	0242	0243	0244	0511	0516	0517	0523	0574	0583	0593	0594	0595	0608	0609
Curculionidae	0	0203	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dryopidae	1	1	0	0	0	0	1	1 3	0	0	0	0	0	0	2	0	1	0	1	0
Dytiscidae Elmidae	3	3	1	0	0	4	2	2	0	0	3	3	3	0 3	3	1	3	0	0 3	3
Gyrinidae	0	1	0	0	0	0	2	0	0	3	0	0	0	0	2	0	0	0	2	0
Haliplidae Helophoridae	3	1 2	1 0	0	0	2	3	3	0	0	0	1 1	2	0	1	0	1	0	0	3
Hydraenidae	0	3	0	0	0	2	0	1	0	0	2	2	0	0	0	0	2	0	0	0
Hydrochidae Hydrophilidae	0	1 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noteridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scirtidae / Helodidae	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asellidae Stenasellidae	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Atydae	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
Palaemonidae Cyrolanidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gammaridae	3	3	0	0	0	3	0	3	4	0	4	1	1	0	4	3	3	0	0	3
Niphargidae Ostracoda	0	0	0 1	0	0	0	0	1 2	0	0	0	1	0	0	0	0	0	0	0	0
Copepoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Anomopoda Pacifastacus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Procambarus	0	0	0	2	2	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
Athericidae Blephariceridae	0	2	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0
Ceratopogonidae	0	0	4	0	0	1	0	0	0	1	0	1	1	0	0	0	2	0	0	0
Chironomidae Culicidae	3	4 0	0	3 0	3	3	3	3 1	3	3	1	4 0	3	4 0	1	3	3	3 0	3	3 0
Dixidae	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1	2
Dolichopodidae	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Empididae Ephydridae	0	0	0	0	0	0	0	1 2	0	0	0	0	0	0	0	0	1	0	0	0
Limoniidae	0	1	0	1	0	2	1	0	0	0	3	1	0	0	1	0	0	0	0	0
Muscidae Psychodidae	1 0	0	0	0	0	1	1	2	0	0	0	0	2	2	0	0	0	0	2	1
Ptychopteridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhagionidae Sciomyzidae	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Simuliidae	1	3	0	0	0	4	1	0	3	0	1	4	4	1	0	0	2	0	3	3
Stratiomyidae Tabanidae	0	0 2	0	0	0	0	0	0 2	0	0	0	0 2	0	0	0 2	0	0	0	0 2	0
Tipulidae	1	1	1	0	0	2	0	1	0	0	0	1	0	0	1	1	3	0	0	0
Baetidae Caenidae	2	4	3	4	3	3 2	3	3	3	3	3	3	4	4	3	3 2	3	3	3	3
Ephemerellidae	0	3	0	0	0	3	0	1	3	0	0	1 2	3	2	3 2	2	4	0	2	0
Ephemeridae	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Heptageniidae Leptophlebiidae	3	1 2	0	0	0	3 1	2	3	1	0	2	3	0	0	3 0	1	2	2	3 2	1
Oligoneuriidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Polymitarcidae Potamanthidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	0	0
Siphlonuridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aphelocheiridae Corixidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0 2	0	0 2	0
Gerridae	3	2	1	3	2	2	2	0	3	2	0	0	1	3	2	1	0	1	2	1
Hydrometridae Mesoveliidae	1	0	0	0	0	0	1	0	0	0 2	0	0	0	0	2	0	0	0	1	2
Naucoridae	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Nepidae Notonectidae	2	0	0	0	0	0	1	1	0	0	0	0	2	1	1 2	0	0	0	1	1
Pleidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Veliidae	0	0	0	0	0	0	0	0	0	0	1	1 2	0	0	1	0	0 2	0	0 2	1
Erpobdellidae Glossiphoniidae	0	0	1	0	0	1	0	0	0	0	0	0	1	1	0	0	1	0	0	0
Hirudidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
Piscicolidae Sialidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Ancylidae	1	1	3	0	0	3	1	0	2	0	2	2	0	2	2	0	1	0	1	0
Bithyniidae Ferrissidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrobiidae	4	1	0	3	0	1	4	3	3	0	0	0	3	2	3	1	0	0	3	3
Lymnaeidae Neritidae	0	0	2	0	0	3	0	0	0	0	0	0	2	0	0	0	0	0	0	3
Physidae	0	0	0	3	1	0	2	2	0	3	0	0	2	1	3	1	0	0	3	0
Planorbidae Sphaeridae	0	0	0	0	0	0	0	0	1	0	0	0	0	0 1	0	0	0	0	0	0 2
Unionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corbicula Dreissena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2	0	0
Hidracarina	1	1	2	3	1	2	2	1	2	0	1	1	4	4	0	1	2	1	4	3
Aeschnidae Calopterygidae	0	0 1	0	0	0	1 1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	1	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
Cordulegasteridae Gomphidae	0	1 0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	1
Lestidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Libellulidae Platycnemididae	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Oligochaeta	2	2	2	3	0	3	0	1	2	0	2	2	3	1	1	1	2	2	3	1
Chloroperlidae Leuctridae	0	0	0	0	0	0	0	0	0	0	0	0 2	0	0 2	0	0	0	0 1	0	0
Nemouridae	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
Perlidae	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Perlodidae Dugesiidae	0	0	0	0	0	0	0	0	0	0	3 1	2	0	0	0	0	0	0	0	0
Planariidae	0	0	0	0	0	0	0	0	0	3	0	0	0	0	1	0	0	0	0	0
Brachycentridae Ecnomyidae	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Goeridae Hydropsychidae	0	0	0	0	0	0 4	0	0	0	0	2	0	0	0	0 2	0	0	0 4	0	1 2
Hydroptilidae	0	1	0	1	0	0	1	1	2	3	0	1	2	0	1	0	0	1	3	3
Lepidostomatidae	0	0	0	0	0	3	0 1	0	0	0	0 1	0	0	0 2	0	0	3	0	0	0
Leptoceridae Limnephilidae	1 1	3	0	0	0	3	0	0	0	0	3	0	0 1	0	2	0	1 3	0 0	2	0
Odontoceridae	0	2	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
Philopotamidae Polycentropodidae	0	0	0	0	0	0 2	0	0	0	0	2	0	0	0	0	0	0	0	0	1 2
Psychomyiidae	0	1	0	0	0	2	0	0	0	0	1	0	1	0	0	0	0	0	0	0
Rhyacophilidae Sericostomatidae	1 0	1	1 0	0	0	2	0	0	1	0	1	1	0	0	0	0	2	0	3 0	2
Branchiobdellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nematoda Gordius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					v	v	v	v		v	v			v	v	V				

T. () (() (T) (T)	0.540	0.524	0.000	0.525	0.50=	0.00		0=0.6	0005	0040	4004	1000	4006	4404	4405	440.00	4440			4440
Taxón \ Código CEMAS Curculionidae	0619	0621	0623	0625	0627	0638	0705	0706	0806	0810	1004 0	1006 0	1096 0	1101 0	1105 0	1106* 0	1110 0	1113 0	1114 0	1119 0
Dryopidae	1	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	0
Dytiscidae Elmidae	3 1	2 2	1	1	1	1 2	1 2	2	1 2	1	1 4	3	2	2 2	2 2	3	3	3	2	0
Gyrinidae	0	0	0	0	0	0	0	0	0	0	2	2	0	1	0	0	0	0	3	0
Haliplidae	0	2	0	2	1	0	0	3	1	0	0	3 2	0	1	0	0	0	0	0	0
Helophoridae Hydraenidae	2	0	0	0	0	1	0 1	0	1	0	1	1	0	0	1	0	2	1	0	0
Hydrochidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrophilidae Noteridae	0	2	1	1	0	0	0	3 1	2	2	1	2	1	0	0	0	0	0	2	0
Scirtidae / Helodidae	0	0	0	0	0	1	0	0	3	0	0	2	1	0	0	0	0	0	0	0
Asellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenasellidae Atydae	0	0 1	0	0	0	0	0	0	0	0 4	0	0	0	0	0	0	0	0	0	0
Palaemonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cyrolanidae Gammaridae	0	0	0	0	0	0	0	0	0	0	0 4	0	0	0	0	0	0	0	0	0
Niphargidae	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ostracoda	0	0	1	2	2	3	0	0	0	0	0	0	0	4	0	0	0	0	0	0
Copepoda Anomopoda	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pacifastacus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Procambarus	0	0	0 1	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0
Athericidae Blephariceridae	0	0	0	0	0	0	2	0	0	0	2	0	0	0	2	0	1	0	0	0
Ceratopogonidae	0	2	2	0	0	2	0	1	2	0	1	1	0	1	0	0	1	0	1	0
Chironomidae Culicidae	3	2	3 1	2	3	2	3	2 2	3	3 0	3 1	2	3 0	2	3	3	3	3	3	2
Dixidae	3	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0
Dolichopodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
Empididae Ephydridae	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Limoniidae	2	0	0	0	0	3	3	0	0	0	1	1	3	0	2	3	1	1	0	0
Muscidae	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0
Psychodidae Ptychopteridae	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
Rhagionidae	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Simuliidae Stratiomyidae	0	3	0	1 0	0	0	1	0	1 1	2	1	0	3 0	3 0	3	2	2	3	4 0	0
Tabanidae	0	0	0	0	0	0	1	1	2	0	0	1	0	0	0	0	2	0	2	0
Tipulidae Pastidae	1 3	1	1	2	2	3	0	2	2 2	3 2	1 3	2 2	1	1 3	0	2	1	0	0	0
Baetidae Caenidae	0	3	3	3	4	0	3 2	3	3	3	3	2	3	2	3	2	3 1	3 2	2	3
Ephemerellidae	3	0	0	3	0	0	3	3	0	1	3	2	3	0	1	1	2	3	0	0
Ephemeridae	0	0	0	0	0	0	0	0	0	0	1 2	1	0	0	1	3	0	0	0	0
Heptageniidae Leptophlebiidae	0	2 2	3	0	0	0	0	0	3	0	1	3	3 0	1	2	3 1	3 2	2	0	0
Oligoneuriidae	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	2	0
Polymitarcidae Potamanthidae	0	3	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0
Siphlonuridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aphelocheiridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corixidae Gerridae	0	3	2 2	0	0	0	0	2 2	3 2	4	1 3	3	0	3	0	1	1	1	4	1
Hydrometridae	0	1	0	0	0	0	0	0	1	0	2	2	0	0	0	0	0	0	1	0
Mesoveliidae	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Naucoridae Nepidae	0	0	2	0	0	0	0	1	2	0	0 1	0	0	0	0	0	0	0	0	0
Notonectidae	0	1	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Pleidae Veliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Erpobdellidae	0	1	2	0 1	0	0	0	0	0	0 1	0 1	1	1	2	0	0	0 1	0	0	0
Glossiphoniidae	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0
Hirudidae Piscicolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sialidae	0	2	0	0	0	0	0	0	0	0	2	2	0	1	0	0	0	0	0	0
Ancylidae	1	0	0	2	0	0	1	0	0	0	3	1	2	0	0	0	1	3	0	0
Bithyniidae Ferrissidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrobiidae	0	2	0	4	0	0	0	3	0	3	2	0	0	0	0	0	3	2	0	0
Lymnaeidae	0	1	1	0	2	0	0	2	0	1	2	0	0	1	0	0	0	1	0	0
Neritidae Physidae	0	0 2	0	0	0	0	0	0	0	0	3 0	0	0	0	0	0	0	0	0	0
Planorbidae	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Sphaeridae Unionidae	0	0	0	1 0	3	2	1	1	0	0	3 0	0	0	0	0	0	1	0	0	0
Corbicula	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dreissena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidracarina Aeschnidae	3	3 1	3 1	1 0	2	1	3	3 1	3	4 0	3 1	4	1	3 0	3	3	3	4 0	4	0
Calopterygidae	0	2	0	0	0	0	0	0	0	0	2	1	0	1	0	0	0	1	3	0
Coenagrionidae	0	2	0	0	0	0	0	1	2	0	0	0	0	1	0	0	0	0	1	0
Cordulegasteridae Gomphidae	0	1	2	0	0	0	0	0	3	1	1	0	0	1	0	0	0	0	3	0
Lestidae	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Libellulidae Platycnemididae	0	2 2	2 2	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	1 3	0
Oligochaeta	2	3	0	2	2	2	3	2	1	0	2	2	3	2	2	1	3	3	0	2
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leuctridae Nemouridae	1 3	3	2	3	0	0	3 1	3	2	2	3 0	4 0	3 2	2	3	3	4 2	3	2	0
Perlidae	0	0	0	0	0	0	1	0	0	0	1	1	0	0	3	3	3	2	1	0
Perlodidae	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	1	0	0
Dugesiidae Planariidae	1	3	0	0	2	0	1	3	0	1	0	0	0	3 0	0	0 1	0 1	0	0	0
Brachycentridae	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0
Ecnomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae Goeridae	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Hydropsychidae	2	3	0	2	1	0	2	2	3	3	2	0	1	3	3	3	2	1	3	3
Hydroptilidae	0	0	2	3	1	0	0	1	1	1	0	1	0	0	0	1	0	1	1	0
Lepidostomatidae Leptoceridae	0	0	0	0 1	0	0	0	0	0	0	1	0	0	0 1	0	0	0	0	0	0
Limnephilidae	2	0	0	1	0	1	2	0	0	1	4	3	3	0	1	2	3	2	0	0
Odontoceridae Philopotomidae	0	0	0	0	0	1	0	0	0	0	0	0	2	0	2	2	3	0	0	0
Philopotamidae Polycentropodidae	0	3 2	0 2	0	0	0	0	0	3	2	2	0	0	2	0	0	0	0	0	0
Psychomyiidae	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
Rhyacophilidae Sericostomatidae	2	1	0	1 0	0	0	1	0	0	0	3 2	1 2	1 3	0	0	1 3	1 3	1 2	2	0
Sericostomatidae Branchiobdellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nematoda	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gordius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Taxón \ Código CEMAS	1149	1150	1167	1169	1173	1174	1175	1177	1178	1183	1184	1191	1193	1203	1207	1208	1228	1234	1235	1238
Curculionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dryopidae	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1
Dytiscidae Elmidae	1	1	0	1 3	1	3 4	1 4	1 3	2	2	0	3	3	3	0	0 1	3 1	3	1	0
Gyrinidae	0	0	2	0	0	0	2	0	0	0	0	2	3	0	0	0	0	2	3	1
Haliplidae	0	0	0	1	0	3	1	0	0	0	0	2	2	3	0	0	3	3	2	0
Helophoridae Hydraenidae	2	1	0	4	0	1	1	0	0 2	1 2	0 1	2	1 2	0	0	0	0 2	0	0	0
Hydrochidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrophilidae	0	1	1	0	0	0	1	0	0	2	0	0	2	0	0	0	3	0	1	0
Noteridae Scirtidae / Helodidae	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenasellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Atydae Palaemonidae	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Cyrolanidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gammaridae	5	2	0	5	0	5	5	4	0	0	4	3	0	5	5	2	5	2	3	3
Niphargidae Ostracoda	0	0	0 1	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0
Copepoda	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Anomopoda	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pacifastacus Procambarus	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Athericidae	1	0	0	1	0	0	0	0	2	0	1	0	1	0	1	0	0	1	0	0
Blephariceridae	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ceratopogonidae Chironomidae	0	0	1 3	1	0	0	1	0	2 2	1 3	0	1	1 3	0	0	0 2	0	1	0	0 2
Culicidae	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
Dixidae	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
Dolichopodidae Empididae	0	0	0	0	0 1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Ephydridae	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
Limoniidae	1	0	0	0	2	3	0	0	2	1	0	0	1	0	0	0	1	1	1	0
Muscidae Psychodidae	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	1	1	2	1	0
Ptychopteridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhagionidae	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
Sciomyzidae Simuliidae	0	0	0	0	0 4	2	0	0	0	0	0	0	0	0	0	0 2	0	0	0	0
Stratiomyidae	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae Tipulidae	0	0	0	0	0	2	1	0	2	1	1	1	1	0	0	0	0	1	0 2	0
Tipulidae Baetidae	3	3	2	3	3	4	3	3	4	3	4	3	3	1	2	3	3	4	3	3
Caenidae	0	1	1	1	0	2	2	3	2	1	2	1	2	1	1	2	3	2	3	3
Ephemerellidae	2	2	0	0	2	3	3	4	3	3	3	3	3	0	1	1	1	3	0	0
Ephemeridae Heptageniidae	0	0	0	1 2	0	1 3	0	0	3	2	1 2	0 1	1	0	0	0	0 2	0	0	0
Leptophlebiidae	0	0	0	0	0	0	0	0	1	1	0	2	1	0	0	0	0	0	3	0
Oligoneuriidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Polymitarcidae Potamanthidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Siphlonuridae	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Aphelocheiridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corixidae Gerridae	0	0	2 2	0 2	0	1 2	0	0 1	3	3 1	0	3	3 2	0	0	2	2	2 2	1 2	3
Hydrometridae	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
Mesoveliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Naucoridae Nepidae	0	0	3 0	0	0	0 1	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0
Notonectidae	0	0	0	0	0	0	0	0	0	0	0	3	2	0	0	0	1	1	0	0
Pleidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Veliidae Erpobdellidae	3	0	0	0	1 2	0	0	0 1	0	1 3	0 1	3 2	2 2	0	0	0 1	0	0	0	0 2
Glossiphoniidae	1	0	0	1	0	1	1	0	ō	0	1	1	2	0	0	0	0	2	1	0
Hirudidae Piscicolidae	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Sialidae	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0
Ancylidae	2	0	0	0	3	2	3	0	0	2	2	0	2	0	0	0	0	0	2	1
Bithyniidae Ferrissidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrobiidae	0	0	0	5	0	2	5	2	0	0	0	0	0	0	3	0	2	2	3	3
Lymnaeidae	1	0	0	0	0	1	3	0	1	0	0	0	3	0	0	0	3	2	1	0
Neritidae Physidae	0	0	0 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2
Planorbidae	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sphaeridae	2	0	0	1	0	0	0	0	0	1	1	1	0	0	2	0	0	0	1	1
Unionidae Corbicula	0	0	0 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dreissena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidracarina	3	1	3	0	1	1	0	1	2	3	1	1	3	0	0	0	2	3	4	1
Aeschnidae Calopterygidae	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3	1 1	0
Coenagrionidae	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Cordulegasteridae	0	0	0	0	0	1	0	0	0	2	0	1	0	0	0	0	0	2	0	0
Gomphidae Lestidae	0	0	0	0	0	0	1 0	0	0	0	0	0	1 0	0	0	0	0	3	1	0
Libellulidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Platycnemididae Oligochaeta	0	0 2	0 2	0	0	0	0 2	0	0 2	0 2	0	0	0	0	0	0 1	0 1	2	2 2	0
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leuctridae	0	0	0	0	3	2	0	1	3	3	1	0	3	0	0	0	2	3	3	0
Nemouridae Parlidae	0	0	0	0	1 3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
Perlidae Perlodidae	0	0	0	0	3 1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Dugesiidae	2	0	0	0	1	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0
Planariidae	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Brachycentridae Ecnomyidae	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0
Goeridae	3	0	0	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
Hydropsychidae Hydroptilidae	0	2	0	2	3 0	2	3	4	3	2	2	1	1 2	0	1	3 1	1 3	0	3 1	4
Lepidostomatidae	0	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0
Leptoceridae	0	1	0	0	1	1	0	0	1	0	0	0	3	0	0	0	0	1	3	0
Limnephilidae Odontoceridae	2	0	0	3	3 2	2	0	0	3 2	2 2	3	1	1	0	0	0	1	1	1	0
Philopotamidae	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Polycentropodidae	1	1	0	1	1	0	1	0	2	1	0	3	0	0	0	0	1	1	1	0
Psychomyiidae Rhyacophilidae	0	0	0	0 2	0 2	0	0	0 1	0	0	0 1	0	1	0	0	0	0 1	0 1	0	0
Sericostomatidae	0	0	0	2	2	1	0	0	3	3	3	0	0	0	0	0	0	0	0	0
Branchiobdellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nematoda Gordius	2	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
Coluino	U	U	v	U	U	U	J	J	J	J	J	U	J	J	J	J	J	v	J	J

m () (() (m cmr)	4220	4440	4050		1250	1262		4004	400=	4400	4200	4204	4222	4220				4250	4245	4260
Taxón \ Código CEMAS Curculionidae	1239 0	1240 0	1253 0	1255 0	1260 0	1263 0	1264 0	1294 0	1297 0	1298 0	1299 0	1304 0	1332 0	1338 0	1341 0	1342 0	1354 0	1358 0	1365 0	1368 0
Dryopidae Dytiscidae	0	1	3 2	0	0	0	1	0	0	0	0	0	0	0	1 3	0	0 2	0	1 3	0
Elmidae	0	3	3	0	1	2	2	3	0	1	2	0	2	1	3	2	0	2	3	2
Gyrinidae	0	2	0	0	0	0	0	0	3	0	0	0	0	0	2	0	1	0	2	3
Haliplidae Helophoridae	0	0	3	2	0	1 2	3 2	0	0	0	0	0	2	3	2 2	1	3	0	3	0
Hydraenidae	0	1	0	2	0	1	0	1	0	0	1	0	1	1	2	0	0	0	1	0
Hydrochidae Hydrophilidae	0	0 1	0	0	0	0	0	0 1	0	0	0	0	0	0	0 1	0	0	0	0	0
Noteridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scirtidae / Helodidae Asellidae	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0	0
Stenasellidae	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Atydae Palaemonidae	2	0	0	0	0	0	0	0	5 0	0	0	0	0	0	0	0	0	0	0	0
Cyrolanidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gammaridae Niphargidae	4 0	0	4 0	3	1	5 0	3	0	2	0	0	1	5 0	2	4 0	4	3	4 0	4 0	4 0
Ostracoda	1	1	0	3	0	5	1	0	3	0	0	0	2	1	2	0	2	0	3	0
Copepoda	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
Anomopoda Pacifastacus	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
Procambarus Athericidae	0	0	0	0	1	2	0	0	1	0	0	0	0	0	0	0	1	1	0	3
Blephariceridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ceratopogonidae	1	2	0	0	0	1 4	0	0	2	0	0	1	0	1 4	1	0 2	0	0	0 2	0
Chironomidae Culicidae	0	3	0	3	3	0	3	3	2	3	3	3	3	0	3	0	0	3	0	3
Dixidae	0	3	0	1	0	1	1	3	0	1	0	0	0	1	1	0	1	0	0	1
Dolichopodidae Empididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Ephydridae	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Limoniidae Muscidae	0	0	0	0	0	0	1	3	0	1 1	3	0	0	1 2	1	0	0	0	1	1
Psychodidae	ō	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	3	1
Ptychopteridae Rhagionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sciomyzidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Simuliidae Stratiomyidae	1	2	3	1	1	0	0	3	0	2	2	2	3 0	2	2 2	2	1	3	1	0
Tabanidae	ō	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tipulidae Baetidae	0	1	0	1	1 3	0	0	1 3	0	0	1	0	0 4	0	2	0	1	0	1	1 3
Caenidae	4	0	3	4	3	0	2	0	1	0	1	3	1	3	3	2	2	0	4	3
Ephemerellidae Ephemeridae	0	1	0	0	0	0	1	3	0	3	3	0	0	3 0	2	1	0	3	2	0
Heptageniidae	1	0	3	3	1	0	0	2	0	1	1	0	0	2	2	0	0	0	3	2
Leptophlebiidae Oligoneuriidae	0	2	2	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0
Polymitarcidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potamanthidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Siphlonuridae Aphelocheiridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corixidae	2	2	3	3	1	1	0	0	3	0	0	0	0	1	1	0	3	0	0	2
Gerridae Hydrometridae	0	3 2	2	0	3	2	0	0	2	0	0	0	1	2 2	3	2	1	3	3	3
Mesoveliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Naucoridae Nepidae	0	0	0	0	0	0	0	0	2	0	0	0	0	0 2	0	0	0	0	0	0
Notonectidae	0	2	1	3	0	1	1	0	0	0	0	0	0	0	0	0	1	0	2	1
Pleidae Veliidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Erpobdellidae	1	0	1	1	0	0	0	2	0	0	0	2	1	3	1	0	0	1	1	0
Glossiphoniidae Hirudidae	0	0	1 0	1 0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	1	0
Piscicolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 1	0	0 2	0	0
Sialidae Ancylidae	0	0	0	0	0	2	0	0	0	0	0	0	0	0 3	3	0	1	2	0	0
Bithyniidae	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	1	0	0	0
Ferrissidae Hydrobiidae	0	0	3	0	0 2	0 3	4	0	0	0	0	0	0 3	0	2	0	0 4	3	0	0
Lymnaeidae	0	3	0	2	0	1	1	0	0	0	0	0	1	2	2	0 1	1	0	0	0
Neritidae Physidae	1	0	1	0	3	0	0	0	1	0	0	2	0	0	0	0	3	0	1	0
Planorbidae	0	0	0	0	0	0	0 2	0	0	0	0	0	0	0	0 2	0	0	0	0	0
Sphaeridae Unionidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corbicula Dreissena	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
Hidracarina	2	3	2	3	2	3	1	4	1	3	3	0	0	3	3	0	0	1	1	0
Aeschnidae Calentarygidae	0	2	3	2	0 1	0	1	0	0	0	0	0 1	0 1	0	2 2	0 1	1	0	2	0 2
Calopterygidae Coenagrionidae	0	0	0	2	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
Cordulegasteridae Gomphidae	0	0 2	0	0	0 1	0	2	0	0	0	0	0 2	1 0	0	1	2	0	0 1	0 2	0 2
Lestidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Libellulidae	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
Platycnemididae Oligochaeta	0	1	0	0	3 0	0	0	0	0	0	0	0 4	0	0	0	0 2	0	0	0 2	0 2
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leuctridae Nemouridae	0	3	1	0	0	0	3	3	0	3	3	0	0	0	3	0	0	0	0	0
Perlidae	0	0	0	0	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0	0
Perlodidae Dugesiidae	0	0	0	0	0	0	0	0	0 1	1	0	0 1	0	0	0	0	0	0	0	0
Planariidae	0	2	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
Brachycentridae Ecnomyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
Goeridae Hydropsychidae	0	0	0	0	0	0	0	1 3	0	0	0	0	0	0	1 2	0	0 2	0	0	0 2
Hydroptilidae	2	3	1	0	0	0	0	0	1	0	0	0	2	2	0	2	0	1	3	0
Lepidostomatidae	0	0	0	0	0 0	0	0 2	0	0	0	0	0	0	0	0 1	0	0	0	0	0
Leptoceridae Limnephilidae	0	2	3 0	0	0	0 0	1	0 1	0 0	2	0 1	0	0 0	0	3	0 1	0	0	0	0 0
Odontoceridae	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Philopotamidae Polycentropodidae	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0
Psychomyiidae	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
Rhyacophilidae Sericostomatidae	0	0	0	0	0	0	0	0	0	2	0	0	1	1	3 2	0	0	0	0	0
Branchiobdellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0
Nematoda Gordius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				v	v		v	v	v							v	v	v	v	

Taxón \ Código CEMAS Curculionidae	1375 0	1380 0	1387	1396 0	1403 0	1404 0	1411 0	1419 0	1421 0	1429	1430 0	1440 0	1453 0	1454 0	1455 0	1457 0	1464 0	1471 0	1519 0	0
Dryopidae	1	2	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0
Dytiscidae Elmidae	0	3	3 2	2	3	3 2	1	3	3	2	2	1	0 1	0	3	0 4	2	0	2	3 4
Gyrinidae	1	3 2	0	3 2	3	0	0	0	3 0	1	0	2	0	0	3 2	0	0	3	3	0
Haliplidae	0	3	0	0	3	3	0	0	0	0	3	0	0	0	3	0	0	3	0	0
Helophoridae Hydraenidae	0	0	0	1	0	0	0	0	0	2 2	0	1	0	0	2 2	0	0	0	0	0
Hydrochidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrophilidae	0	2	0	0	2	1	0	0	0	1	0	0	0	0	1	0	1	1	0	0
Noteridae Scirtidae / Helodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Asellidae	0	0	ō	1	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
Stenasellidae Atydae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palaemonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cyrolanidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gammaridae Niphargidae	0	0	0	0	4 0	1	5 0	0	0	3	0	2	0	3	2	3	0	3	0	0
Ostracoda	0	0	1	0	0	1	0	0	0	0	3	1	0	0	0	0	2	0	1	0
Copepoda Anomopoda	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Pacifastacus	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
Procambarus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Athericidae Blephariceridae	0	0	0	2	0	0	0	3	0	0	0	3	0	0	1	0	0	1	0	1
Ceratopogonidae	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1
Chironomidae Culicidae	1	3 1	4	3	1	3	2	3	0	3	4 0	3	4 0	3	3 0	3	3	3	3	3
Dixidae	0	0	0	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	2	0
Dolichopodidae	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	1	1
Empididae Ephydridae	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0
Limoniidae	ō	0	3	0	0	0	1	3	1	0	0	0	0	1	0	0	0	0	3	1
Muscidae Barabadidae	0	1	0	0	0	3	0	0	1	0	3	0	1	0	0	0	0	1	0	0
Psychodidae Ptychopteridae	0	0	0	0	0	1 0	0	0	0	0	0	0	1 0	0	0	0	0	1 0	0	0
Rhagionidae	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sciomyzidae Simuliidae	0	0 2	0	0	0	0 4	0	0	0	0	0	1	0	0	0	0	0	1	0 2	0
Stratiomyidae	ō	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Tabanidae Tipulidae	0	1 0	1	0	0 0	0	0	0 1	2 3	3	1 2	0	0	0	1	0	0	1 2	0 2	2
Baetidae	3	4	4	3	4	4	3	3	3	3	4	3	4	3	3	3	1	3	3	3
Caenidae	1	3	0	0	0	3	0	2	2	3	3	3	2	1	1	0	1	3	0	2
Ephemerellidae Ephemeridae	0	0	2	2 2	1	0	0	2	2	4	0	0	0	2	3	3	0	1	3	3
Heptageniidae	2	2	2	3	0	0	0	3	3	3	0	2	1	0	3	2	0	0	3	3
Leptophlebiidae	0	4	0	1	0	0	0	0	0	0	0	3	0	0	0	0	3	0	0	1
Oligoneuriidae Polymitarcidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potamanthidae	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Siphlonuridae Aphelocheiridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0
Corixidae	0	3	0	0	0	0	1	0	0	1	0	3	3	0	2	0	3	0	0	3
Gerridae	3	3	0	2	1	1	2	0	0	0	1	3	0	0	3	0	0	3	0	3
Hydrometridae Mesoveliidae	0	2	0	0	2	0	0	0	0	1	1	2	0	0	2	0	0	1	0	0
Naucoridae	0	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4	0	0
Nepidae Notonectidae	0	1 2	0	1	2 2	2 2	2	0	0	2	2	1 2	0	0	2	0	0	1	0	0
Pleidae	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Veliidae	0	1	0	1	2	0	2	0	0	1	0	0	0	0	3	0	0	0	0	0
Erpobdellidae Glossiphoniidae	1	0	1	0	3 2	3 2	1	3	1	1	1 1	1 1	0 1	0	2 2	3 2	0	2	1	0
Hirudidae	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Piscicolidae Sialidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ancylidae	0	0	0	3	0	2	0	1	1	1	0	0	2	0	3	2	0	1	1	1
Bithyniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ferrissidae Hydrobiidae	0	0	0	0	2	0	0 4	0	0	0	0	1	0	0	0	0	0	0	0	0
Lymnaeidae	1	0	ō	3	1	0	3	0	1	0	3	0	0	1	0	0	0	3	0	0
Neritidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0
Physidae Planorbidae	1 0	0	0	0	0	3 0	3 0	0	0	0	0	4	0	0	0	0 0	0	2	0	0
Sphaeridae	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	1	0	3	0	1
Unionidae Corbicula	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dreissena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidracarina Assebnidae	1	3 2	4	3	0	1	0	3	3	3	3	3	4 0	3	1	1	1	3	3	2
Aeschnidae Calopterygidae	3	2	0	2	0 1	0	0	0	0	0 1	0	0	2	0	0	0	0	1	0	1
Coenagrionidae	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Cordulegasteridae Gomphidae	0	0	0	2	3 0	0	0	0	0	2	1	0	0 1	0	0	0	0	0	0	1
Lestidae	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
Libellulidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0
Platycnemididae Oligochaeta	0	0	0	0	0	0	0	0	0	0	0	3 2	0	0	0	0	0	1 2	0	0
Chloroperlidae	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leuctridae	3	2	1	3	0	0	0	3	3 1	3	3	3	2	0	3 0	0	0	2	4 0	3
Nemouridae Perlidae	0	0	0 2	0	0	0 0	0	1 3	2	1 2	0	0	0	0	0	0 0	0	0	3	0
Perlodidae	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	0
Dugesiidae Planariidae	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	3	0	0
Brachycentridae	0	0	0	0	0	0	0	1	0	1	0	0	3	0	0	0	0	0	3	1
Ecnomyidae Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae Goeridae	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Hydropsychidae	2	3	0	0	0	3	0	3	2	3	3	3	3	0	0	3	0	3	3	3
Hydroptilidae Lepidostomatidae	0	2	0	0	0	2	0	0	0	1	3	0	1	0	0	0	0	1	0	1 3
Leptoceridae Leptoceridae	2	1	0	2	0	0	0	0	0	0	0	1	0	0	1	0	0	3	0	1
Limnephilidae	0	0	3	3	0	0	0	3	4	3	1	0	0	0	1	3	0	1	2	3
Odontoceridae Philopotamidae	0	0	1	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	3	0
Polycentropodidae	1	2	1	2	1	0	0	0	0	0	0	2	2	1	0	0	0	0	0	2
Psychomyiidae Physoophilidae	1	0	0	0 2	1 2	0	0	0	0 2	0 2	0	0 2	1	0	0	1 2	0	0	0 2	1 3
Rhyacophilidae Sericostomatidae	0	0	2 2	2 1	0	0	0	2	0	2	0	0	2	0	1 2	0	0	0	3	2
Branchiobdellidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nematoda Gordius	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1
						v	v	v	v	v			v		_ •	_ •	v	V	v	

Taxón \ Código CEMAS	2002	2003	2008	2009	2011	2086	2174	2204
Curculionidae Dryopidae	0 1	0	1 0	0	0	0	0	0
Dytiscidae	2	1	3	2	1	2	2	3
Elmidae Gyrinidae	3	3	3	3	2	3	3	2
Haliplidae	1	0	0	1	0	1	0	0
Helophoridae	0	0	0	0	0	0	0	0
Hydraenidae Hydrochidae	0	3	0	0	0	0	0	0
Hydrophilidae	1	0	1	2	1	0	0	1
Noteridae Scirtidae / Helodidae	0	0	0	0	0	0	0	0
Asellidae	0	0	0	0	0	0	0	0
Stenasellidae	0	0	0	0	0	0	0	0
Atydae Palaemonidae	0	0	0	0	0	0	0	0
Cyrolanidae	0	0	0	0	0	0	0	0
Gammaridae	0	4 0	0	3	3 0	4 0	0	0
Niphargidae Ostracoda	0	0	0	0	0	4	0	0
Copepoda	0	0	1	0	0	0	1	0
Anomopoda Pacifastacus	0	0	0 3	0	0	0	0	0
Procambarus	0	0	0	0	0	0	0	1
Athericidae	0	3	3	1	2	0	0	0
Blephariceridae Ceratopogonidae	0	0	0	1	2	0	0	0
Chironomidae	3	2	2	3	2	1	3	3
Culicidae Dixidae	0 1	0	1	0	0	0	0 1	1 1
Dolichopodidae	0	1	0	0	2	0	0	0
Empididae	0	0	0	0	0	0	0	0
Ephydridae Limoniidae	0	0	1	2	0	0	2	1 1
Muscidae	1	0	2	0	0	0	1	2
Psychodidae Ptychopteridae	1	0	0	1	0	0	0	0
Rhagionidae	0	0	0	0	0	0	0	0
Sciomyzidae	0	0	0	0	0	0	0	0
Simuliidae Stratiomyidae	1 0	2	3 1	1	2	2	1	2
Tabanidae	1	0	2	2	0	0	0	0
Tipulidae Baetidae	0 3	1 3	1 3	2	2	0 3	2	1
Caenidae	3	1	3	2	0	1	2	4
Ephemerellidae	2	3	0	2	1	1	1	0
Ephemeridae Heptageniidae	2	3	0 3	0	3 2	0	0	0
Leptophlebiidae	3	2	3	0	0	0	0	0
Oligoneuriidae	0	0	0	0	0	0	0	0
Polymitarcidae Potamanthidae	0	0	0	0	0	0	0	0
Siphlonuridae	0	0	0	0	0	0	0	0
Aphelocheiridae Corixidae	0	0	0 3	0	0	0	0	0
Gerridae	2	3	3	2	1	0	0	1
Hydrometridae	0	0	1	1	0	0	0	0
Mesoveliidae Naucoridae	0	0	0	0 2	0	0	0	0
Nepidae	2	0	0	0	0	0	0	0
Notonectidae Pleidae	0	0	0	1	0	0	0	0
Veliidae	0	0	0	3	0	0	0	0
Erpobdellidae	2	0	0	1	0	2	1	0
Glossiphoniidae Hirudidae	0 1	0	0	0	1 0	1 0	0	0
Piscicolidae	0	0	0	0	0	0	0	0
Sialidae	3 0	3	0	0	0	0	0 1	1
Ancylidae Bithyniidae	0	1 0	0	0	0	0	0	0
Ferrissidae	0	0	0	0	0	0	0	0
Hydrobiidae Lymnaeidae	0	2	2	1 2	3	3 0	0	3
Neritidae	0	0	0	0	0	ō	0	0
Physidae Planorbidae	0	0	3	1	0	2	0	0
Sphaeridae	1	1	0	1	0	2	0	0
Unionidae	0	0	0	0	0	0	0	0
Corbicula Dreissena	0	0	0	0	0	0	0	0
Hidracarina	3	3	4	3	2	2	3	0
Aeschnidae	0	2	1 3	2	0	0	0	0
Calopterygidae Coenagrionidae	0	1 0	3	2	1 0	1 0	0	0 2
Cordulegasteridae	0	1	0	1	3	3	0	0
Gomphidae Lestidae	0	1 0	3 0	0	0	0	0	1 0
Libellulidae	0	0	0	1	0	0	0	1
Platycnemididae	0	0	2	2	0	0	0	0
Oligochaeta Chloroperlidae	0	2	3	2	3 0	2	2	1 0
Leuctridae	3	3	4	3	3	0	3	0
Nemouridae Porlidae	0 3	0	0	0	0	0	3	3
Perlidae Perlodidae	0	1 0	0	0	0	0	0	0
Dugesiidae	0	0	2	0	1	0	0	0
Planariidae Brachycentridae	0	1 0	0	3	0	0	0	0
Ecnomyidae	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0
Goeridae Hydropsychidae	0	3 1	2	2	1	0	0 3	0
Hydroptilidae	0	0	1	2	0	1	0	0
Lepidostomatidae	0	0	0	0	0	0	0	0
Leptoceridae Limnephilidae	0 3	1 3	1	3	1 3	1 2	0 3	1 0
Odontoceridae	3	0	0	0	0	0	0	0
Philopotamidae Polycentropodidae	1	0	0	0	0	0	0	0
Polycentropodidae Psychomyiidae	1 0	1 0	2	0	0 3	1 0	0	3
Rhyacophilidae	2	2	1	1	2	1	3	0
Sericostomatidae Branchiobdellidae	3 0	3	0	0	2	2	0	0
Nematoda	0	0	0	0	0	0	0	0
Gordius	1	0	0	0	0	0	0	0

Anexo 3

Informe de Fitobentos (Diatomeas)

Equipo de trabajo

Dr. José Pedro Marín Murcia (ICA SL) Dra. Marina Aboal Sanjurjo (Universidad de Murcia)

1. Introducción

Las algas bentónicas debido a su capacidad limitada de movimiento, constituyen uno de los mejores indicadores del estado de conservación y de la calidad biológica de los sistemas acuáticos. Entre las cualidades que las convierten en organismos indicadores ideales se pueden mencionar: que no pueden evitar los contaminantes, que ocupan una posición basal en los ecosistemas acuáticos, conectando los componentes físicos, químicos y biológicos de las cadenas tróficas, que tienen ciclos de vida relativamente cortos, que les permiten adaptarse rápidamente a los cambios ambientales, que constituyen comunidades compactas que son relativamente fáciles de manejar y conservar durante periodos largos.

En virtud de su gran diversidad, su carácter cosmopolita y la gran sensibilidad a la polución, las diatomeas bentónicas, son los organismos muchas veces dominantes en los cursos de agua, además de ser uno de los indicadores biológicos más frecuentemente utilizados en toda Europa y gran parte de los países industrializados del mundo.

2. Material y métodos

Para el protocolo de recogida de muestras es muy importante seguir las recomendaciones europeas, que también se recogen en la Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del agua publicada por el Ministerio de Medio Ambiente y la Confederación Hidrográfica del Ebro.

En la medida de lo posible es necesario elegir para muestrear una zona localizada en el centro del arroyo (con una profundidad de 30-50 cm), evitando zonas sombreadas o con abundante cobertura forestal. Es preciso evitar zonas que puedan quedar temporalmente emergidas o que, debido a su carácter somero, puedan ser visitadas por animales.

La recolección debe realizarse en ambiente lótico, para evitar el efecto de la deriva y deposición de algas microscópicas, que podría interferir con los resultados.

Los medios leníticos sólo deben ser muestreados en el caso de que no exista una representación de ambiente lótico. En este caso es preferible seleccionar una superficie vertical para evitar el efecto de la acumulación de células muertas.

Método de muestreo

La superficie a muestrear debe ser del mismo tipo en todas las estaciones y en orden de idoneidad se pueden señalar: sustratos naturales estables > sustratos artificiales duros > sustratos vegetales.

Debe evitarse el muestreo de substratos móviles (como limos y arenas) o de madera. En todos estos casos la naturaleza del substrato favorece el desarrollo de especies saprófitas y/o la comunidad algal es poco representativa del tipo de agua.

La superficie que se debe muestrear es de aproximadamente 100 cm2, es decir un cuadrado de 10 cm de lado.

El muestreo se debe realizar en substratos duros y lo más estable posible (bloques > cantos > guijarros). Deben seleccionarse de manera aleatoria 5 réplicas. Si es forzoso utilizar guijarros deben seleccionarse 10.

En todos los casos se debe raspar (con un bisturí, con una navaja o con un cepillo de dientes) únicamente la cara superior de los susbstratos.

En arroyos de curso lento, es conveniente agitar las piedras seleccionadas en la zona de corriente para facilitar el desprendimiento de las especies accidentales, no características de ese tipo de hábitat, y la eliminación de los depósitos de materiales orgánicos o minerales, además de las células muertas.

Fijación y conservación del material

El material recolectado debe fijarse en el campo con formalina neutralizada. Es suficiente una concentración final de 4 %, pero este valor debe revisarse en función de la cantidad de materia orgánica introducida con las diatomeas.

Tratamiento de las diatomeas

Posteriormente se procederá a una oxidación de la materia orgánica con peróxido de hidrógeno, a la eliminación de las sales con ácido clorhídrico y al montaje con la resina Naphrax de acuerdo. Se seguirán en todo momento las recomendaciones de la Comisión Europea.

Identificación

Las identificaciones se han realizado con ayuda de microscopios ópticos equipados, o no, con contraste de fases o interdiferencial y con un microscopio electrónico de barrido. Ambos tipos de microscopios están equipados con sistemas de digitalización de imágenes.

La observación de las muestras para la identificación específica se realiza, de forma rutinaria, previamente a los recuentos. De este modo se pueden separar especimenes de identificación compleja para seguir otros procedimientos diferentes.

A continuación se reúnen las principales monografías imprescindibles para la identificación de los diferentes grupos algales.

- Aboal, M., Álvarez-Cobelas, M., Cambra, J. & Ector, L. (2003). Floristic List of non marine Diatoms (Bacillariophyceae) of the Iberian Peninsula, Baleric Islands and Canary Islands. Updated taxonomy and bibliography. A. R. G. Gantner Verlag K. G.
- Bukhtiyarova, L. & Round, F. E. (1996). Revision of the genus Achnanthes sensu lato section Marginulatae Bukh. Sect. Nov. pf Achnanthidium Kütz. Diatom Research. 11(1): 1-30
- Germain, H. (1981). Flore des diatomées eaux douces et saumâtres du Massif Armoricain et des contrées voisines d'Europe occidentale. Collection "Faunes et Flores actualles". Société nouvelle des éditions Boubée. Paris.
- Gomà, J. Rimet, F. Cambra, J. Hoffmann, L. & Ector, L. (2005) Diatom communities and water quality assessment in mountain rivers of the upper Segre basin (La Cerdanya, Oriental Pyrenees). Hydrobiologia 551, pp. 209-225.
- Kociolek, J. P. & Kingston, J. C. (1999). Taxonomy, ultrastructure, and distribution of some gomphonemoid diatoms (Bacillariophyceae: Gomphonemataceae) from rivers in the United States. Can. J. Bot. 77(5): 686–

705

- Krammer, K. & H. Lange-Betalot (1986). Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer Verlag. Jena.
- > Krammer, K. & H. Lange-Betalot (1988). *Bacillariophyceae*. 2. Teil: *Bacillariaceae*, *Epithemiaceae*, *Surirellaceae*. Gustav Fischer Verlag. Jena.
- Krammer, K. & H. Lange-Betalot (1991) Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fischer Verlag. Jena.
- Krammer, K. & H. Lange-Betalot (1991). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag. Jena.
- Krammer, K. & H. Lange-Betalot (2000). Bacillariophyceae. Part 5. English and French translation of the keys. Büdel, B., Gartner, G., Krienitz, L. & Lokhorst, G. M. (eds.). Süsswasserflora von Mitteleuropa 2/5. Spektrum Akademische Verlag. Gustav Fischer. Heidelberg. Berlin. Krammer.
- Lange-Bertalot, H. Cavacini, P. Tagliaventi, N. & Alfinito, S. 2003. Diatom of Sardinia. Rare and 76 new species in rock pools and other ephemeral waters. A. R. G. Gantner Verlag K. G.
- Lange-Bertalot, H. & D. Metzeltin (1996): Indicators of Oligotrophy. 800 Taxa representative of three ecologically distinct lake types. Carbonate buffered-oligodystrophic-weakly buffered soft water.- In: Lange-Bertalot (ed.). Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 2. Koeltz Scientific Books.
- Lange-Bertalot, H. & G. Moser (1994): *Brachysira*. Monographie der Gattung. Biblioteca Diatomologica. Band 29.- J. Cramer. Berlin-Stuttgart.
- Lange-Bertalot, H. (1993): 85 Neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa vol. 2/1-4.- J. Cramer. Berlin-Stuttgart.
- Lange-Bertalot, H. (1998): As a Practical Limnologist, How Does One Deal with the Flood of New Diatom Names.- Limnologica 28(2): 153- 156.
- Lange-Bertalot, H. (1999): Neue Kombinationen von Taxa aus *Achnanthes* (sensu lato). In: Lange-Bertalot, H. (Ed.). Iconographia Diatomologica 6: 276-289.
- Lange-Bertalot, H. (2001): Navicula sensu stricto. 10 Genera separated from Navicula sensu lato. Frustulia.-

Diatoms of Europe. Vol. 2. A. R. G. Gantner Verlag K. G.

- Lange-Bertalot, H., Caricini, P., Tagliarenti, N. & Alfinito, S. (2003): Diatoms of Sardinia. Rare and 76 newspecies in rock pools and other ephemeral waters. A. R. G. Gantner Verlag K. G.
- Lange-Bertalot, H.; K. Külbe, T. Lauser, M. Nörpel-Schempp & M. Willmann (1996): Diatom Taxa introduced by Georg Krasske. Documentation and Revision.- LANGE-BERTALOT, H. (Ed.). Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 3. Koeltz Scientific Books. Berlin-Stuttgart.
- Metzeltin, D. & A. Witkowski (1996): Diatomeen der Baren-Insel. Süsswasser und marine Arten.- In: Lange-Bertalot. (Ed.). Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 4.
- Patrick, R. & C. W. Reimer (1966): The Diatoms of the United States. Vol. 1.-The Academy of National Sciences of Philadelphia. Sutterhouse. Lititz. Pennsylvania.
- Patrick, R., C. W. Reimer & G. S. Yong (1975): The Diatoms of the United States.- Monographs of the Academy of Natural Sciences of Philadelphia. Sutterhouse. Lititz. Pennsylvania.
- ➤ Reichardt, E. (2001). Revision der Arten um *Gomphonema truncatum* und *capitatum*.- In: Jahn, R., J. P. Kociolek, A. Witkowski & P. Compère (eds): Lange-Bertalot-Fetschrift: 187: 224. Gantner. Ruggel.
- Reichardt, E. 2004. Eine bermerksenswerte Diatomeenassoziation in einem Quell habitat im Grazer Bergland, Österreich. Ein Beitrag zur kenntnis seltener und wening bekannter Diatomeen. A. R. G. Gantner Verlag K .G.
- Round, F. E. (1998). Validation of some previously published "achnanthoid" genera. Diatom Research 15(2): 263-284.
- > Round, F. E. & Bukhtiyarova, L. (1996). Four new genera based on *Achnanthes (Achnanthidium)* together with a re-definition of *Achnanthidium*. Diatom Research 11(2): 345-361.
- ➤ Round, F. E., Crawford, R. M. & Mann, D. G. (1990). The diatoms. Biology & Morphology of the genera. Cambridge University Press.
- Snoeijs, P. (ed.) (1993). Intercalibration and distribution of diatom species in the Baltic Sea. Volume 1. The Baltic Marine Biologists Publication. Opulus Press Uppsala.
- Snoeijs, P. & Balashova, N. (eds.) (1998). Intercalibration and distribution of diatom species in the Baltic

Diciembre, 2007 INFORME FINAL RIOS AÑO 2007 V3DIC07

Sea. Volume 5. The Baltic Marine Biologists Publication. Opulus Press Uppsala.

- Snoejs, P. & Kasperoviciene, J. (eds.) (1996). Intercalibration and distribution of diatom species in the Baltic Sea. Volume 4. The Baltic Marine Biologists Publication. Opulus Press Uppsala.
- Snoeijs, P. & Potapova, M. (eds.) (1995). Intercalibration and distribution of diatom species in the Baltic Sea. Volume 3. The Baltic Marine Biologists Publication. Opulus Press Uppsala.
- Snoeijs, P. & Vilbaste, S. (eds.) (1994). Intercalibration and distribution of diatom species in the Baltic Sea. Volume 2. The Baltic Marine Biologists Publication. Opulus Press Uppsala.
- Werum, M. & Lange-Bertalot, H. 2004. Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and antropogenic impacts. A. R. G. Gantner Verlag K.G.

Recuentos de diatomeas bentónicas

Los recuentos de las muestras bentónicas se llevaron a cabo en las preparaciones permanentes realizadas con NAPHRAX. Para que los recuentos resulten lo más preciso posible, es fundamental realizar recorridos sobre el portaobjetos siguiendo una línea quebrada (**Figura 1**).

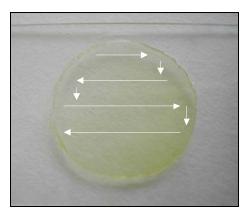


Figura 1. Recorridos sobre el portaobjetos para el recuento de diatomeas.

El recuento se hace siguiendo una linea quebrada para no repetir, se debe llevar cuidado y no llegar al borde pues allí se produce la acumulación de las diatomeas. De cada preparación se hace un inventario de las especies de diatomeas y se procede al recuento de 400 valvas

observando la preparación con el mayor aumento posible (x 1000 inmersión). En el caso de que el recuento sea inferior a 400 individuos debe repetirse la operación en cuantas preparaciones sea preciso hasta completar ese número. En caso contrario el cálculo los índices no resultará todo lo preciso que debiera.

3. Resultados

Se han estudiado 207 muestras, el número total de taxones encontrados es de 254.

El inventario de taxones es el siguiente:

Achnanthes clevei Grunow

Achnanthes conspicua A. Mayer

Achnanthes hungarica Grunow

Achnanthes sp.

Achnanthidium affine (Grunow) Czarnecki

Achnanthidium alteragracillimum (Lange-Bertalot) Round & Bukhtiyarova

Achnanthidium biasolettianum (Grunow in Cleve & Grunow) Round & Bukhtiyarova

Achnanthidium eutrophilum (Lange-Bertalot) Lange-Bertalot

Achnanthidium jackii Rabenhorst

Achnanthidium latecephalum Kobayasi

Achnanthidium lineare W. Smith

Achnanthidium macrocephalum (Hustedt) Round & Bukhtiyarova

Achnanthidium microcephalum Kützing

Achnanthidium minutissimum (Kützing) Czarnecki

Achnanthidium minutissimum (Kützing) Czarnecki var. cryptocephala Grunow in Van Heurck

Achnanthidium minutissimum (Kützing) Czarnecki var. robusta Simonsen

Achnanthidium saprophilum (Kobayasi & Mayama) Round & Bukhtiyarova

Achnanthidium straubianum (Lange-Bertalot) Lange-Bertalot

Achnanthidium subatomus (Hustedt) Lange-Bertalot

Achnanthidium sp.

Amphora coffeaeformis (C.A. Agardh) Kützing

Amphora inariensis Krammer

Amphora libyca Ehrenberg

Amphora oligotraphenta Lange-Bertalot in Lange-Bertalot & Metzeltin

Amphora ovalis (Kützing) Kützing

Amphora pediculus (Kützing) Grunow

Amphora veneta Kützing

Amphora sp.

Asterionella formosa A.H. Hassall

Aulacoseira distans (Ehrenberg) Simonsen

Aulacoseira granulata (Ehrenberg) Simonsen

Aulacoseira lacustris (Grunow) Krammer

Bacillaria paradoxa Gmelin

Brachysira aponina Kützing

Brachysira vitrea (Grunow) Ross in Hartley

Caloneis amphisbaena (Bory) Cleve

Caloneis bacillum (Grunow) Cleve

Campylodiscus hibernicus Ehrenberg

Cocconeis pediculus Ehrenberg

Cocconeis placentula Ehrenberg

Cocconeis placentula Ehrenberg var. euglypta (Ehrenberg) Grunow

Cocconeis placentula Ehrenberg var. lineata (Ehrenberg) Van Heurck

Cocconeis placentula Ehrenberg var. pseudolineata Geitler

Craticula ambigua (Ehrenberg) Mann

Craticula cuspidata (Kützing) Mann in Round et al.

Craticula halophila (Grunow) Mann in Round et al.

Cyclostephanos dubius (Hustedt) Round

Cyclotella atomus Hustedt

Cyclotella compta (Ehrenberg) Kützing

Cyclotella kuetzinghiana Thwaites

Cyclotella meneghiniana Kützing

Cyclotella ocellata Pantocsek

Cyclotella pseudostelligera Hustedt

Cyclotella radiosa (Grunow) Lemmermann

Cyclotella stelligera Cleve & Grunow

Cyclotella sp.

Cymatopleura elliptica (Brébisson) W. Smith

Cymatopleura solea (Brébisson) W. Smith

Cymbella affinis Kützing

Cymbella amphycephala Naegeli in Kützing

Cymbella cesatii (Rabenhorst) Grunow

Cymbella cistula (Hemprich & Ehrenberg) Kirchner

Cymbella cymbiformis C. A. Agardh

Cymbella delicatula Kützing

Cymbella falaisensis (Grunow) Krammer & Lange-Bertalot

Cymbella gracilis (Rabenhorst) Cleve

Cymbella helvetica Kützing

Cymbella lanceolata (Ehrenberg) Kirchner

Cymbella naviculiformis (Auerswald) Cleve

Cymbella reichardtii Krammer

Cymbella tumida (Brébisson ex Kützing) Van Heurck

Denticula kuetzingii Grunow

Denticula tenuis Kützing var. crassula (Naegeli) Hustedt

Diadesmis contenta (Grunow ex Van Heurck) Mann in Round et al.

Diatoma ehrenbergii Kützing

Diatoma mesodon (Ehrenberg) Kützing

Diatoma moniliformis Kützing

Diatoma tenuis C. A. Agardh

Diatoma vulgare Bory

Diatoma vulgare Bory var. linearis Grunow

Diatoma vulgare Bory var. ovalis (Fricke) Hustedt

Diatoma sp.

Diploneis elliptica (Kützing) Cleve

Diploneis marginestriata Hustedt

Diploneis oblongella (Naegeli) Cleve-Euler

Diploneis ovalis (Hilse) Cleve

Didymosphenia geminata (Lyngbye) M. Schmidt

Ellerbeckia arenaria Crawford

Encyonema caespitosum Kützing

Encyonema minutum (Hilse in Rabenhorst) Mann in Round et al.

Encyonema prostratum (Berkeley) Kützing

Encyonema silesiacum (Bleisch in Rabenhorst) Mann in Round et al.

Encyonopsis microcephala Grunow

Eolimna minima (Grunow) Lange-Bertalot

Eolimna subminuscula (Manguin) Moser

Epithemia adnata (Kützing) Brébisson

Eucocconeis flexella (Kützing) Meister

Eunotia arcus Ehrenberg

Eunotia bilunaris (Ehrenberg) W. Smith

Eunotia exigua (Brébisson) Rabenhorst

Eunotia sp.

Fallacia pygmaea Kützing

Fallacia subhamulata (Grunow in Van Heurck) Mann

Fallacia sp.

Fragilaria brevistriata Grunow

Fragilaria capucina Desmazières

Fragilaria capucina Desmazières var. vaucheriae (Kützing) Lange-Bertalot

Fragilaria construens (Ehrenberg) Grunow

Fragilaria intermedia Grunow

Fragilaria leptostauron (Ehrenberg) Hustedt

Fragilaria parasitica (W. Smith) P.A.C. Heiberg

Fragilaria pinnata Ehrenberg

Fragilaria pulchella (Ralfs ex Kützing) Lange-Bertalot

Fragilaria sopotensis Witkowsky & Lange-Bertalot

Fragilaria tenera (W. Smith) Lange-Bertalot

Fragilaria virescens Ralfs

Fragilaria sp.

Frustulia vulgaris (Thwaites) De Toni

Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin

Gomphoneis minuta (Stone) Kociolek & Stoermer

Gomphonema acuminatum Ehrenberg

Gomphonema angustum C. A. Agardh

Gomphonema augur Ehrenberg

Gomphonema bavaricum Reichardt & Lange-Bertalot

Gomphonema clavatum Ehrenberg

Gomphonema clevei Fricke

Gomphonema gracile Ehrenberg

Gomphonema intricatum Kützing var. vibrio (Ehrenberg) Cleve

Gomphonema minutum (C. A. Agardh) C. A. Agardh

Gomphonema olivaceum (Hornemann) Brébisson

Gomphonema olivaceum (Hornemann) Brébisson var. calcareum (Cleve) Van Heurck

Gomphonema olivaceum (Hornemann) Brébisson var. olivaceoides (Hustedt) Lange-Bertalot

Gomphonema parvulum Kützing

Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot

Gomphonema rhombicum Fricke

Gomphonema tergestinum Fricke

Gomphonema truncatum Ehrenberg

Gomphonema sp.

Gomphonitzschia sp.

Gyrosigma acuminatum (Kützing) Rabenhorst

Gyrosigma attenuatum (Kützing) Cleve

Gyrosigma scalproides (Rabenhorst) Cleve

Hannaea arcus (Ehrenberg) Patrick

Hantzschia amphyoxis (Ehrenberg) Grunow in Cleve & Grunow

Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin & Witkowski

Kolbesia ploenensis (Hustedt) Round & Bukhtiyarova

Luticola acidoclinata Lange-Bertalot

Luticola goeppertiana (Bleisch in Rabenhorst) Mann in Round et al.

Luticola kotzschyii (Grunow) Mann

Martyana martii (Héribaud) Round in Round et al.

Mastogloia smithii Thwaites

Melosira varians C. A. Agardh

Meridion circulare (Greville) C. A. Agardh

Navicella pusilla (Grunow) Krammer

Navicula atomus (Kützing) Grunow

Navicula capitatoradiata Germain

Navicula cari Ehrenberg

Navicula cincta (Ehrenberg) Ralfs

Navicula cryptocephala Kützing

Navicula cryptotenella Lange-Bertalot

Navicula cryptotenelloides Lange-Bertalot

Navicula erifuga Lange-Bertalot

Navicula gregaria Donkin

Navicula joubaudii Germain

Navicula lanceolata (C. A. Agardh) Ehrenberg

Navicula menisculus Schumann

Navicula oligotraphenta Lange-Bertalot & Hofmann

Navicula protracta Grunow

Navicula pseudolanceolata Lange-Bertalot

Navicula radiosa Kützing

Navicula radiosafallax Lange-Bertalot

Navicula recens Lange-Bertalot

Navicula reichardtiana Lange-Bertalot

Navicula saprophila Lange-Bertalot & Bonik

Navicula schroeteri Meister

Navicula striolata (Grunow) Lange-Bertalot

Navicula subhamulata Grunow

Navicula tenelloides Hustedt

Navicula tripunctata (O. F. Müller) Bory

Navicula trivialis Lange-Bertalot

Navicula veneta Kützing

Navicula viridula (Kützing) Ehrenberg

Navicula viridula (Kützing) Ehrenberg var. germanii (J.H. Wallace) Lange-Bertalot

Navicula viridula (Kützing) Ehrenberg var. rostellata (Kützing) Cleve

Navicula sp.

Neidium dubium (Ehrenberg) Cleve

Nitzschia acicularis (Kützing) W.M. Smith

Nitzschia amphibia Grunow

Nitzschia angustata (W. Smith) Grunow

Nitzschia archibaldii Lange-Bertalot

Nitzschia bergii Cleve-Euler

Nitzschia brunoi Lange-Bertalot

Nitzschia capitellata Hustedt in A. Schmidt et al.

Nitzschia dissipata (Kützing) Grunow

Nitzschia dubia W. Smith

Nitzschia filiformis (W. M. Smith) Van Heurck

Nitzschia fonticola (Grunow) Grunow

Nitzschia frustulum (Kützing) Grunow

Nitzschia heufleriana Grunow

Nitzschia inconspicua Grunow

Nitzschia intermedia Hantzsch ex Cleve & Grunow

Nitzschia levidensis (W. Smith) Grunow

Nitzschia linearis (C. A. Agardh) W. Smith

Nitzschia linearis (C. A. Agardh) W. Smith var. tenuis (W. Smith) Grunow

Nitzschia Iorenciana Grunow

Nitzschia microcephala Grunow in Cleve & Moller

Nitzschia palea (Kützing) W. Smith

Nitzschia paleacea Grunow in Van Heurck

Nitzschia pusilla Grunow

Nitzschia recta Hantzsch ex Rabenhorst

Nitzschia sigmoidea (Nitzsch) W. Smith

Nitzschia sinuata Thwaites var. delognei (Grunow) Lange-Bertalot

Nitzschia sinuata Thwaites var. tabellaria Grunow

Nitzschia sp.

Nitzschia vermicularis (Kützing) Hantzsch

Pinnularia braunii Cleve

Pinnularia brebissonii (Kützing) Rabenhorst

Pinnularia sp.

Placoneis clementis (Grunow) Cox

Planothidium ellipticum (Cleve) Lange-Bertalot

Planothidium lanceolatum (Brébisson) Round & Bukhtiyarova

Planothidium lanceolatum (Brébisson) Round & Bukhtiyarova var. frequentissima (Krammer & Lange-

Bertalot) Aboal

Planothidium rostratum (Oestrup) Lange-Bertalot

Pleurosira laevis (Ehrenberg) Compère

Psammothidium helveticum (Hustedt) Bukhtiyarova & Round

Psammothidium sp.

Reimeria sinuata (Gregory) Kociolek & Stoermer

Reimeria uniseriata Sala, Guerrero & Ferrario

Rhoicosphenia abbreviata (C. A. Agardh) Lange-Bertalot

Sellaphora bacillum (Ehrenberg) D.G. Mann

Sellaphora pupula (Kützing) Mereschkowsky

Sellaphora seminulum (Grunow) Mann

Sellaphora sp.

Simonsenia delognei Lange-Bertalot

Stephanodiscus sp.

Surirella angusta Kützing

Surirella brebissonii Krammer & Lange-Bertalot

Surirella brebissonii Krammer & Lange-Bertalot var. kuetzingii Krammer & Lange-Bertalot

Surirella crumena Brébisson

Surirella linearis W. M. Smith

Surirella ovalis Brébisson

Surirella suecica Grunow

Surirella sp.

Tabularia fasciculata (C. A. Agardh) Williams & Round

Thalassiosira bramaputrae (Ehrenberg) Hakansson & Locker

Thalassiosira pseudonana Hasle & Heimdal

Thalassiosira weissflogii (Grunow) Fryxell & Hasle

Tryblionella apiculata Gregory

Tryblionella hungarica (Grunow) Frenguelli

Ulnaria acus (Kützing) Aboal

Ulnaria biceps (Kützing) Compère in Jahn et al.

Ulnaria delicatissima var. angustissima (Grunow in Van Heurck) Aboal

Ulnaria ulna (Nitzsch) Compère

Los inventarios florísticos se introdujeron en el programa informático OMNIDIA en su última versión para calcular los diferentes índices biológicos de calidad.

4. Conclusiones

Los taxones más frecuentes son: Achnanthidium affine, Achnanthidium biasolettianum, Achnanthidium lineare, Achnanthidium minutissimum, Achnanthidium saprophilum, Achnanthidium subatomus, Amphora pediculus, Cocconeis pediculus, Cocconeis placentula, Cocconeis placentula var. euglypta, Cocconeis placentula var. lineata, Cocconeis placentula var. pseudolineata, Cyclotella meneghiniana, Cymbella affinis, Diatoma tenuis, Diatoma vulgare, Encyonema minutum, Encyonema silesiacum, Eolimna minima, Eolimna subminuscula, Fragilaria capucina, Fragilaria capucina var. vaucheriae, Fragilaria intermedia, Gomphonema parvulum, Gomphonema pumilum, Gomphonema tergestinum, Navicula capitatoradiata, Navicula cryptotenella, Navicula tripunctata, Nitzschia dissipata, Nitzschia fonticola, Nitzschia frustulum, Nitzschia inconspicua, Reimeria sinuata, Rhoicosphenia abbreviata, y Surirella brebissonii.

Se destaca la presencia de taxones como *Dydimosphenia geminata y Gomphoneis minuta* (**Figura 2**), considerados por algunos autores como especies invasoras. *D. geminata* no es muy abundante y sólo se encuentra en 9 estaciones. En la estación 1056 tiene una frecuencia de 12 valvas en el recuento de 400. *Gomphoneis minuta* se ha encontrado en 11 estaciones, en la 0206 se contaron 30 valvas entre 400.

Especies menos frecuentes a menudo eran muy abundantes de forma localizada en alguna estación, tal es el caso de *Gomphonema rhombicum* en la estación 1294.

Cabe destacar la presencia de algunos taxones nuevos para la península ibérica como

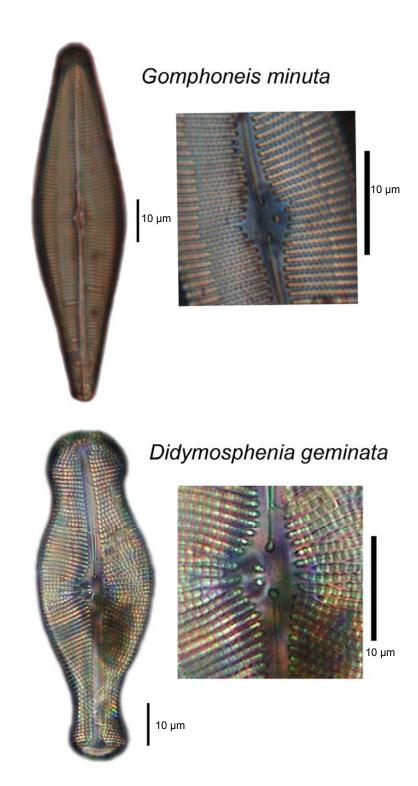


Figura 2. Dydimosphenia geminata y Gomphoneis minuta, consideradas invasoras por algunos autores.

Anexo 4

Análisis del Estado Ecológico por Comunidades Autónomas

La Demarcación Hidrográfica del Ebro ocupa territorios pertenecientes a un total de 9 Comunidades Autónomas (**Figura 1-1**).

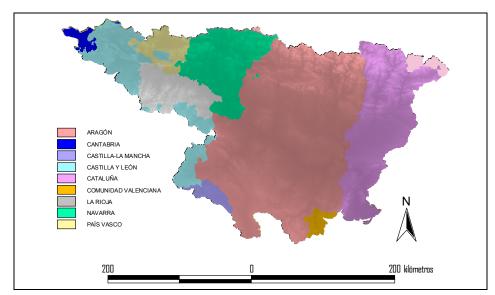
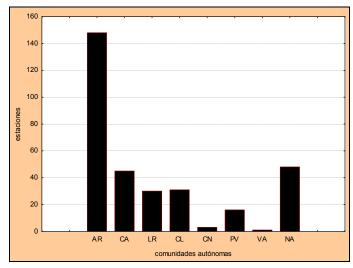



Figura 1-1. Comunidades Autónomas incluidas en la Demarcación Hidrográfica del Ebro.

En el presente anexo se ha estimado el estado ecológico en 323 localidades, pertenecientes a 8 comunidades autónomas: Aragón, Cantabria, Castilla Y León, Cataluña, Comunidad Valenciana, La Rioja, Navarra y País Vasco. La única comunidad no representada fue Castilla-La Mancha (**Figura 1-2**).

Figura 1-2. Estaciones muestreadas en 2007 por comunidades autónomas. AR: Aragón; CA: Cataluña; LR: La Rioja; CL: Castilla y León; CN: Cantabria; PV: País Vasco: VA: Comunidad Valenciana; NA: Navarra.

En el **Cuadro 1-1** se muestran los resultados obtenidos mediante las dos metodologías propuestas (EE_{pond} y EE_{rest}), ordenados por CCAA (orden alfabético). Los resultados se han representado también por colores, siguiendo las directrices de la Directiva Marco del Agua.

CUADRO 1-1

ESTADO ECOLÓGICO DE LAS ESTACIONES DE MUESTREO EN EL AÑO 2007, POR COMUNIDADES AUTÓNOMAS, OBTENIDO MEDIANTE LAS DOS METODOLOGÍAS PROPUESTAS (EE_{rest} y EE_{pond})

(MB=muy bueno; B=bueno; Mo=moderado; D=deficiente)

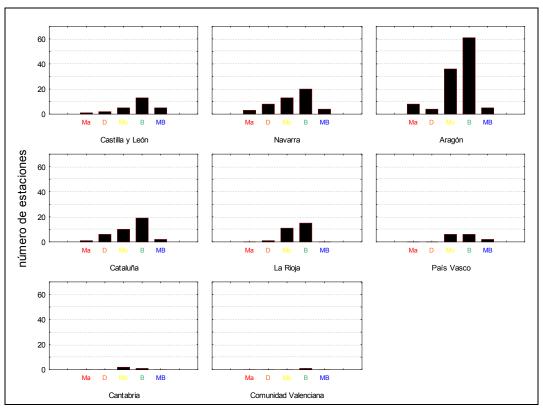
CEMAS	TOPONIMIA	CCAA	EE _{rest}	EE_{pond}
0009	Jalón / Huérmeda	Aragón		
0013	Ésera / Graus	Aragón	В	В
0014	Martín / Hijar	Aragón	D	Мо
0015	Guadalope / Der. Acequia vieja de Alcañiz	Aragón		
0017	Cinca / Fraga	Aragón	В	В
0018	Aragón / Jaca	Aragón	В	MB
0032	Guatizalema / Peralta de Alcofea	Aragón		
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)	Aragón	Mo	Мо
0060	Arba de Luesia / Tauste	Aragón	В	В
0087	Jalón / Grisén	Aragón	Mo	В
0089	Gállego / Zaragoza	Aragón	Ma	D
0090	Queiles / Azud alimentación Emb. del Val	Aragón	Mo	В
0095	Vero / Barbastro	Aragón	D	Мо
0097	Noguera Ribagorzana / Derivación canal de Piñana	Aragón	В	В
0106	Guadalope / Santolea - Derivación Ac. Mayor	Aragón	В	В
0118	Martín / Oliete	Aragón	D	Mo
0123	Gállego / Anzánigo	Aragón	MB	MB
0126	Jalón / Ateca (aguas arriba)	Aragón	В	В
0176	Matarraña / Nonaspe	Aragón	В	В
0184	Manubles / Ateca	Aragón	В	В
0211	Ebro / Presa Pina	Aragón		
0216	Huerva / Zaragoza	Aragón	Ma	Мо
0218	Isuela / Pompenillo	Aragón	Ma	D
0225	Clamor Amarga / Aguas abajo de Zaidín	Aragón		
0226	Alcanadre / Ontiñena	Aragón	Mo	В
0227	Flumen / Sariñena	Aragón		
0228	Cinca / Monzón (aguas arriba)	Aragón		
0244	Jiloca / Luco de Jiloca	Aragón	Mo	В
0247	Gállego / Villanueva	Aragón	Mo	Мо
0508	Ebro / Gallur (abto.	Aragón	Mo	В
0529	Aragón / Castiello de Jaca	Aragón	В	В
0537	Arba de Biel / Luna	Aragón		
0538	Aguas Limpias / E. Sarra	Aragón		
0539	Aurin / Isín	Aragón		

Diciembre, 2007 INFORME FINAL RIOS AÑO 2007 V3DIC07

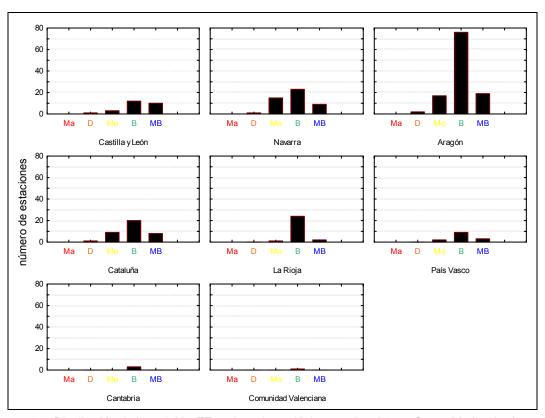
CEMAS	TOPONIMIA	CCAA	EE _{rest}	EE _{pond}
0540	Fontobal / Ayerbe	Aragón	В	В
0541	Huecha / Bulbuente	Aragón		
0549	Cinca / Ballobar	Aragón		
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	Aragón	Мо	В
0561	Gállego / Jabarrella	Aragón	В	MB
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	Aragón	Ma	Мо
0565	Huerva / Fuente de la Junquera	Aragón		
0570	Huerva / Muel	Aragón	Ma	Мо
0583	Grío / La Almunia de Doña Godina	Aragón	MB	MB
0586	Jalón / Saviñán	Aragón		
0590	Ebro / Escatrón	Aragón		
0592	Ebro / Pina de Ebro	Aragón	Мо	В
0593	Jalón / Terrer	Aragón	В	В
0612	Huerva / Villanueva de Huerva	Aragón	Mo	В
0618	Gállego / Embalse del Gállego	Aragón	Мо	В
0623	Algas / Mas de Bañetes	Aragón	В	В
0628	Barranco Calvó	Aragón		
0657	Ebro / Zaragoza-Almozara	Aragón		
0702	Esca / Sigües	Aragón	В	В
0703	Arba de Luesia / Malpica de Arba	Aragón	В	В
0706	Matarraña / Valderrobres	Aragón	В	В
0802	Cinca / Puente de las Pilas	Aragón	В	MB
0804	Aragón Subordán / La Peñeta	Aragón	В	В
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	Aragón	Mo	В
0808	Gállego / Santa Eulalia	Aragón	В	MB
1045	Aragón / Candanchú - Puente de Santa Cristina	Aragón	В	В
1047	Aragón / Puentelarreina de Jaca	Aragón	В	В
1056	Veral / Biniés	Aragón	В	В
1083	Arba de Luesia / Luesia	Aragón	_	
1087	Gállego / Formigal	Aragón	В	В
1088	Gállego / Biescas	Aragón	Ma	В
1089	Gállego / Sabiñánigo	Aragón	В	В
1090	Gállego / Hostal de Ipiés	Aragón	Mo	В
1092	Gállego / Murillo de Gállego	Aragón	В	В
1114	Noguera Ribagorzana / Puente de Montañana	Aragón	Mo	В
1120	Cinca / Laggues	Aragón	В	В
1121	Cinca / Ainca	Aragón	В	В
1122 1123	Cinca / Ainsa	Aragón	Mo	В
1123	Cinca / El Grado Cinqueta / Salinas	Aragón	В	B
		Aragón	В	MB
1128 1130	Vellós / Aguas Abajo del Nacimiento Ara / Torla E.A. 196	Aragón	MD	MD
1130	Ara / Tona E.A. 196 Ara / Ainsa	Aragón	MB	MB
1132	Ésera / Castejón de Sos	Aragón Aragón	B B	MB
		Aragón Aragón	В	В
1134 1135	Ésera / Carretera Ainsa - Campo Ésera / Perarrua	Aragón	В	D
1133	ESCIA / FEIAIIUA	Aragón	В	В

CEMAS	TOPONIMIA	CCAA	EE _{rest}	EEpond
1137	Isábena / Laspaúles	Aragón	MB	MB
1139	Isábena / Capella E.A.	Aragón	Мо	В
1140	Alcanadre / Laguarta - Carretera Boltaña	Aragón	Mo	Мо
1141	Alcanadre / Puente a las Cellas	Aragón		
1164	Ebro / Alagón	Aragón	Mo	В
1203	Jiloca / Morata de Jiloca	Aragón	Mo	Мо
1208	Jalón / Ateca	Aragón	Mo	Mo
1210	Jalón / Épila	Aragón		
1216	Piedra / Castejón de las Armas	Aragón		
1219	Huerva / Cerveruela	Aragón	В	В
1225	Aguas Vivas / Blesa	Aragón		
1227	Aguas Vivas / Azaila	Aragón		
1228	Martín / Martín del Río Martín	Aragón	В	В
1234	Guadalope / Aliaga	Aragón	В	В
1235	Guadalope / Mas de las Matas	Aragón	В	В
1238	Guadalope / Alcañiz (aguas abajo)	Aragón	Mo	Мо
1239	Guadalope / Caspe E.A.	Aragón	Mo	В
1240	Matarraña / Beceite, Parrizal	Aragón	В	MB
1251	Queiles / Los Fayos	Aragón	В	В
1252	Queiles / Novallas	Aragón	Mo	В
1253	Guadalope / Ladruñán	Aragón	В	В
1255	Martín / Vivel del Río Martín	Aragón	Mo	В
1260	Jalón / Bubierca	Aragón	Ma	Мо
1263	Piedra / Cimballa	Aragón	В	В
1264	Mesa / Calmarza	Aragón	В	MB
1270	Ésera / Plan de l'Hospital de Benasque	Aragón	В	В
1277	Arba de Riguel / Sádaba	Aragón	Mo	В
1280	Arba de Biel / Erla	Aragón	В	В
1285	Guatizalema / Sietamo	Aragón	В	MB
1295	Ebro / El Burgo de Ebro	Aragón	Mo	В
1296	Ebro / Azud de Rueda	Aragón	Mo	В
1350	Huecha / Mallén	Aragón	_	N.4 -
1354	Najima / Monreal de Ariza	Aragón	D	Mo
1358	Jiloca / Calamocha	Aragón	Mo	В
1365	Martín / Montalban	Aragón	Mo	В
1368 1375	Escuriza / Ariño	Aragón	B B	B B
1375	Pena / Aguas Abajo embalse Pena Guadalope / Palanca-Caspe	Aragón Aragón	D	В
1376	Huerva / Aguas abajo de Villanueva	Aragón Aragón	Ma	Мо
1398	Guatizalema / Nocito	Aragon	Mo	Mo
1399	Guatizalema / Nolinos de Sipán	Aragón	B	MB
1400	Isuela / Cálcena	Aragón	U	IVID
1403	Aranda / Aranda del Moncayo	Aragón	Мо	В
1404	Aranda / Brea	Aragón	Mo	В
1411	Peregiles / Puente Antigua N-II	Aragón	Mo	В
1417	Barrosa / Parzán	Aragón	B	MB
1717	Danooa / Taizan	Alayuli	В	IVID

1448	CEMAS	TOPONIMIA	CCAA	EE _{rest}	EE _{pond}
Human / Sariñena Aragón Matarraña / Aguas arriba de la desembocadura del Tastaviris. Aragón B B B B B B B B B	1448				The second secon
1471 Tastavins.	1465	Flumen / Sariñena	<u> </u>		
1476 Ésera/Desembocadura Aragón B B B Callego / Central de Marracos Aragón B ME Capon B Central de Marracos Aragón B ME Capon B Liena Aragón B ME Capon B Liena Aragón B ME Capon B Liena Aragón B B ME Capon B Liena Aragón B B B Capon B Liena Aragón B B B Capon B Liena Aragón B B B Capon B Capon B B B Capon B B B Capon B B B Capon B Capon B B B Capon B Capon B B B Capon B B B Capon B B B Capon B B B Capon B Capon B B B Capon B Capon B B B Capon B B B Capon B Capon B B B Capon B Capon B B B Capon B Capon B Capon B B B Capon B Capon B B B Capon B C		•			
1492 Gállego / Central de Marracos Aragón B Me					1
2005 Isuala / Alberuela de la Liena Aragón B Me 2006 Isuala / Las Bellostas Aragón B B 2007 Alcanadre / Casbas Aragón B B 2009 Matarraña / Beceite, aguas arriba Aragón B B 2012 Estarrón / Alsa Aragón MB ME 2013 Osia / Jasa Aragón MB ME 2013 Osia / Jasa Aragón B B 2014 Guarga / Ordovés Aragón B B 2014 Guarga / Ordovés Aragón B B 2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón B B Aragón Aragón Aragón B B Aragón Aragón B B Aragón Aragón B B Aragón B B Aragón B B Aragón Aragón B B Aragón B Aragón B B Aragón B B Aragón Aragón B B Aragón Aragón B B Aragón Ar			*	В	В
2006 Isuala / Las Bellostas				_	1
2007 Alcanadre / Casbas Aragón B 2009 Matarraña / Beceite, aguas arriba Aragón B B 2012 Estarrón / Aisa Aragón MB MB 2013 Osia / Jasa Aragón MB MB 2014 Guarga / Ordovés Aragón B B 2014 Guarga / Ordovés Aragón B B 2015 Susia / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón B B 2027 Aragón / Herrera de los Navarros Aragón B ME 2027 Aragón / Herrera de los Navarros Aragón B ME 2027 Aragón / Herrera de los Navarros Aragón B ME 2027 Aragón / Herrera de los Navarros Aragón B ME 2027 Aragón / Bustarda B ME 2055 Arba de Luesia / Ejea Aragón Me Me 2053 Bustar					
2009 Matarraña / Beceite, aguas arriba Aragón B B 2012 Estarrón / Aísa Aragón MB ME 2013 Osia / Jasa Aragón Mo B 2014 Guarga / Ordovés Aragón B B 2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón Aragón D 2027 Arazas / Torfa (pradera Ordesa) Aragón Aragón D 2029 Aragón Subordán / Hecho (Selva de Oza) Aragón B ME 2055 Arba de Luesia / Ejea Aragón B ME 2056 Barranco de la Violada / Zuera (aguas arriba) Aragón Mo Mo 2073 Sosa / Aguas arriba de Monzón Aragón Mo B Me 2142 Aragón / Aguas arriba de Puente La Reina Aragón B B B 2174 Noquera Ribagorzana / Senet Aragón B B B 2174				В	В
2012 Estarrón / Aisa Aragón MB ME 2013 Osía / Jasa Aragón Mo B 2014 Guarga / Ordovés Aragón B B 2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón B B 2027 Arazas / Torla (pradera Ordesa) Aragón B ME 2027 Arazas / Torla (pradera Ordesa) Aragón B ME 2025 Arba de Luesia / Ejea Aragón B ME 2055 Arba de Luesia / Ejea Aragón Mo Mo 2060 Barranco de la Violada / Zuera (aguas arriba) Aragón Mo Mo 2073 Sosa / Aguas arriba de Monzón Aragón Mo B B 2142 Aragón / Aguas arriba de Puente La Reina Aragón B B 2174 Noguera Ribagorzana / Senet Aragón B Me 2020 Regallo / Puigmoreno Aragón					
2013 Osia / Jasa Aragón Mo B 2014 Guarga / Ordovés Aragón B B 2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón Aragón 2027 Aragón Subordán / Hecho (Selva de Oza) Aragón B ME 2029 Aragón Subordán / Hecho (Selva de Oza) Aragón B ME 2055 Arba de Luesia / Ejea Aragón Mo Mo 2060 Barranco de la Violada / Zuera (aguas arriba) Aragón Mo Mo 2073 Sosa / Aguas arriba de Monzón Aragón Mo B 2174 Noguera Ribagorzana / Senet Aragón B B 2174 Noguera Ribagorzana / Senet Aragón B B 2022 Valira / Seo de Urgel Cataluña Aragón B B 3022 Valira / Seo de Urgel Cataluña Mo B Me 3023 Segre / Seo de Urgel			*		
2014 Guarga / Ordovés Aragón B B 2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón 2027 Arazas / Torla (pradera Ordesa) Aragón 2029 Aragón Subordán / Hecho (Selva de Oza) Aragón 2055 Arba de Luesia / Ejea Aragón 2060 Barranco de la Violada / Zuera (aguas arriba) Aragón 2073 Sosa / Aguas arriba de Monzón Aragón 2142 Aragón / Aguas arriba de Puente La Reina Aragón 2174 Noguera Ribagorzana / Senet Aragón 2174 Noguera Ribagorzana / Senet Aragón 2002 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña 0023 Segre / Seo de Urgel Cataluña 0024 Segre / Serós Cataluña 0025 Segre / Serós Cataluña 0027 Ebro / Tortosa Cataluña 0027 Ebro / Tortosa					
2015 Susía / Castejón Sobrarbe Aragón B B 2017 Cámaras / Herrera de los Navarros Aragón 2027 Arazas / Torla (pradera Ordesa) Aragón 2029 Aragón Subordán / Hecho (Selva de Oza) Aragón 2055 Arba de Luesia / Ejea Aragón 2060 Barranco de la Violada / Zuera (aguas arriba) Aragón 2073 Sosa / Aguas arriba de Monzón Aragón 2142 Aragón / Aguas arriba de Puente La Reina Aragón 2174 Noguera Ribagorzana / Senet Aragón B 2204 Regallo / Puigmoreno Aragón B 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña B 0024 Segre / Ser ós Cataluña B 0025 Segre / Ser ós Cataluña D 0027 Ebro / Tortosa Cataluña D 0014 Segre / Palade Cataluña D 014 Noguera Pallaresa /					
2017 Cámaras / Herrera de los Navarros Aragón 2027 Arazas / Torla (pradera Ordesa) Aragón 2029 Aragón Subordán / Hecho (Selva de Oza) Aragón 2055 Arba de Luesia / Ejea Aragón 2060 Barranco de la Violada / Zuera (aguas arriba) Aragón Mo 2073 Sosa / Aguas arriba de Monzón Aragón Mo 2142 Aragón / Aguas arriba de Puente La Reina Aragón B 2174 Noguera Ribagorzana / Senet Aragón B 2204 Regallo / Puigmoreno Aragón B 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B 0023 Segre / Seo de Urgel Cataluña B MB 0024 Segre / Lleida Cataluña B MB 0025 Segre / Serós Cataluña D MG 0027 Ebro / Tortosa Cataluña D MG 0027 Ebro / Tortosa Cataluña D MG 0027 Ebro / Facó Cataluña Mo B 0114 Segre / Puente de Gualter Cataluña Mo B 0146 Noguera Pallaresa / Pobla de Segur Cataluña Mo MG					
2027 Arazas / Torla (pradera Ordesa) 2029 Aragón Subordán / Hecho (Selva de Oza) 2055 Arba de Luesia / Ejea 2060 Barranco de la Violada / Zuera (aguas arriba) 2073 Sosa / Aguas arriba de Monzón 2073 Aragón Mo B 2142 Aragón / Aguas arriba de Monzón 2174 Noguera Ribagorzana / Senet 2175 Aragón B ME 2204 Regallo / Puigmoreno Aragón B ME 2002 Valira / Seo de Urgel (ICA) - Anseral (RVA) 2023 Segre / Seo de Urgel 2024 Segre / Lleida 2025 Segre / Serós 2026 Cataluña 2027 Ebro / Tortosa 2027 Ebro / Tortosa 2038 Cataluña 2048 Segre / Balaguer 2049 Regallo / Balaguer 2050 Cataluña 2060 Segre / Pade San Tirs (ICA) - Puente de Arfá (RVA) 2070 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) 2071 Segre / Vianova de la Barca 2073 Cataluña 2074 Segre / Torres de Segre 2075 Cataluña 2075 Segre / Torres de Segre 2076 Cataluña 2076 Segre / Torres de Segre 2077 Cataluña 2077 Segre / Torres de Segre 2077 Cataluña 2078 Segre / Torres de Segre 2078 Cataluña 2079 Segre / Torres de Segre 2078 Cataluña 2080 Segre / Segre / Torres de Segre 2078 Cataluña 2080 Segre / Segre / Torres de Segre 2078 Cataluña 2080 Segre / Segre / Torres de Segre 2078 Cataluña 2080 Segre / Segre / Torres de Segre 2081 Segre / Torres de Segre 2082 Canaleta / Bot 2083 Cataluña 2084 Segre / Derivación Canal Urgell 2084 Segre / Derivación Canal Urgell 2085 Segre / Segre / Derivación Acequia Corbins 2083 Segre / Segre / Segre / Segre / Seg			*	В	В
2029Aragón Subordán / Hecho (Selva de Oza)AragónBMB2055Arba de Luesia / EjeaAragónAragón2060Barranco de la Violada / Zuera (aguas arriba)AragónMoMo2073Sosa / Aguas arriba de MonzónAragónMoB2142Aragón / Aguas arriba de Puente La ReinaAragónBB2174Noguera Ribagorzana / SenetAragónBMB2204Regallo / PuigmorenoAragónBB0022Valira / Seo de Urgel (ICA) - Anseral (RVA)CataluñaMoB0023Segre / Seo de UrgelCataluñaBMB0024Segre / SerósCataluñaBMB0025Segre / SerósCataluñaDMo0027Ebro / TortosaCataluñaDMo0036Segre / BalaguerCataluñaMoB0114Segre / Puente de GualterCataluñaMoB0146Noguera Pallaresa / Pobla de SegurCataluñaMoB0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0219Segre / Torres de SegreCataluñaMoMo0511Ebro / BenifalletCataluñaMoMo0512Ebro / BenifalletCataluñaMoMo0605Ebro / AmpostaCataluñaBB0619Negro / ViellaCataluñaCataluña<					
2055 Arba de Luesia / Ejea 2060 Barranco de la Violada / Zuera (aguas arriba) 2073 Sosa / Aguas arriba de Monzón 2073 Sosa / Aguas arriba de Monzón 2142 Aragón / Aguas arriba de Puente La Reina 2142 Aragón / Aguas arriba de Puente La Reina 2174 Noguera Ribagorzana / Senet 2204 Regallo / Puigmoreno Aragón B ME 2204 Regallo / Puigmoreno Aragón B B 30022 Valira / Seo de Urgel (ICA) - Anseral (RVA) 2023 Segre / Seo de Urgel (ICA) - Anseral (RVA) 2024 Segre / Lleida 2025 Segre / Serós 2025 Cataluña 2026 Cataluña 2027 Ebro / Tortosa 2027 Ebro / Tortosa 2038 Cataluña 2049 Segre / Balaguer 2040 Regallo / Puigmoreno 2050 Segre / Serós 2051 Cataluña 2060 Segre / Puente de Gualter 2070 Cataluña 2080 Regallo / Puigmoreno 2080 Segre / Puente de Gualter 2081 Cataluña 2080 Regallo / Puigmoreno 2080 Reg		,		D	MD
2060 Barranco de la Violada / Zuera (aguas arriba) Aragón Mo Mo 2073 Sosa / Aguas arriba de Monzón Aragón Mo B 2142 Aragón / Aguas arriba de Puente La Reina Aragón B B B 2174 Noguera Ribagorzana / Senet Aragón B MB 2204 Regallo / Puigmoreno Aragón B B B 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B 0023 Segre / Seo de Urgel (ICA) - Anseral (RVA) Cataluña B MB 0024 Segre / Lleida Cataluña Cataluña D Mo 2075 Segre / Serós Cataluña D Mo 2076 Segre / Balaguer Cataluña D Mo 2077 Ebro / Tortosa Cataluña Mo B 0114 Segre / Puente de Gualter Cataluña Mo B 0146 Noguera Pallaresa / Pobla de Segur Cataluña D Mo 2066 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña Mo Mo 2077 Segre / Vilanova de la Barca Cataluña Mo Mo 2079 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2071 Segre / Torres de Segre Cataluña Mo Mo 2072 Segre / Torres de Segre Cataluña Mo Mo 2073 Segre / Torres de Segre Cataluña Mo Mo 2074 Segre / Torres de Segre Cataluña Mo Mo 2075 Segre / Torres de Segre Cataluña B B B 2075 Noguera Pallaresa / Tremp Cataluña B B B 2075 Noguera Ribagorzana / Affarrás Cataluña B B B 2076 Noguera Ribagorzana / Affarrás Cataluña B B B 2076 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B 2076 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B 2076 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B 2076 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B 2076 Noguera Ribagorzana / Derivación Ac			*	Б	IVID
2073 Sosa / Aguas arriba de Monzón Aragón B B 2142 Aragón / Aguas arriba de Puente La Reina Aragón B B B 2174 Noguera Ribagorzana / Senet Aragón B ME 2204 Regallo / Puigmoreno Aragón B B B O022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B O023 Segre / Seo de Urgel (ICA) - Anseral (RVA) Cataluña B ME O024 Segre / Lleida Cataluña Cataluña D Mo O025 Segre / Serós Cataluña D Mo O026 Segre / Balaguer Cataluña D Mo O096 Segre / Balaguer Cataluña Mo B O114 Segre / Puente de Gualter Cataluña Mo B O146 Noguera Pallaresa / Pobla de Segur Cataluña D Mo O206 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña D Mo O207 Segre / Vilanova de la Barca Cataluña Mo Mo O219 Segre / Vilanova de la Barca Cataluña D Mo Mo O219 Segre / Vilanova de la Barca Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O219 Segre / Torres de Segre Cataluña D Mo O2219 Segre / Torres de Segre Cataluña D Mo O2219 Segre / Torres de Segre Cataluña D Mo O2219 Segre / Parivación Canal Urgell Cataluña B B O225 Noguera Ribagorzana / Alfarrás Cataluña B B B O225 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B O225 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B		,		Mo	Mo
2142 Aragón / Aguas arriba de Puente La Reina Aragón B B B 2174 Noguera Ribagorzana / Senet Aragón B ME 2204 Regallo / Puigmoreno Aragón B B B O022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B O023 Segre / Seo de Urgel Cataluña B ME O024 Segre / Lleida Cataluña B ME O025 Segre / Lleida Cataluña D Mo D027 Ebro / Tortosa Cataluña D Mo D027 Ebro / Tortosa Cataluña D Mo D038 Segre / Balaguer Cataluña Mo B O114 Segre / Puente de Gualter Cataluña Mo B O146 Noguera Pallaresa / Pobla de Segur Cataluña D Mo D039 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña D Mo D020 Segre / Vilanova de la Barca Cataluña Mo Mo D0219 Segre / Vilanova de la Barca Cataluña D Mo Mo D039 Segre / Vilanova de la Barca Cataluña Mo Mo D0311 Ebro / Benifallet Cataluña Mo Mo D0311 Ebro / Benifallet Cataluña D Mo Mo D0312 Ebro / Xerta Cataluña Cataluña Mo Mo D0312 Ebro / Xerta Cataluña D Mo D0312 Ebro / Archa Cataluña Mo Mo D0313 Ebro / Archa Cataluña Mo Mo D0314 Ebro / Benifallet Cataluña Mo Mo D0315 Ebro / Archa Cataluña Mo B0312 Ebro / Archa Cataluña Cataluña Mo B0313 Ebro / Armposta Cataluña B B B0314 Segre / Derivación Canal Urgell Cataluña B B B0315 Noguera Ribagorzana / Alfarrás Cataluña B B B0325 Noguera Ribagorzana / Alfarrás Cataluña B B B0327 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B0327 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B0327 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B0327 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B0327 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña B B B0328 Son / Esterri de Aneu Cataluña Cataluña B B B0328 Son / Ester		,			
2174 Noguera Ribagorzana / Senet Aragón B ME 2204 Regallo / Puigmoreno Aragón B B 0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B 0023 Segre / Seo de Urgel Cataluña B ME 0024 Segre / Lleida Cataluña B ME 0025 Segre / Serós Cataluña D Mo 0026 Segre / Serós Cataluña D Mo 0096 Segre / Balaguer Cataluña Mo B 0114 Segre / Puente de Gualter Cataluña B ME 0163 Ebro / Ascó Cataluña D Mo 0206 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña Mo Mo 0219 Segre / Vilanova de la Barca Cataluña D Mo 0219 Segre / Torres de Segre Cataluña D Mo 0511 Ebro / Benifallet Cataluña D Mo 0512 Ebro / Xerta Cataluña Cataluña D Mo 0513 Ebro / Ascó Cataluña D Mo 0614 Segre / Torres de Segre Cataluña D Mo 0615 Ebro / Amposta Cataluña D Mo 0617 Segre / Vilanova de la Barca Cataluña D Mo 0618 Noguera Pallaresa / Tremp Cataluña B B B 0627 Noguera Ribagorzana / Alfarrás Cataluña B B B 0627 Noguera Ribagorzana / Derivación Acequia Corbins Cataluña Mo Mo 0638 Son / Esterri de Aneu Cataluña B B B		· ·			
2204Regallo / PuigmorenoAragónBB0022Valira / Seo de Urgel (ICA) - Anseral (RVA)CataluñaMoB0023Segre / Seo de UrgelCataluñaBME0024Segre / LleidaCataluñaMaD0025Segre / SerósCataluñaMaD0027Ebro / TortosaCataluñaDMo0096Segre / BalaguerCataluñaMoB0114Segre / Puente de GualterCataluñaMoB0146Noguera Pallaresa / Pobla de SegurCataluñaBMe0163Ebro / AscóCataluñaBMe0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaMoB0582Canaleta / BotCataluñaCataluñaBB0608Noguera Pallaresa / TrempCataluñaBBB0619Negro / ViellaCataluñaBBB0621Segre / Derivación Canal UrgellCataluñaBBB0625Noguera Ribagorzana / AlfarrásCataluñaMoMoMo0638Son / Esterri de AneuCataluña CorbinsCataluñaBB					MB
0022 Valira / Seo de Urgel (ICA) - Anseral (RVA) Cataluña Mo B 0023 Segre / Seo de Urgel Cataluña B MB 0024 Segre / Lleida Cataluña B MB 0025 Segre / Serós Cataluña Ma D 0027 Ebro / Tortosa Cataluña Mo B 0096 Segre / Balaguer Cataluña Mo B 0114 Segre / Puente de Gualter Cataluña Mo B 0146 Noguera Pallaresa / Pobla de Segur Cataluña B MB 0163 Ebro / Ascó Cataluña D Mo 0206 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña Mo Mo 0207 Segre / Vilanova de la Barca Cataluña Mo Mo 0219 Segre / Vilanova de la Barca Cataluña D Mo 0511 Ebro / Benifallet Cataluña D Mo 0512 Ebro / Senifallet Cataluña Mo B 0512 Ebro / Amposta Cataluña Cataluña <th></th> <th></th> <th></th> <th></th> <th></th>					
0023 Segre / Seo de Urgel Cataluña B MB 0024 Segre / Lleida Cataluña B MB 0025 Segre / Serós Cataluña Ma D 0027 Ebro / Tortosa Cataluña D Mo 0096 Segre / Balaguer Cataluña Mo B 0114 Segre / Puente de Gualter Cataluña Mo B 0146 Noguera Pallaresa / Pobla de Segur Cataluña B MB 0163 Ebro / Ascó Cataluña D Mo 0206 Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA) Cataluña Mo Mo 0207 Segre / Vilanova de la Barca Cataluña Mo Mo 0207 Segre / Torres de Segre Cataluña D Mo 0511 Ebro / Benifallet Cataluña D Mo 0512 Ebro / Xerta Cataluña Cataluña 0582 Canaleta / Bot Cataluña D 0608 Noguera Pallaresa / Tremp Cataluña B B 0619			The state of the s	Мо	В
0025Segre / SerósCataluñaMaD0027Ebro / TortosaCataluñaDMo0096Segre / BalaguerCataluñaMoB0114Segre / Puente de GualterCataluñaMoB0146Noguera Pallaresa / Pobla de SegurCataluñaBMe0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaBB0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaBB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0638Son / Esterri de AneuCataluñaCataluñaBB	0023		Cataluña	В	MB
Description	0024	Segre / Lleida	Cataluña		
0096Segre / BalaguerCataluñaMoB0114Segre / Puente de GualterCataluñaMoB0146Noguera Pallaresa / Pobla de SegurCataluñaBMe0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaCataluña0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaBB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaBB0638Son / Esterri de AneuCataluñaBB	0025	Segre / Serós	Cataluña	Ma	D
0114Segre / Puente de GualterCataluñaMoB0146Noguera Pallaresa / Pobla de SegurCataluñaBME0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaCataluña0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaBB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB	0027	Ebro / Tortosa	Cataluña	D	Мо
0146Noguera Pallaresa / Pobla de SegurCataluñaBMB0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaBB0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaBB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB	0096	Segre / Balaguer	Cataluña	Мо	В
0163Ebro / AscóCataluñaDMo0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0605Ebro / AmpostaCataluñaCataluña0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaMBMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB	0114	Segre / Puente de Gualter	Cataluña	Mo	В
0206Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)CataluñaMoMo0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaB0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaB0621Segre / Derivación Canal UrgellCataluñaB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB	0146		Cataluña	В	MB
0207Segre / Vilanova de la BarcaCataluñaMoMo0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaB0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					Mo
0219Segre / Torres de SegreCataluñaDMo0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluñaCataluña0605Ebro / AmpostaCataluñaB0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					Мо
0511Ebro / BenifalletCataluñaMoB0512Ebro / XertaCataluñaCataluña0582Canaleta / BotCataluña0605Ebro / AmpostaCataluña0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					Mo
0512Ebro / XertaCataluña0582Canaleta / BotCataluña0605Ebro / AmpostaCataluña0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					
0582Canaleta / BotCataluña0605Ebro / AmpostaCataluña0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB				IVIO	В
0605Ebro / AmpostaCataluña0608Noguera Pallaresa / TrempCataluñaB0619Negro / ViellaCataluñaMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					
0608Noguera Pallaresa / TrempCataluñaBB0619Negro / ViellaCataluñaMBMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					1
0619Negro / ViellaCataluñaMBMB0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB		·		R	R
0621Segre / Derivación Canal UrgellCataluñaBB0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB		·			
0625Noguera Ribagorzana / AlfarrásCataluñaBB0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					
0627Noguera Ribagorzana / Derivación Acequia CorbinsCataluñaMoMo0638Son / Esterri de AneuCataluñaBB					
0638 Son / Esterri de Aneu Cataluña B B		-			
		-			
0705 Garona / Valle de Aran Cataluna MB MB	0705	Garona / Valle de Arán	Cataluña	MB	MB


CEMAS	TOPONIMIA	CCAA	EE _{rest}	EE _{pond}
0810	Segre / Camarasa	Cataluña	D	В
1096	Segre / Llivia	Cataluña	В	MB
1101	Segre / Puente de Alentorn	Cataluña	Мо	В
1105	Noguera Pallaresa / Isil	Cataluña	В	В
1106	Noguera Pallaresa / Llavorsí	Cataluña	В	MB
1108	Noguera Pallaresa / Guerri de la Sal	Cataluña		
1110	Flamisell / Pobleta de Bellvehi	Cataluña	В	MB
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	Cataluña	В	В
1119	Corp / Vilanova de la Barca	Cataluña	D	Мо
1167	Ebro / Mora de Ebro	Cataluña	В	В
1294	Noguera Cardós / Lladorre	Cataluña	В	В
1297	Ebro / Flix (aguas abajo de la presa)	Cataluña	D	Мо
1298	Garona / Arties	Cataluña	В	В
1299	Garona / Bossots	Cataluña	В	В
1304	Sio / Balaguer E.A. 182	Cataluña	В	В
1419	Vallferrera / Alins	Cataluña	В	MB
1421	Noguera de Tor / Llesp	Cataluña	Mo	В
1453	Segre / Organyá	Cataluña	В	В
1464	Algas / Maella - Batea	Cataluña	Mo	Мо
2008	Ribera Salada / Altés	Cataluña	В	В
2079	Ciurana / Bellmunt del Priorat	Cataluña		
2193	Noguera Pallaresa / Cola de E. De Camarasa	Cataluña		
0001	Ebro / Miranda de Ebro	Castilla y León		
0092	Nela / Trespaderne	Castilla y León		
0093	Oca / Oña	Castilla y León		
0161	Ebro / Cereceda	Castilla y León		
0165	Bayas / Miranda de Ebro	Castilla y León	-	
0166	Jerea / Pradalvanga	Castilla y León	В	В
0516	Oropesa / Pradoluengo	Castilla y León	MB Mo	MB B
0609 1004	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	Castilla y León		MB
1004	Nela / Puentedey Trueba / El Vado	Castilla y León	B MB	MB
1008	Zadorra / La Puebla de Arganzón	Castilla y León Castilla y León	Мо	Mo
1169	Oca / Villalmondar	Castilla y León	B	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	Castilla y León	MB	MB
1174	Tirón / Belorado	Castilla y León	В	MB
1175	Tirón / Cerezo del Río Tirón	Castilla y León	В	В
1191	Linares / San Pedro Manrique	Castilla y León	В	В
1193	Alhama / Magada o Magaña?	Castilla y León	Mo	В
1207	Jalón / Santa María de Huerta	Castilla y León	Ma	D
1306	Ebro / Ircio	Castilla y León	В	В
1332	Oroncillo / Pancorvo	Castilla y León	D	Mo
1341	Rudrón / Valdelateja	Castilla y León	В	В
1342	Oroncillo / Bugedo	Castilla y León	Мо	В
1351	Val / Agreda	Castilla y León	D	Мо
1387	Urbión / Soto del Valle	Castilla y León	MB	MB

CEMAS	TOPONIMIA	CCAA	EE _{rest}	EEpond
1396	Trema / Torme	Castilla y León	В	В
1440	Trueba / Villacomparada	Castilla y León	Мо	В
1454	Ebro / Trespaderne	Castilla y León	В	В
1455	Cidacos / Yanguas E.A. 44.	Castilla y León	В	MB
2003	Rudrón / Tablada de Rudrón	Castilla y León	В	MB
2011	Omecillo / Corro	Castilla y León	MB	MB
2086	Homino / Terminón	Castilla y León	В	В
0203	Híjar / Espinilla	Cantabria	Мо	В
1149	Ebro / Reinosa	Cantabria	Мо	В
1150	Ebro / Aldea de Ebro	Cantabria	В	В
0036	Iregua / Islallana	La Rioja	В	В
0038	Najerilla / Torremontalbo	La Rioja	В	В
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	La Rioja	Мо	В
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	La Rioja	D	В
0208	Ebro / Conchas de Haro	La Rioja		
0214	Alhama / Alfaro	La Rioja	Mo	В
0241	Najerilla / Anguiano	La Rioja	В	MB
0242	Cidacos / Autol	La Rioja	Мо	В
0243	Alhama / Venta de Baños de Fitero	La Rioja	Мо	В
0505	Ebro / Alfaro	La Rioja	Mo	В
0517	Oja / Ezcaray	La Rioja	В	В
0523	Najerilla / Nájera	La Rioja	В	В
0528	Jubera / Murillo de Río Leza	La Rioja		
0571	Ebro / Logroño - Varea	La Rioja	В	В
0574	Najerilla / Nájera, Aguas abajo	La Rioja	Mo	В
0594	Najerilla / Baños de Río Tobia	La Rioja	В	В
0595	Ebro / San Vicente de la Sonsierra	La Rioja	Mo	В
1156	Ebro / Puente de El Ciego	La Rioja		
1157	Ebro / Mendavia	La Rioja	Mo	Mo
1177	Tirón / Haro	La Rioja	В	В
1178 1183	Najerilla / Villavelayo (aguas arriba)	La Rioja	Mo	В
1183	Iregua / Pte. Villoslada de Cameros Iregua / Puente De Almarza	La Rioja	B B	B B
1338	Oja / Casalarreina	La Rioja	Mo	В
1347	Leza / Agoncillo	La Rioja La Rioja	B	В
1429	Cárdenas / San Millán de la Cogolla	La Rioja La Rioja	В	В
1430	Cárdenas / Cárdenas	La Rioja	Мо	В
1457	Iregua / Alberite	La Rioja	В	В
2001	Urbión / Viniegra de Abajo	La Rioja	В	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	La Rioja	В	В
0002	Ebro / Castejón	Navarra	Ma	Mo
0003	Ega / Andosilla	Navarra	Mo	Мо
0004	Arga / Funes	Navarra	Ma	D
0005	Aragón / Caparroso	Navarra	Мо	Mo
0065	Irati / Liédena	Navarra	В	В
0068	Arakil / Asiain	Navarra	В	В
	ı			


CEMAS	TOPONIMIA	CCAA	EE _{rest}	EE _{pond}
0069	Arga / Etxauri	Navarra	В	В
0071	Ega / Estella (aguas arriba)	Navarra	В	В
0101	Aragón / Yesa	Navarra	В	В
0120	Ebro / Mendavia (Der. Canal Lodosa)	Navarra	Мо	Мо
0159	Arga / Huarte	Navarra	В	В
0162	Ebro / Pignatelli	Navarra	Mo	В
0205	Aragón / Cáseda	Navarra	В	В
0217	Arga / Ororbia	Navarra	D	Мо
0504	Ebro / Rincón de Soto	Navarra	D	Мо
0506	Ebro / Tudela	Navarra	Мо	В
0530	Aragón / Milagro	Navarra	Mo	Мо
0534	Alzania / Embalse de Urdalur	Navarra	В	MB
0569	Arakil / Alsasua	Navarra	D	Mo
0572	Ega / Arinzano	Navarra	В	В
0577	Arga / Puentelarreina	Navarra	Mo	Мо
0647	Arga / Peralta	Navarra	Mo	Mo
0650	Aragón / Derivación Acequia Río Molinar	Navarra	В	В
0815	Urederra / Central Amescoa Baja (ICA)	Navarra	В	MB
0816	Esca / Burgui	Navarra	Ma	В
1036	Linares / Espronceda	Navarra	D	Мо
1037	Linares / Torres del Río	Navarra	D	Мо
1038	Linares / Mendavia	Navarra	Mo	Mo
1062	Irati / Oroz-Betelu	Navarra	MB	MB
1064	Irati / Lumbier	Navarra	В	В
1065	Urrobi / Puente carretera Garralda	Navarra	В	MB
1070	Salazar / Aspurz	Navarra	Mo	В
1072	Arga / Quinto Real	Navarra	В	MB
1307	Zidacos / Barasoain	Navarra	Mo	В
1308	Zidacos / Olite	Navarra	D	Mo
1309	Onsella / Sangüesa	Navarra	B	В
1311	Arga / Landaben -Pamplona	Navarra	В	В
1314	Salado / Mendigorria Ulzama / Olave	Navarra	MB	MB
1315		Navarra	В	В
1317 1393	Larraun / Urritza Erro / Sorogain	Navarra	Mo	В
1393		Navarra	MB	MB
1422	Salado / Estenoz	Navarra	D	B MD
1423	Ubagua / Muez Areta / Rípodas	Navarra	В	MB
1435	Irati / Cola Embalse de Irabia	Navarra	B	B MD
1520	Arakil / Irañeta	Navarra Navarra	MB	MB
3000	Queiles / Aguas arriba de Tudela	Navarra	B Mo	B B
3000	Elorz / Pamplona	Navarra Navarra	Mo D	
0074	Zadorra / Arce - Miranda de Ebro	Navarra País Vasco	Mo	Mo Mo
0179	Zadorra / Vitoria -Trespuentes	País Vasco	Mo	Mo
0179	Zadorra / Fintre Mendivil y Durana	País Vasco País Vasco	В	В
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	País Vasco País Vasco		
UZZI	Oublaide o Zayas / Laminoa (IOA) - Murua (NVA)	rais vasco	MB	MB

CEMAS	TOPONIMIA	CCAA	EE _{rest}	EEpond
0564	Zadorra / Salvatierra	País Vasco	Мо	В
0643	Padrobaso / Zaya	País Vasco	В	В
0644	Bayas / Aldaroa	País Vasco	MB	MB
0649	Santa Engracia / Villarreal de Álava	País Vasco	В	В
0701	Omecillo / Espejo	País Vasco	В	В
1017	Omecillo / Bergüenda	País Vasco	Мо	В
1024	Zadorra / Salvatierra / Zuazo	País Vasco	В	В
1025	Zadorra / Durana	País Vasco	Мо	В
1032	Ayuda / Carretera Miranda	País Vasco		
1034	Inglares / Peñacerrada	País Vasco	В	MB
1039	Ega / Lagran	País Vasco	Мо	В
1154	Ebro / Aguas arriba Haro	País Vasco		
1380	Bergantes / Mare Deu de la Balma	Comunidad Valenciana	В	В
1519	Carol / La Tour De Carol. Francia.	(Francia)	В	В

Las **Figuras 1-3 y 1-4** representan los resultados de estado ecológico analizados por Autonomías, para las dos metodologías utilizadas.

Figura 1-3. Distribución de la variable EE_{rest} (estado ecológico restrictivo) por Comunidades Autónomas. (D=deficiente; Mo=moderado; B=bueno; MB=muy bueno)

Figura 1-4. Distribución de la variable *EE*_{pond} (estado ecológico *ponderado*) por Comunidades Autónomas. (D=*deficiente*; Mo=*moderado*; B=*bueno*; MB=*muy bueno*)

Ante todo, debemos subrayar que la interpretación de estos resultados y las conclusiones expuestas más adelante, podrían estar influenciados por dos factores: por un lado, el diferente territorio ocupado por cada CCAA dentro de la demarcación del Ebro (**Figura 1-1**). Y por otro lado, e íntimamente relacionado, por las diferencias en el número de estaciones prospectadas en cada territorio autonómico (**Figura 1-2**). Por lo tanto, los resultados aquí expuestos deben analizarse con cautela teniendo en cuenta estos condicionantes.

Si analizamos los resultados por Comunidades Autónomas, podemos extraer las siguientes conclusiones:

 Respecto a los resultados obtenidos para la variable EE_{rest} (estado ecológico estimado mediante el método restrictivo), destacar que casi todas las CCAA presentan un alto porcentaje de estaciones por debajo del buen estado. La clase muy bueno es minoritaria en todas las CCAA, estando ausente en La Rioja, Cantabria y Comunidad Valenciana.

La clase *bueno* es la mayoritaria en todas las CCAA excepto en el Pais Vasco y Cantabria (aunque esta última comunidad sólo cuenta con tres estaciones de muestreo). La clase *deficiente* aparece con cierta frecuencia en estaciones de Navarra, Cataluña, Castilla y León, La Rioja y Aragón. Por su parte, las estaciones catalogadas como de estado ecológico *malo* se localizan en territorio aragonés, en Cataluña, Navarra y Castilla y León.

Mediante el empleo del método ponderado (EE_{pond}), la clase de calidad muy bueno se da con cierta frecuencia en Navarra, Castilla y León, Cataluña, País Vasco, Aragón y La Rioja. Por su parte, en todas las CCAA, la mayoría de localidades estudiadas presentan un Buen estado ecológico. En cuanto a la clase moderado, resulta minoritaria en la mayoría de CCAA, aunque adquiere cierta importancia en Navarra y Cataluña. La clase deficiente es la menos frecuente, apareciendo alguna localidad en Cataluña, Aragón, Castilla yLeón y Navarra. La clase malo no aparece en ninguna comunidad.

En las **Figuras 1-4 y 1-5** se representa cartográficamente, por Comunidades Autónomas, el estado ecológico de las masas de agua muestreadas en el año 2007 según el tipo de clasificación del estado ecológico utilizada (restrictivo o ponderado)

Estado Ecológico de las estaciones muestreadas en 2007. Método restrictivo (EErest)

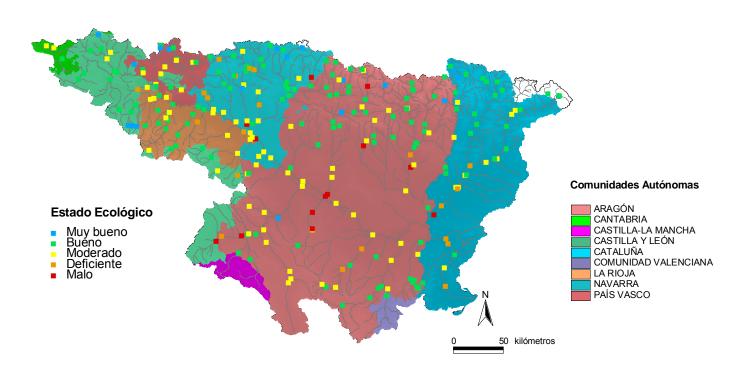


Figura 1-4. Estado ecológico de las masas de agua (ríos) en el año 2007. Método restrictivo.

Estado Ecológico de las estaciones muestreadas en 2007. Método ponderado (EEpond)

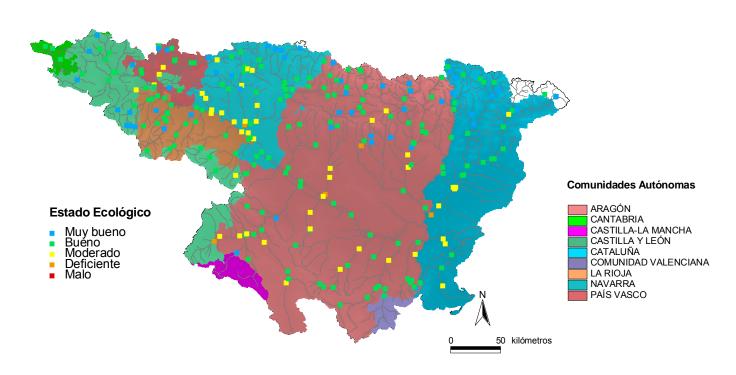


Figura 1-5. Estado ecológico de las masas de agua (ríos) en el año 2007. Método ponderado.

Anexo 5

Análisis del estado ecológico por Subcuencas Hidrográficas

Para el análisis por subcuencas hidrográficas (o más correctamente, unidades hidrográficas o de gestión), la Demarcación Hidrográfica del Ebro se dividió en un total de 55 subcuencas, a partir de la información proporcionada por la CHE en formato SIG y disponible en la página web de dicho Organismo.

La Figura 2-1 muestra las diferentes subcuencas consideradas.

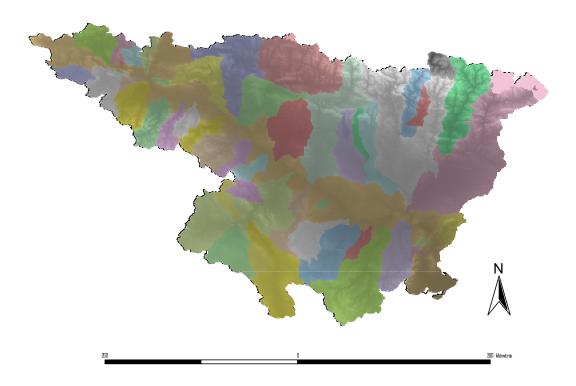
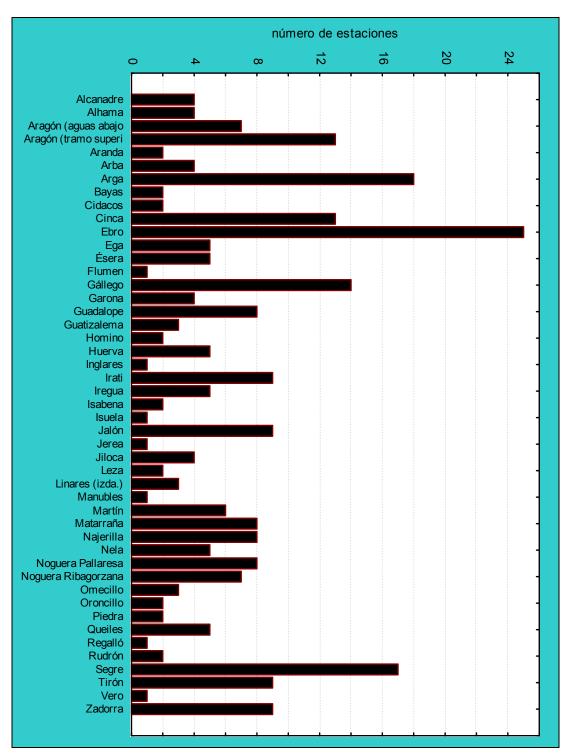



Figura 2-1. Subcuencas hidrográficas consideradas en la Demarcación Hidrográfica del Ebro.

De estas 55, el presente Anexo incluye 272 localidades de muestreo (para las cuales se ha estimado el estado ecológico) pertenecientes a 47 subcuencas, algunas de ellas representadas por una sola estación (ej. Manubles) y otras con hasta 25 estaciones muestreadas (Ebro). La **Figura 2-2** muestra el número de estaciones por subcuenca.

En el **Cuadro 2-1** se muestran los resultados de las estimas de estado ecológico obtenidas mediante las dos metodologías propuestas (EE_{pond} y EE_{rest}) y ordenadas por las diferentes subcuencas (por orden alfabético). Los resultados se han representado también por colores, siguiendo las directrices de la Directiva Marco del Agua.

Figura 2-2. Número de estaciones en las subcuencas hidrográficas consideradas. Sólo se incluyen las 272 estaciones para las que fue posible estimar el estado ecológico.

CUADRO 2-1

ESTADO ECOLÓGICO DE LAS ESTACIONES DE MUESTREO EN EL AÑO 2007, POR SUBCUENCAS HIDROGRÁFICAS, OBTENIDO MEDIANTE LAS DOS METODOLOGÍAS PROPUESTAS (*EE_{rest}* y *EE_{pond}*)

(MB=muy bueno; B=bueno; Mo=moderado; D=deficiente; Ma=Malo)

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
2005	Isuala / Alberuela de la Liena	Alcanadre	В	MB
2006	Isuala / Las Bellostas	Alcanadre	В	В
0226	Alcanadre / Ontiñena	Alcanadre	Мо	В
1140	Alcanadre / Laguarta - Carretera Boltaña	Alcanadre	Мо	Мо
1191	Linares / San Pedro Manrique	Alhama	В	В
0214	Alhama / Alfaro	Alhama	Мо	В
0243	Alhama / Venta de Baños de Fitero	Alhama	Мо	В
1193	Alhama / Magaña	Alhama	Мо	В
0205	Aragón / Cáseda	Aragón (aguas abajo Yesa)	В	В
0650	Aragón / Derivación Acequia Río Molinar	Aragón (aguas abajo Yesa)	В	В
1309	Onsella / Sangüesa	Aragón (aguas abajo Yesa)	В	В
1308	Zidacos / Olite	Aragón (aguas abajo Yesa)	D	Мо
0005	Aragón / Caparroso	Aragón (aguas abajo Yesa)	Mo	Мо
0530	Aragón / Milagro	Aragón (aguas abajo Yesa)	Мо	Мо
1307	Zidacos / Barasoain	Aragón (aguas abajo Yesa)	Мо	В
0018	Aragón / Jaca	Aragón (tramo superior)	В	MB
0529	Aragón / Castiello de Jaca	Aragón (tramo superior)	В	В
0702	Esca / Sigües	Aragón (tramo superior)	В	В
0804	Aragón Subordán / La Peñeta	Aragón (tramo superior)	В	В
1045	Aragón / Candanchú - Puente de Santa Cristina	Aragón (tramo superior)	В	В
1047	Aragón / Puentelarreina de Jaca	Aragón (tramo superior)	В	В
1056	Veral / Biniés	Aragón (tramo superior)	В	В
1448	Veral / Zuriza	Aragón (tramo superior)	В	В
2029	Aragón Subordán / Hecho (Selva de Oza)	Aragón (tramo superior)	В	MB
2142	Aragón / Aguas arriba de Puente La Reina	Aragón (tramo superior)	В	В
0816	Esca / Burgui	Aragón (tramo	Ma	В

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
		superior)		
2012	Estarrón / Aisa	Aragón (tramo	MB	МВ
2012	Estation / visa	superior)	IVID	IVID
2013	Osia / Jasa	Aragón (tramo superior)	Mo	В
1403	Aranda / Aranda del Moncayo	Aranda	Mo	В
1404	Aranda / Brea	Aranda	Mo	В
0060	Arba de Luesia / Tauste	Arba	В	В
0703	Arba de Luesia / Malpica de Arba	Arba	В	В
1280	Arba de Biel / Erla	Arba	В	В
1277	Arba de Riguel / Sádaba	Arba	Мо	В
0068	Arakil / Asiain	Arga	В	В
0069	Arga / Etxauri	Arga	В	В
0159	Arga / Huarte	Arga	В	В
0534	Alzania / Embalse de Urdalur	Arga	В	MB
1072	Arga / Quinto Real	Arga	В	MB
1311	Arga / Landaben -Pamplona	Arga	В	В
1315	Ulzama / Olave	Arga	В	В
1423	Ubagua / Muez	Arga	В	MB
1520	Arakil / Irañeta	Arga	В	В
0217	Arga / Ororbia	Arga	D	Мо
0569	Arakil / Alsasua	Arga	D	Мо
1422	Salado / Estenoz	Arga	D	В
3001	Elorz / Pamplona	Arga	D	Мо
0004	Arga / Funes	Arga	Ma	D
1314	Salado / Mendigorria	Arga	MB	MB
0577	Arga / Puentelarreina	Arga	Mo	Мо
0647	Arga / Peralta	Arga	Mo	Мо
1317	Larraun / Urritza	Arga	Mo	В
0643	Padrobaso / Zaya	Bayas	В	В
0644	Bayas / Aldaroa	Bayas	MB	MB
1457	Iregua / Alberite	Cidacos	В	В
0242	Cidacos / Autol	Cidacos	Mo	В
0017	Cinca / Fraga	Cinca	В	В
0802	Cinca / Puente de las Pilas	Cinca	В	MB
1120	Cinca / Salinas	Cinca	В	В
1121	Cinca / Laspuña	Cinca	В	В
1123	Cinca / El Grado	Cinca	В	В
1127	Cinqueta / Salinas	Cinca	В	MB
1132	Ara / Ainsa	Cinca	В	MB
1417	Barrosa / Parzán	Cinca	В	MB
2015	Susía / Castejón Sobrarbe	Cinca	В	В
0562	Cinca / Aguas abajo Monzón (ICA) - Conchel (RVA)	Cinca	Ma	Mo
1130	Ara / Torla E.A. 196	Cinca	MB	MB
1122	Cinca / Ainsa	Cinca	Mo	В
2073	Sosa / Aguas arriba de Monzón	Cinca	Mo	В

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
0571	Ebro / Logroño - Varea	Ebro	В	В
1150	Ebro / Aldea de Ebro	Ebro	В	В
1167	Ebro / Mora de Ebro	Ebro	В	В
1306	Ebro / Ircio	Ebro	В	В
1454	Ebro / Trespaderne	Ebro	В	В
2001	Urbión / Viniegra de Abajo	Ebro	В	MB
0027	Ebro / Tortosa	Ebro	D	Mo
0163	Ebro / Ascó	Ebro	D	Mo
0504	Ebro / Rincón de Soto	Ebro	D	Mo
1297	Ebro / Flix (aguas abajo de la presa)	Ebro	D	Mo
0002	Ebro / Castejón	Ebro	Ma	Mo
0120	Ebro / Mendavia (Der. Canal Lodosa)	Ebro	Mo	Мо
0162	Ebro / Pignatelli	Ebro	Mo	В
0203	Híjar / Espinilla	Ebro	Mo	В
0505	Ebro / Alfaro	Ebro	Mo	В
0506	Ebro / Tudela	Ebro	Mo	В
0508	Ebro / Gallur (abto.	Ebro	Mo	В
0511	Ebro / Benifallet	Ebro	Mo	В
0592	Ebro / Pina de Ebro	Ebro	Mo	В
0595	Ebro / San Vicente de la Sonsierra	Ebro	Mo	В
1149	Ebro / Reinosa	Ebro	Mo	В
1157	Ebro / Mendavia	Ebro	Mo	Мо
1164	Ebro / Alagón	Ebro	Mo	В
1295	Ebro / El Burgo de Ebro	Ebro	Mo	В
1296	Ebro / Azud de Rueda	Ebro	Mo	В
0071	Ega / Estella (aguas arriba)	Ega	В	В
0572	Ega / Arinzano	Ega	В	В
0815	Urederra / Central Amescoa Baja (ICA) - Venta de Baríndano (RVA)	Ega	В	MB
0003	Ega / Andosilla	Ega	Mo	Mo
1039	Ega / Lagran	Ega	Mo	В
0013	Ésera / Graus	Ésera	В	В
1133	Ésera / Castejón de Sos	Ésera	В	В
1135	Ésera / Perarrua	Ésera	В	В
1270	Ésera / Plan de l'Hospital de Benasque	Ésera	В	В
1476	Ésera/Desembocadura	Ésera	В	В
0551	Flumen / A. Tierz (ICA) - Quicena (RVA)	Flumen	Mo	В
0540	Fontobal / Ayerbe	Gállego	В	В
0561	Gállego / Jabarrella	Gállego	В	MB
8080	Gállego / Santa Eulalia	Gállego	В	MB
1087	Gállego / Formigal	Gállego	В	В
1089	Gállego / Sabiñánigo	Gállego	В	В
1092	Gállego / Murillo de Gállego	Gállego	В	В
2014	Guarga / Ordovés	Gállego	В	В
0089	Gállego / Zaragoza	Gállego	Ma	D
1088	Gállego / Biescas	Gállego	Ma	В

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
0123	Gállego / Anzánigo	Gállego	MB	MB
0247	Gállego / Villanueva	Gállego	Мо	Мо
0618	Gállego / Embalse del Gállego	Gállego	Мо	В
1090	Gállego / Hostal de Ipiés	Gállego	Mo	В
2060	Barranco de la Violada / Zuera (aguas arriba)	Gállego	Mo	Мо
1298	Garona / Arties	Garona	В	В
1299	Garona / Bossots	Garona	В	В
0619	Negro / Viella	Garona	MB	MB
0705	Garona / Valle de Arán	Garona	MB	MB
0106	Guadalope / Santolea - Derivación Ac. Mayor	Guadalope	В	В
1234	Guadalope / Aliaga	Guadalope	В	В
1235	Guadalope / Mas de las Matas	Guadalope	В	В
1253	Guadalope / Ladruñán	Guadalope	В	В
1380	Bergantes / Mare Deu de la Balma	Guadalope	В	В
0806	Bergantes / Aguaviva, Canalillas (ICA) - Canalillas (RVA)	Guadalope	Мо	В
1238	Guadalope / Alcañiz (aguas abajo)	Guadalope	Мо	Mo
1239	Guadalope / Caspe E.A.	Guadalope	Mo	В
1285	Guatizalema / Sietamo	Guatizalema	В	MB
1399	Guatizalema / Molinos de Sipán	Guatizalema	В	MB
1398	Guatizalema / Nocito	Guatizalema	Mo	Мо
1169	Oca / Villalmondar	Homino	В	MB
2086	Homino / Terminón	Homino	В	В
1219	Huerva / Cerveruela	Huerva	В	В
0216	Huerva / Zaragoza	Huerva	Ma	Мо
0570	Huerva / Muel	Huerva	Ma	Мо
1382	Huerva / Aguas abajo de Villanueva	Huerva	Ma	Mo
0612	Huerva / Villanueva de Huerva	Huerva	Mo	В
1034	Inglares / Peñacerrada	Inglares	В	MB
0065	Irati / Liédena	Irati	В	В
0101	Aragón / Yesa	Irati	В	В
1064	Irati / Lumbier	Irati	В	В
1065	Urrobi / Puente carretera Garralda	Irati	В	MB
1435	Areta / Rípodas	Irati	B	В
1062	Irati / Oroz-Betelu	Irati	MB	MB
1393	Erro / Sorogain	Irati	MB	MB
1446	Irati / Cola Embalse de Irabia	Irati	MB	MB
1070	Salazar / Aspurz	Irati	Mo	В
0036	Iregua / Islallana	Iregua	B B	В
1183 1184	Iregua / Pte. Villoslada de Cameros Iregua / Puente De Almarza	Iregua	В	B B
	~	Iregua	В	
1455	Cidacos / Yanguas E.A. 44.	Iregua		MB
2002 1137	Mayor / Aguas Abajo Villoslada de Cameros Isábena / Laspaúles	Iregua	B	B MR
	-	Isabena	MB	MB
1139	Isábena / Capella E.A.	Isabena	Mo	В
0218	Isuela / Pompenillo	Isuela	Ma	D

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
0126	Jalón / Ateca (aguas arriba)	Jalón	В	В
0593	Jalón / Terrer	Jalón	В	В
1354	Najima / Monreal de Ariza	Jalón	D	Mo
1207	Jalón / Santa María de Huerta	Jalón	Ma	D
1260	Jalón / Bubierca	Jalón	Ma	Мо
0583	Grío / La Almunia de Doña Godina	Jalón	MB	MB
0087	Jalón / Grisén	Jalón	Мо	В
1208	Jalón / Ateca	Jalón	Mo	Mo
1411	Peregiles / Puente Antigua N-II	Jalón	Mo	В
0166	Jerea / Palazuelos de Cuesta Urria	Jerea	В	В
0042	Jiloca / Calamocha (aguas arriba, El Poyo del Cid)	Jiloca	Mo	Мо
0244	Jiloca / Luco de Jiloca	Jiloca	Мо	В
1203	Jiloca / Morata de Jiloca	Jiloca	Mo	Мо
1358	Jiloca / Calamocha	Jiloca	Мо	В
1347	Leza / Agoncillo	Leza	В	В
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	Leza	D	В
1036	Linares / Espronceda	Linares (izda.)	D	Мо
1037	Linares / Torres del Río	Linares (izda.)	D	Мо
1038	Linares / Mendavia	Linares (izda.)	Мо	Мо
0184	Manubles / Ateca	Manubles	В	В
1228	Martín / Martín del Río Martín	Martín	В	В
1368	Escuriza / Ariño	Martín	В	В
0014	Martín / Hijar	Martín	D	Mo
0118	Martín / Oliete	Martín	D	Мо
1255	Martín / Vivel del Río Martín	Martín	Mo	В
1365	Martín / Montalban	Martín	Mo	В
0176	Matarraña / Nonaspe	Matarraña	В	В
0623	Algas / Mas de Bañetes	Matarraña	В	В
0706	Matarraña / Valderrobres	Matarraña	В	В
1240	Matarraña / Beceite, Parrizal	Matarraña	В	MB
1375	Pena / Aguas Abajo embalse Pena	Matarraña	В	В
1471	Matarraña / Aguas arriba de la desembocadura del Tastavins.	Matarraña	В	В
2009	Matarraña / Beceite, aguas arriba	Matarraña	В	В
1464	Algas / Maella - Batea	Matarraña	Мо	Мо
0038	Najerilla / Torremontalbo	Najerilla	В	В
0241	Najerilla / Anguiano	Najerilla	В	MB
0523	Najerilla / Nájera	Najerilla	В	В
0594	Najerilla / Baños de Río Tobia	Najerilla	В	В
1429	Cárdenas / San Millán de la Cogolla	Najerilla	В	В
0574	Najerilla / Nájera, Aguas abajo	Najerilla	Мо	В
1178	Najerilla / Villavelayo (aguas arriba)	Najerilla	Mo	В
1430	Cárdenas / Cárdenas	Najerilla	Mo	В
1004	Nela / Puentedey	В	MB	
1396	Trema / Torme	Nela	В	В
1006	Trueba / El Vado	Nela	MB	MB

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
0609	Salón / Villatomil (ICA) - Aguas arriba de La Cerca (RVA)	Nela	Мо	В
1440	Trueba / Villacomparada	Nela	Мо	В
0146	Noguera Pallaresa / Pobla de Segur	Noguera Pallaresa	В	MB
0608	Noguera Pallaresa / Tremp	Noguera Pallaresa	В	В
0638	Son / Esterri de Aneu	Noguera Pallaresa	В	В
1105	Noguera Pallaresa / Isil	Noguera Pallaresa	В	В
1106	Noguera Pallaresa / Llavorsí	Noguera Pallaresa	В	MB
1110	Flamisell / Pobleta de Bellvehi	Noguera Pallaresa	В	MB
1294	Noguera Cardós / Lladorre	Noguera Pallaresa	В	В
1419	Vallferrera / Alins	Noguera Pallaresa	В	MB
0097	Noguera Ribagorzana / Derivación canal de Piñana	Noguera Ribagorzana	В	В
0625	Noguera Ribagorzana / Alfarrás	Noguera Ribagorzana	В	В
1113	Noguera Ribagorzana / Pont De Suert E.A. 137	Noguera Ribagorzana	В	В
2174	Noguera Ribagorzana / Senet	Noguera Ribagorzana	В	MB
0627	Noguera Ribagorzana / Derivación Acequia Corbins	Noguera Ribagorzana	Мо	Mo
1114	Noguera Ribagorzana / Puente de Montañana	Noguera Ribagorzana	Мо	В
1421	Noguera de Tor / Llesp	Noguera Ribagorzana	Mo	В
0701	Omecillo / Espejo	Omecillo	В	В
2011	Omecillo / Corro	Omecillo	MB	MB
1017	Omecillo / Bergüenda	Omecillo	Мо	В
1332	Oroncillo / Pancorvo	Oroncillo	D	Mo
1342	Oroncillo / Bugedo	Oroncillo	Mo	В
1263	Piedra / Cimballa	Piedra	В	В
1264	Mesa / Calmarza	Piedra	В	MB
1251	Queiles / Los Fayos	Queiles	В	В
1351	Val / Agreda	Queiles	D	Mo
0090	Queiles / Azud alimentación Emb. del Val	Queiles	Мо	В
1252	Queiles / Novallas	Queiles	Мо	В
3000	Queiles / Aguas arriba de Tudela	Queiles	Mo	В
2204	Regallo / Puigmoreno	Regalló	В	В
1341	Rudrón / Valdelateja	Rudrón	В	В
2003	Rudrón / Tablada de Rudrón	Rudrón	В	MB
0023	Segre / Seo de Urgel	Segre	В	MB
0621	Segre / Derivación Canal Urgell	Segre	В	В
1096	Segre / Llivia	Segre	В	MB
1304	Sio / Balaguer E.A. 182	Segre	В	В
1453	Segre / Organyá	Segre	В	В
1519	Carol / La Tour De Carol. Francia.	Segre	В	В
2008	Ribera Salada / Altés	Segre	В	В
0219	Segre / Torres de Segre	Segre	D	Mo
0810	Segre / Camarasa	Segre	D	В
1119	Corp / Vilanova de la Barca	Segre	D	Mo
0025	Segre / Serós	Segre	Ma	D
0022	Valira / Seo de Urgel (ICA) - Anseral (RVA)	Segre	Mo	В
0096	Segre / Balaguer	Segre	Mo	В

CEMAS	ESTACIÓN	SUBCUENCA	EE _{rest}	EE _{pond}
0114	Segre / Puente de Gualter	Segre	Мо	В
0206	Segre / Plá de San Tirs (ICA) - Puente de Arfá (RVA)	Segre	Мо	Мо
0207	Segre / Vilanova de la Barca	Segre	Мо	Мо
1101	Segre / Puente de Alentorn	Segre	Мо	В
0517	Oja / Ezcaray	Tirón	В	В
1174	Tirón / Belorado	Tirón	В	MB
1175	Tirón / Cerezo del Río Tirón	Tirón	В	В
1177	Tirón / Haro	Tirón	В	В
0516	Oropesa / Pradoluengo	Tirón	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	Tirón	MB	MB
1387	Urbión / Soto del Valle	Tirón	MB	MB
0050	Tirón / Cuzcurrita (ICA) - Tirgo (RVA)	Tirón	Мо	В
1338	Oja / Casalarreina	Tirón	Mo	В
0095	Vero / Barbastro	Vero	D	Mo
0180	Zadorra / Entre Mendivil y Durana	Zadorra	В	В
0649	Santa Engracia / Villarreal de Álava	Zadorra	В	В
1024	Zadorra / Salvatierra / Zuazo	Zadorra	В	В
0221	Subialde o Zayas / Larrinoa (ICA) - Murua (RVA)	Zadorra	MB	MB
0074	Zadorra / Arce - Miranda de Ebro	Zadorra	Мо	Мо
0179	Zadorra / Vitoria -Trespuentes	Zadorra	Мо	Мо
0564	Zadorra / Salvatierra	Zadorra	Мо	В
1025	Zadorra / Durana	Zadorra	Мо	В
1028	Zadorra / La Puebla de Arganzón	Zadorra	Мо	Мо

A continuación se muestra un análisis más detallado de las subcuencas representadas en el presente Informe. Se presentan los resultados en forma de láminas cartográficas donde aparecen las subcuencas con los símbolos en colores según el estado ecológico. Para más información acerca del estado ecológico de las subcuencas, ver el **Anexo 2**, correspondiente al informes de macroinvertebrados.

Estado Ecológico por subcuencas en 2007. Método ponderado (EEpond)

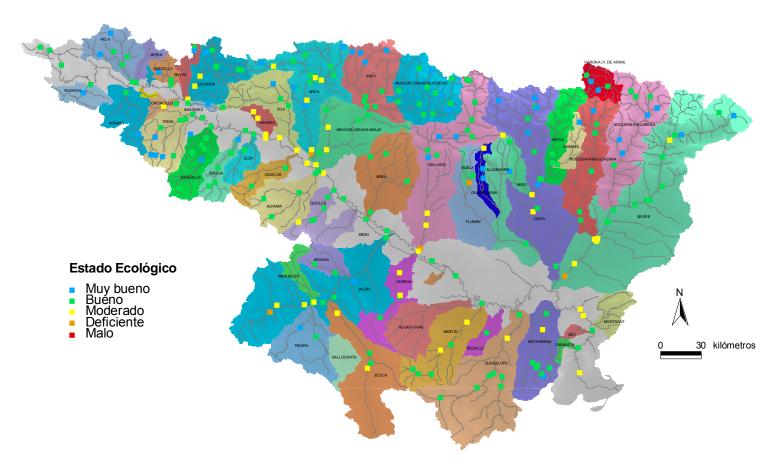


Figura 2-3. Estado ecológico (método ponderado) en las diferentes subcuencas de la Cuenca del Ebro.

Estado Ecológico por subcuencas en 2007. Método restrictivo (EErest)

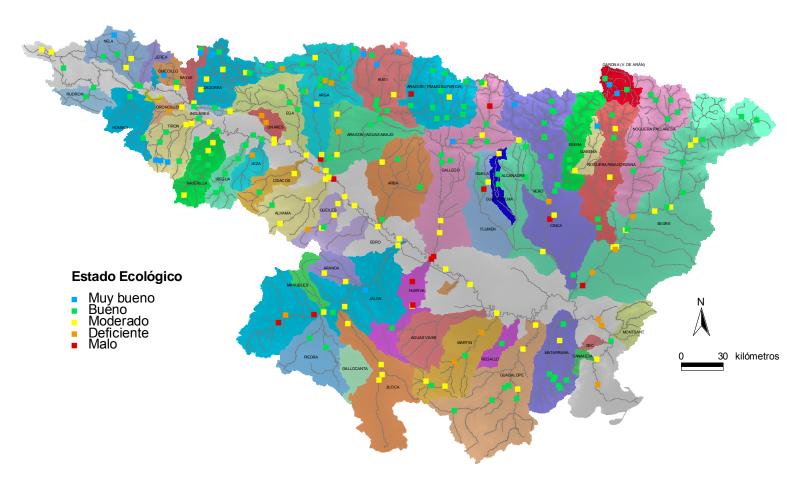
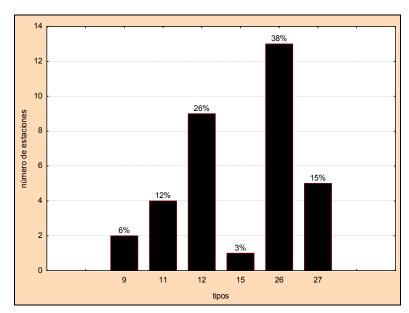
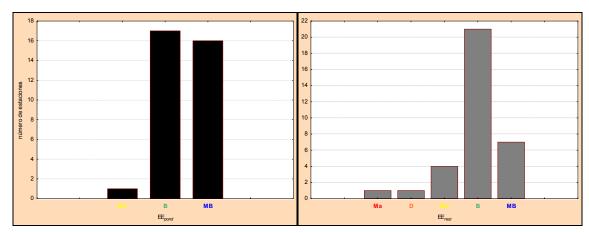



Figura 2-4. Estado ecológico (método restrictivo) en las diferentes subcuencas de la Cuenca del Ebro.

Anexo 6

Análisis del estado ecológico en las estaciones de la Red de Referencia En cuanto a los resultados obtenidos en el presente Informe, relativos a aquellas estaciones incluidas en la *Red de Referencia* de la CHE, debemos señalar las siguientes cuestiones.

- 34 de las 272 localidades para las que se pudo obtener el valor del estado ecológico (12.5%), formaban parte de la Red de Referencia. (Tabla 3-1)
- Sólo 6 de las tipologías estuvieron representadas, una de ellas con una sola estación, el tipo 15, y otra con dos estaciones, el tipo 9 (Figura 3-1; Tabla 3-1).
- Los tipos 12 y 26 fueron los más representados en la Red de Referencia, sumando un 64% de las estaciones (Figura 3-1).


Figura 3-1. Distribución de las estaciones de referencia por tipologías de ríos.

- Según el método ponderado (EE_{pond}), el estado ecológico de las estaciones de referencia fue *muy bueno* en un 47%, *bueno* en un 50% y *moderado* en un 3% de las mismas (Figura 3-2).
- Según el método restrictivo (EE_{rest}), el estado ecológico de las estaciones de referencia fue *muy bueno* en un 21%, *bueno* en un 62%, *moderado* en un 12%, y *deficiente* y *malo* en un 3% de las mismas (**Figura 3-2**).

TABLA 3-1
Estado ecológico en las estaciones de la *Red de Referencia* en 2007.

CEMAS	ESTACIÓN	EE-rest	EE-pond	
0166	Jerea / Palazuelos de Cuesta Urria	В	В	
0197	Leza / Ribafrecha (ICA) - Leza de Río Leza (RVA)	D	В	
0540	Fontobal / Ayerbe	В	В	
0623	Algas / Mas de Bañetes	В	В	
0638	Son / Esterri de Aneu	В	В	
0804	Aragón Subordán / La Peñeta	В	В	
8080	Gállego / Santa Eulalia	В	MB	
0816	Esca / Burgui	Ma	В	
1004	Nela / Puentedey	В	MB	
1006	Trueba / El Vado	MB	MB	
1065	Urrobi / Puente carretera Garralda	В	MB	
1169	Oca / Villalmondar	В	MB	
1173	Tirón / Aguas arriba Fresneda de la Sierra	MB	MB	
1178	Najerilla / Villavelayo (aguas arriba)	Мо	В	
1191	Linares / San Pedro Manrique	В	В	
1193	Alhama / Magaña	Мо	В	
1240	Matarraña / Beceite, Parrizal	В	MB	
1270	Ésera / Plan de l'Hospital de Benasque	В	В	
1380	Bergantes / Mare Deu de la Balma	В	В	
1387	Urbión / Soto del Valle	MB	MB	
1393	Erro / Sorogain	MB	MB	
1398	Guatizalema / Nocito	Мо	Мо	
1446	Irati / Cola Embalse de Irabia	MB	MB	
1448	Veral / Zuriza	В	В	
2001	Urbión / Viniegra de Abajo	В	MB	
2002	Mayor / Aguas Abajo Villoslada de Cameros	В	В	
2003	Rudrón / Tablada de Rudrón	В	MB	
2005	Isuala / Alberuela de la Liena	В	MB	
2006	Isuala / Las Bellostas	В	В	
2011	Omecillo / Corro	MB	MB	
2012	Estarrón / Aisa	MB	MB	
2013	Osia / Jasa	Мо	В	
2014	Guarga / Ordovés	В	В	
2029	Aragón Subordán / Hecho (Selva de Oza)	В	MB	

Diciembre, 2007 INFORME FINAL RIOS AÑO 2007 V3DIC07

Figura 3-2. Estado ecológico de las estaciones de la *Red de Referencia* según las dos metodologías propuestas, ponderada (EE_{pond}) y restrictiva (EE_{rest}).

- Según los indicadores biológicos basados en macroinvertebrados, todas las estaciones se clasificaron como de estado *muy bueno o bueno* (**Tabla 3-2**).
- Mediante el uso del índice de macrófitos IVAM, los estados muy bueno o bueno fueron mayoritarios, con 16 y 14 estaciones respectivamente. El estado moderado se dio en dos estaciones, y los estados deficiente y malo en sendas estaciones (Tabla 3-2).
- Mediante el uso del índice de diatomeas IPS, el estado muy bueno fue mayoritario, con 24 estaciones (de las 31 para las cuales se obtuvo el IPS, esto es, un 77%). El estado bueno se dio en 7 estaciones y el estado moderado se dio en una única estación (Tabla 3-2).
- Una única estación, en concreto, la 1398 del río Guatizalema en Nocito, fue clasificada como de condiciones físico-químicas que no alcanzaban el buen estado (Tabla 3-3), por lo que resultó evaluada por debajo del buen estado ecológico según ambos criterios, EE_{pond} y EE_{rest}.

TABLA 3-2 Valores de calidad calculados según los indicadores biológicos en la Red de Referencia.

CEMAS	TOPONIMIA	E_IBMWP	E_IASPT	E_NFAM	E_IVAM	E_IPS
0166	Jerea / Palazuelos de Cuesta Urria	MB	MB	MB	В	В
0197	Leza / Ribafrecha (ICA)	MB	В	MB	D	MB
0540	Fontobal / Ayerbe	MB	В	MB	В	В
0623	Algas / Mas de Bañetes	MB	MB	MB	В	MB
0638	Son / Esterri de Aneu	В	В	MB	MB	MB
0804	Aragón Subordán / La Peñeta	MB	MB	MB	MB	MB
0808	Gállego / Santa Eulalia	MB	MB	MB	В	MB
0816	Esca / Burgui	MB	MB	MB	Ma	MB
1004	Nela / Puentedey	MB	MB	MB	В	MB
1006	Trueba / El Vado	MB	MB	MB	MB	MB
1065	Urrobi / Puente carretera Garralda	MB	MB	MB	В	MB
1169	Oca / Villalmondar	MB	MB	MB	В	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	MB	MB	MB	MB	MB
1178	Najerilla / Villavelayo (aguas arriba)	MB	MB	MB	MB	Mo
1191	Linares / San Pedro Manrique	MB	В	MB	В	В
1193	Alhama / Magada o Magaña?	MB	MB	MB	Мо	В
1240	Matarraña / Beceite, Parrizal	MB	MB	MB	MB	В
1270	Ésera / Plan de l'Hospital de Benasque	MB	MB	MB	MB	MB
1380	Bergantes / Mare Deu de la Balma	MB	В	MB	MB	MB
1387	Urbión / Soto del Valle	MB	MB	В	MB	MB
1393	Erro / Sorogain	MB	MB	MB	MB	
1398	Guatizalema / Nocito	MB	В	MB	В	
1446	Irati / Cola Embalse de Irabia	MB	MB	MB	MB	MB
1448	Veral / Zuriza	MB	В	MB	MB	MB
2001	Urbión / Viniegra de Abajo	MB	В	MB	В	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	MB	В	MB	В	В
2003	Rudrón / Tablada de Rudrón	MB	MB	MB	В	MB
2005	Isuala / Alberuela de la Liena	MB	MB	MB	В	MB
2006	Isuala / Las Bellostas	MB	MB	MB	MB	
2011	Omecillo / Corro	MB	MB	MB	MB	MB
2012	Estarrón / Aisa	MB	MB	MB	MB	MB
2013	Osia / Jasa	MB	MB	MB	Мо	В
2014	Guarga / Ordovés	MB	MB	MB	MB	MB
2029	Aragón Subordán / Hecho (Selva de Oza)	MB	MB	MB	В	MB

TABLA 3-3 Valor de los indicadores físico-químicos e hidromorfológicos en la Red de Referencia.

CEMAS	TOPONIMIA	Т	pН	02	NO ₂	NO ₃	NH ₄	PO ₄	EE-FQ	QBR	IHF	EE-HMF
	Jerea / Palazuelos de				_							
0166	Cuesta Urria	В	В	В	В	В	В	В	MB	В	MB	MB
0197	Leza / Ribafrecha (ICA) -	В	В	В	В	В	В	В	MB	Ма	MB	<mb< td=""></mb<>
	Leza de Río Leza											
0540	Fontobal / Ayerbe	В	В	В	В	В	В	В	MB	В	MB	MB
0623	Algas / Mas de Bañetes	В	В	В	В	В	В	В	MB	Мо	Мо	<mb< th=""></mb<>
0638	Son / Esterri de Aneu	В	В	В	В	В	В	В	MB	Мо	В	<mb< th=""></mb<>
0804	Aragón Subordán / La Peñeta	В	В	В	В	В	В	В	MB	Мо	MB	<mb< th=""></mb<>
0808	Gállego / Santa Eulalia	В	В	В	NB	В	В	В	MB	MB	В	MB
0816	Esca / Burgui	В	В	В	В	В	В	В	MB	Мо	MB	<mb< td=""></mb<>
1004	Nela / Puentedey	В	В	В	В	В	В	NB	MB	MB	MB	MB
1006	Trueba / El Vado	В	В	В	В	В	В	В	MB	MB	MB	MB
1065	Urrobi / Puente carretera Garralda	В	В	В	В	В	В	В	MB	В	MB	MB
1169	Oca / Villalmondar	В	В	В	В	В	В	В	MB	В	MB	MB
1173	Tirón / Aguas arriba Fresneda de la Sierra	В	В	В	В	В	В	NB	MB	МВ	МВ	МВ
1178	Najerilla / Villavelayo (aguas arriba)	В	В	В	В	В	В	В	МВ	МВ	МВ	МВ
1191	Linares / San Pedro Manrique	В	В	В	В	В	В	В	MB	D	В	<mb< th=""></mb<>
1193	Alhama / Magada o Magaña?	В	В	В	В	В	В	В	MB	В	MB	MB
1240	Matarraña / Beceite, Parrizal	В	В	В	В	В	В	В	MB	В	MB	MB
1270	Ésera / Plan de l'Hospital de Benasque	В	В	В	В	В	В	В	MB		В	<mb< th=""></mb<>
1380	Bergantes / Mare Deu de la Balma	В	В	В	В	В	В	В	MB	Мо	В	<mb< th=""></mb<>
1387	Urbión / Soto del Valle	В	В	В	В	В	В	В	MB	В	MB	MB
1393	Erro / Sorogain	В	В	В	В	В	В	В	MB	В	MB	MB
1398	Guatizalema / Nocito	В	В	NB	NB	В	NB	NB	NB	В	В	<mb< th=""></mb<>
1446	Irati / Cola Embalse de Irabia	В	В	В	В	В	В	В	MB	МВ	МВ	МВ
1448	Veral / Zuriza	В	NB	В	В	В	В	В	MB		В	<mb< th=""></mb<>
2001	Urbión / Viniegra de Abajo	В	В	В	В	В	В	В	MB	MB	MB	MB
2002	Mayor / Aguas Abajo Villoslada de Cameros	В	В	В	В	В	В	В	MB	МВ	МВ	МВ
2003	Rudrón / Tablada de Rudrón	В	В	В	В	В	В	NB	MB	MB	MB	MB
2005	Isuala / Alberuela de la Liena	В	В	В	В	В	В	NB	MB	МВ	МВ	МВ
2006	Isuala / Las Bellostas	В	В	В	В	В	В	NB	MB	В	В	B-Ma
2011	Omecillo / Corro	В	В	В	NB	В	В	В	MB	MB	MB	MB
2012	Estarrón / Aisa	В	В	В	NB	В	В	В	MB	MB	В	MB
2013	Osia / Jasa	В	В	В	В	В	В	В	MB	В	В	B-Ma
2014	Guarga / Ordovés	В	В	В	В	В	В	NB	MB	Мо	В	B-Ma
2029	Aragón Subordán / Hecho (Selva de Oza)	В	NB	В	В	В	В	В	MB	МВ	В	МВ

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO Diciembre, 2007 INFORME FINAL RIOS AÑO 2007 V3DIC07